Imbim Annual Report 2016

Total Page:16

File Type:pdf, Size:1020Kb

Imbim Annual Report 2016 Department of Medical Biochemistry and Microbiology IMBIM ANNUAL REPORT 2016 DEPARTMENT OF MEDICAL BIOCHEMISTRY AND MICROBIOLOGY ANNUAL REPORT 2016 Pictures taken by Eva Garmendia IMBIM Day, February and September, 2016 Edited by Veronica Hammar ISBN no 978-91-983979-0-1 PREFACE I would like to take the opportunity to welcome two new research groups to IMBIM, Both Örjan Carlborg and Mikael Sellin, with their coworkers joined our Department during 2016. Örjans group joined us during summer whereas Mikaels group will move physically to their new laboratory, hopefully before summer 2017. During 2016 a position as a University Lecturer in Computational Genomics was filled. Örjan, who comes from SLU, was ranked as number one by the expert reviewers and was offered the position. With all the positive comments from the expert reviewers we took the opportunity to also offer Matthew Webster, who came in at second place, a position as a University Lecturer in Computational Genomics. Thus, in one stroke the number of permanent staff at the Genomic section at IMBIM doubled. Mikael Sellin was recruited as an Associate Senior Lecturer “biträdande universitetslektor (BUL)” in Medical Infection Biology sponsored by the SciLifeLab Uppsala. Mikael was ranked as number one among fifteen national and international applicants. We were pleased that Mikael decided to place his laboratory at IMBIM. BUL positions are a new type of career development positions. In fact, Mikael is the first BUL appointed at the Medical Faculty. Mikael started to work with us in December 2016 but his group will physically move to the B9:3 corridor during spring 2017. During the year IMBIM also announced a position as Senior Lecturer in “Experimental Immunology”. Among the twelve applicants Jenny Hallgren Martinsson was placed first and offered this new position. IMBIM congratulates Örjan, Matthew, Mikael and Jenny for their well-deserved new positions and expects them to do wonders as scientists and teachers at IMBIM during many years to come. An exciting development that was cooking during 2016 was the planning for the merger between IMBIM and the Ludwig Institute for Cancer Research. Thus, after more than 30 years as an independent research organization the Ludwig Institute will from August 2017 become part of Uppsala University via a merger with IMBIM. This change is most welcomed since the research theme at the Ludwig Institute fits like a glove (better than for OJ) with the research interest at IMBIM. The merger will also overnight add some 30 new persons to the list of IMBIM workers. Currently, the Department has a stable staff consisting of some 150 people. Including project workers, post doc etc. we are around 240 persons that spend our daily work hours at the Department. To this we now add some 30 people. During the year the Uppsala Antibiotic Center (UAC) was established with plentiful of support from the University under much media attention. Dan Andersson and Linus Sandegren are top figures in the steering committee of this new initiative. Hopefully this strategic investment will result in the development of the much-needed new antibiotics. The cover to this annual report consists of pictures taken during the two IMBIM days that were arranged in 2016. Both were hugh successes. The topic for the meeting in Sigtuna (February) was equality “All animals are equal, but some animals are more equal than others”. The second IMBIM day was held at Skarholmen (September) and dealt with scientific misconduct “Shortcut to success”. Kudos to the people who organized these two meeting and to Eva Garmendia who took these beautiful pictures. Prizes and Awards: Two scientists at IMBIM have received prestigious prices and awards during 2016. Lena Kjellén received the Rudbeck medal for “extraordinarily prominent achievements in science, 3 to be conferred primarily for such accomplishments or findings attained at Uppsala University”. She has done exceptional contributions to the understanding of the molecular biology of carbohydrates and proteoglycans in health and disease. Sangeet Lamichhaney received the “Hwasser price” from Uppsala Läkareförening for the best PhD thesis from the Medical Faculty “Genetic basis for adaptation”. Normally the “Hwasser price” is divided between two newly graduates. However, this year no one could compete and Sangeet got the prize alone. Scientific Highlights: Ongoing research projects at IMBIM are summarized later in this annual report. Below I have picked out a few examples of studies that illustrate the high quality and wide range of research carried out at our Department. The genomic groups, with Leif Andersson, Kerstin Lindblad-Toh, Matthew Webster and Carl-Johan Rubin as the central PIs, had a very productive year with multiple high quality papers published in high impact journals. These include studies of the genetics of ruff sex (Lamichhaney et al., Nature Genetics 48, 84-88), the ecological adaptation in the Atlantic herring (Martinez Barrio et al., eLife 5, e12081), new insights into the evolution of beak morphology among Darwin finches (Science 352, 470-474), and the function of the TBX3 transcription factor in hair pigmentation (Imsland et al., Nature Genetics 48, 152-158). Diarmaid Hughes group has worked on the selective power of codon usage in highly expressed bacterial genes. They have shown that discrimination between alternative codons for the same amino acid in a gene can have profound effects on the evolutionary selection (Brandis and Highes. PLoS Genetics 12, e1005926. A team of researchers led by Cecilia Annerén has identified an enhanced method for generating human pluripotent stem cell cultures. This discovery could lead to the more economical and rapid large-scale industrial production of these cells. This technology holds great promise in disease modeling, drug screening and cell-based therapeutics (Pijuan-Galitó et al. Nature Communications 13, 12170). Lena Kjelléns group published the “Paper of the week” in Journal of Biological Chemistry where they showed that the enzyme that transfers sulfate groups to heparan sulfate also regulates the length of the heparan sulfate polysaccharide chains (Deligny et al. J. Biol. Chem. 291, 18600-18607). During 2016 Aris Moustakas group reached a long-term milestone by identifying, via a chemical screen, novel compounds that block epithelial to mesenchymal transition. Further, they could demonstrate that these compounds work via inhibition of TGFß signaling (Carthy et al., Science Report 6, 29868). Teaching: Teaching of undergraduate and graduate students is a primary undertaking for IMBIM. During 2016 a total of ten students received their doctoral degree. The teachers at IMBIM does an excellent job something that is illustrated by the fact that Linus Sandegren received yet another pedagogic prize. This time the “pedagogic rose” from the Medical students at the 4 Faculty for his exceptional contributions to the education in Bacteriology. Also, Birgitta Tomkinson was bestowed the title “Excellent teacher”. Birgitta is the first, and only, teacher at IMBIM that carries this fine title. The course "Homeostasis and endocrine regulation", given at the second semester of the Medical program was awarded the Optimus prize for the spring semester 2016. The prize is given to the course at the Medical program that receives the best course evaluations. Lena Kjellén is course leader and Eva Engström is course administrator. I would also like to thank all of those who left IMBIM during the past year for your participation in building up this fantastic scientific environment. I wish you all the best for the future and hope that you have mostly fun memories from your time at IMBIM. At the same time I welcome all new students/scientists etc. to this exciting environment and hope that you will actively take part in the future development of this Department. In closing: I will end my term as the Head of the Department this summer and will try to return to science full-time for the last 3-4 years of active service. I have served as the chairman for almost five years. These years have been stimulating with many fun moments but also with some more difficult times to survive. Thanks to the superb help from the administrative and technical staff at IMBIM my life as the Head of the Department has been bearable. I would like to thank them all; Veronica, Malin R, Malin S, Susanne L, Rehné, Eva, Susanne T, Alexis, Lasse and Mervi. However, now is the time to handover the torch to someone else. Thus, “It´s time to say goodbye, but goodbyes are so sad that I´d much rather say hello. Hello to a new adventure”1. Uppsala March 2017 Göran Akusjärvi Not for long Head of the Department 1 Ernie Harwell, famous sports commentator 5 LIST OF CONTENTS ADDRESS LIST 8 ORGANIZATION 12 SCIENTIFIC REPORTS OF RESEARCH GROUPS 15 Comparative Genetics and Genomics 16 Andersson Leif: Functional genomics in domestic animals and natural populations 18 Axelsson Erik: Genetic and functional characterisation of dog domestication 27 Bjerling Pernilla: Epigenetics and new antifungal drugs 28 Carlborg Örjan: Computational genomics 30 Grabherr Manfred: Evolutionary bioinformatics and computational biology 34 Jern Patric: Retrovirus-host evolution 37 Lindblad-Toh Kerstin: Comparative genomics and genetics 39 Meadows Jennifer: Genetic dissection of autoinflammatory disease 50 Rosengren Pielberg Gerli: Comparative genetics of immunological diseases towards functional genomics 54 Rubin Carl-Johan: Identification and characterization of genes
Recommended publications
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Annual Report 2017-2
    Department of Medical Biochemistry and Microbiology IMBIM ANNUAL REPORT 2017 DEPARTMENT OF MEDICAL BIOCHEMISTRY AND MICROBIOLOGY ANNUAL REPORT 2017 Theses published at IMBIM in 2017 Edited by Veronica Hammar ISBN no 978-91-983979-3-2 PREFACE A university department is in its character a dynamic place. PhD students come and complete their education within 4-5 years. Postdoctoral fellows join for a relatively short time, maybe to change gears and learn a new field or just acquire more experience to become competitive for a tenure. Many researchers are recruited by groups where more hands and skills are needed. IMBIM is not an exception. But 2017 was extraordinary since the former Ludwig Institute for Cancer Research merged with IMBIM in August. This was of course a much welcome addition complementing and strengthening our research in cell and molecular cancer biology. As of the end of 2017 IMBIM had 165 employees and 105 registered with IMBIM as working place or employed elsewhere, but doing research at IMBIM. Here I would take the opportunity to welcome and congratulate Örjan Carlborg who 2017 was promoted to professor, Evi Heldin who was appointed guest professor and Kristofer Rubin who was also appointed guest professor and Director of BMC. During the month of May, the Quality and Renewal (KoF) evaluation panel visited IMBIM for two days of intensive discussions. Their assessment was also based on a self-evaluation most diligently assembled by IMBIM’s former Head of department, Göran Akusjärvi. It was as great pleasure to read the comment from the evaluation panel: “The self-evaluation report is an excellent summary of the current state of the department with ample and thoughtful self- reflection and self-criticism”.
    [Show full text]
  • Diptera of Tropical Savannas - Júlio Mendes
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. X - Diptera of Tropical Savannas - Júlio Mendes DIPTERA OF TROPICAL SAVANNAS Júlio Mendes Institute of Biomedical Sciences, Uberlândia Federal University, Brazil Keywords: disease vectors, house fly, mosquitoes, myiasis, pollinators, sand flies. Contents 1. Introduction 2. General Characteristics 3. Classification 4. Suborder Nematocera 4.1. Psychodidae 4.2. Culicidae 4.3. Simullidae 4.4. Ceratopogonidae 5. Suborder Brachycera 5.1. Tabanidae 5.2. Phoridae 5.3. Syrphidae 5.4. Tephritidae 5.5. Drosophilidae 5.6. Chloropidae 5.7. Muscidae 5.8. Glossinidae 5.9. Calliphoridae 5.10. Oestridae 5.11. Sarcophagidae 5.12. Tachinidae 6. Impact of human activities upon dipterans communities in tropical savannas. Glossary Bibliography Biographical Sketch UNESCO – EOLSS Summary Dipterous are a very much diversified group of insects that occurs in almost all tropical habitats and alsoSAMPLE other terrestrial biomes. Some CHAPTERS diptera are important from the economic and public health point of view. Mosquitoes and sandflies are, respectively, vectors of malaria and leishmaniasis in the major part of tropical countries. Housefly and blowflies are mechanical vectors of many pathogens, and the larvae of the latter may parasitize humans and other animals, as well. Nevertheless, the majority of diptera are inoffensive to humans and several of them are benefic, having important roles in nature such as pollinators of plants, recyclers of decaying organic matter and natural enemies of other insects, including pests. 1. Introduction ©Encyclopedia of Life Support Systems (EOLSS) TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. X - Diptera of Tropical Savannas - Júlio Mendes Diptera are a very diverse and abundant group of insects inhabiting almost all habitats throughout the world.
    [Show full text]
  • Behavioural, Ecological, and Genetic Determinants of Mating and Gene
    Thesis committee Thesis supervisor Prof. dr. Marcel Dicke Professor of Entomology, Wageningen University Thesis co-supervisor Dr. Ir. Bart G.J. Knols Medical Entomologist, University of Amsterdam Other members Prof. dr. B.J. Zwaan, Wageningen University Prof. dr. P. Kager, University of Amsterdam Dr. Ir. P. Bijma, Wageningen University Dr. Ir. I.M.A. Heitkonig, Wageningen University This research was conducted under the auspices of the C. T. de Wit Graduate School for Production Ecology and Resource Conservation Behavioural, ecological and genetic determinants of mating and gene flow in African malaria mosquitoes Kija R.N. Ng’habi Thesis Submitted in fulfillment of the requirement for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis committee appointed by the Academic Board to be defended in public at on Monday 25 October 2010 at 11:00 a.m. in the Aula. Kija R.N. Ng’habi (2010) Behavioural, ecological and genetic determinants of mating and gene flow in African malaria mosquitoes PhD thesis, Wageningen University – with references – with summaries in Dutch and English ISBN – 978-90-8585-766-2 > Abstract Malaria is still a leading threat to the survival of young children and pregnant women, especially in the African region. The ongoing battle against malaria has been hampered by the emergence of drug and insecticide resistance amongst parasites and vectors, re- spectively. The Sterile Insect Technique (SIT) and genetically modified mosquitoes (GM) are new proposed vector control approaches. Successful implementation of these ap- proaches requires a better understanding of male mating biology of target mosquito species.
    [Show full text]
  • Wolbachia Diversity in African Anopheles
    bioRxiv preprint doi: https://doi.org/10.1101/343715; this version posted November 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Natural Wolbachia infections are common in the major malaria vectors in 2 Central Africa 3 4 Running title: Wolbachia diversity in African Anopheles 5 6 Authors 7 Diego Ayala1,2,*, Ousman Akone-Ella2, Nil Rahola1,2, Pierre Kengne1, Marc F. 8 Ngangue2,3, Fabrice Mezeme2, Boris K. Makanga2, Carlo Costantini1, Frédéric 9 Simard1, Franck Prugnolle1, Benjamin Roche1,4, Olivier Duron1 & Christophe Paupy1. 10 11 Affiliations 12 1 MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France. 13 2 CIRMF, Franceville, Gabon. 14 3 ANPN, Libreville, Gabon 15 4 UMMISCO, IRD, Montpellier, France. 16 17 * Corresponding author: 18 Diego Ayala, MIVEGEC, IRD, CNRS, Univ. Montpellier, 911 av Agropolis, BP 19 64501, 34394 Montpellier, France; phone: +33(0)4 67 41 61 47; email: 20 [email protected] 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/343715; this version posted November 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 Abstract 24 During the last decade, the endosymbiont bacterium Wolbachia has emerged as a 25 biological tool for vector disease control. However, for long time, it was believed that 26 Wolbachia was absent in natural populations of Anopheles. The recent discovery that 27 species within the Anopheles gambiae complex hosts Wolbachia in natural conditions 28 has opened new opportunities for malaria control research in Africa.
    [Show full text]
  • A Handbook of the Amazonian Species of Anopheles (Nyssorhwchus) (Diptera: Culicidae)1
    111089 Mosquito Systematics Vol. 13(1) 1981 A HANDBOOK OF THE AMAZONIAN SPECIES OF ANOPHELES (NYSSORHWCHUS) (DIPTERA: CULICIDAE)1 By Michael E. Faran2 and Kenneth J. Linthicum2 CONTENTS INTRODUCTION 2 MATERIAL AND METHODS 3 SYSTEMATICS 4 TAXONOMIC CHARACTERS 5 Adult Females 5 Male Genitalia 6 Fourth Stage Larvae 7 BIONOMICS 8 MEDICAL IMPORTANCE 9 PLATES 1-5 11 ILLUSTRATED KEYS TO THE AMAZONIAN SPECIES OF ANOPHELES (NYSSORHYNCHUS). 16 DISCUSSIONS, BIONOMICS, MEDICAL IMPORTANCE AND DISTRIBUTION OF SPECIES 1. Anopheles (Nys.) orgyritarsis 34 2. Anopheles (Nys.) darllngi 35 3. Anopheles (Nys.) allopha 37 4. Anopheles (Nys.) braziliensis 39 5. Anopheles (Nys.) oswaldoi 41 6. Anopheles (Nys.) galvaoi 42 7. Anopheles (Nys.) evansi 43 8. Anopheles (Nys.) aquasalls 45 9.. Anopheles (Nys.) ininii 47 10. Anopheles (Nys.) rangeli 48 11. Anopheles (Nys.) nuneztovari .. 49 'This research supported by the Medical Entomology Project, Smithsonian Institu- tion, U.S. Army Medical Research and Development Command Research Contract DAMD-17- 74C-4086 and the Mosquitoes of Middle America project, University of California, Los Angeles, U.S. Army Medical Research and Development Contract DA-49-193-MD-2478. Captain, Medical Service Corps, U.S. Army, Department of Entomology, Walter Reed Army Institute of Research, Washington, DC 20012. 12. Anopheles (Nys.) strodei 51 13. Anopheles (Nys.) random 53 14. Anopheles (Ny s.) benarrochi 54 15. Anopheles (Nys.) triannulatus 55 ACKNOWLEDGMENTS 56 REFERENCES 57 PLATES 6-24 63 PLATES 1. Map of Amazonia 11 2. Morphology of adult: general 12 3. Morphology of adult: thorax, legs, abdomen 13 4. Morphology of male genitalia: oswaldoi 14 5. Morphology of larva: oswaldoi 15 6.
    [Show full text]
  • Imbim Annual Report 2015
    Department of Medical Biochemistry and Microbiology IMBIM ANNUAL REPORT 2015 DEPARTMENT OF MEDICAL BIOCHEMISTRY AND MICROBIOLOGY ANNUAL REPORT 2015 Pictures taken by Helena Öhrvik The role of copper in mast cell granule homeostasis Ctr2 is a protein involved in cellular transport of copper. Upper panels: staining for tryptase, a mast cell granule protease, in tryptase (Mcpt6)-deficient (negative control), Ctr2-/- and wild type (WT) mast cells. Note that the absence of Ctr2 causes upregulated expression of tryptase. Lower panels: staining of Ctr2-/- and WT mast cells with toluidine blue, a proteoglycan- binding dye. Note increased toluidine blue staining of Ctr2-/- mast cells, indicating increased proteoglycan content of granules. Öhrvik, H., Logeman, B., Noguchi, G., Eriksson, I., Kjellén, L., Thiele, D.J., Pejler, G. (2015) Ctr2 regulates mast cell maturation by affecting the storage and expression of tryptase and proteoglycans. J. Immunol. 195, 3654-364. Edited by Veronica Hammar ISBN no 978-91-979531-8-4 PREFACE Another year has passed with both small and large successes for the laboratory. The Department has a stable staff consisting of some 150 people. Including project workers, post doc etc we are around 250 persons that spend our daily work hours at the Department. Fortunately the granting situation for the IMBIM researchers improved considerably during 2015. Many of the small and medium sized research groups received grants that will help them continue to excel during the coming years. In addition Dan Andersson, Leif Andersson, Per Jemth, and a couple of scientists at ICM, received a hefty 47 milj kr grant from “Knut och Alice Wallenbergs Stiftelse” to support their research on the evolution of new genes and proteins.
    [Show full text]
  • Exploration of Bacteria Associated with Anopheles Mosquitoes Around the World
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1691 Exploration of bacteria associated with Anopheles mosquitoes around the world For the prevention of transmission of malaria LOUISE K. J. NILSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0381-9 UPPSALA urn:nbn:se:uu:diva-352547 2018 Dissertation presented at Uppsala University to be publicly examined in A1:111a, BMC, Husargatan 3, Uppsala, Friday, 14 September 2018 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Michael Strand (Department of Entomology, University of Georgia). Abstract Nilsson, L. K. J. 2018. Exploration of bacteria associated with Anopheles mosquitoes around the world. For the prevention of transmission of malaria. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1691. 54 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0381-9. Every year, hundreds of thousands of people die from malaria. Malaria is a disease caused by parasites, which are spread by female vector mosquitoes of the genus Anopheles. Current control measures against malaria are based on drugs against the parasites and vector control using insecticides. A problem with these measures is the development of resistance, both in the parasites against the drugs and the mosquitoes against the insecticides. Therefore, additional areas of malaria control must be explored. One such area involves the bacteria associated with the vector mosquitoes. Bacteria have been shown to affect mosquitoes at all life stages, e.g. by affecting choice of oviposition site by female mosquitoes, development of larvae and susceptibility to parasite infection in adults.
    [Show full text]
  • Diptera, Culicidae
    doi:10.12741/ebrasilis.v13.e0848 e-ISSN 1983-0572 Publication of the project Entomologistas do Brasil www.ebras.bio.br Creative Commons Licence v4.0 (BY-NC-SA) Copyright © EntomoBrasilis Copyright © Author(s) Ecology Entomological profile and new registers of the genera Anopheles (Diptera, Culicidae) in a Brazilian rural community of the District of Coxipó do Ouro, Cuiabá, Mato Grosso Adaiane Catarina Marcondes Jacobina¹, Jozeilton Dantas Bandeira², Fábio Alexandre Leal dos Santos¹,², Elisangela Santana de Oliveira Dantas¹,³ & Diniz Pereira Leite-Jr1,2,4 1. Universidade Federal de Mato Grosso – UFMT, Cuiabá-MT - Brasil. 2. Centro Universitário de Várzea Grande - UNIVAG, Várzea Grande-MT - Brasil. 3. Instituto de Biociências - Universidade do Estado de São Paulo “Júlio de Mesquita Filho” - UNESP - Rio Claro - Brasil. 4. Universidade de São Paulo, USP – São Paulo, SP - Brasil. EntomoBrasilis 13: e0848 (2020) Edited by: Abstract. The order Diptera is constituted of insects that possess numerous varieties of habitats, these William Costa Rodrigues winged, commonly called mosquitoes, comprise a monophyletic group. Malaria transmitters in Brazil are represented by mosquitoes of the Anopheles genus, being it principal vector species Anopheles Article History: (Nyssorhynchus) darlingi Root. Collectings were accomplished in the rural area of Cuiabá in the region Received: 16.iv.2019 of Coxipó do Ouro/MT, and a total 4,773 adult mosquitoes of the genus Anopheles were obtained. The Accepted: 16.iv.2020 prevailing species in the collectings where An. (Nys.) darlingi with 3,905 (81.8%), considered the vector Published: 06.v.2020 of major epidemiological expression in the region, followed by Anopheles (Nyssorhynchus) argyritarsis Corresponding author: (Robineau-Desvoidy) 267 (5.6%) and Anopheles (Nyssorhynchus) triannulatus (Neiva & Pinto) 226 (4.7%).
    [Show full text]
  • Flight Tone Characterisation of the South American Malaria Vector Anopheles Darlingi (Diptera: Culicidae)
    ORIGINAL ARTICLE Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 116: e200497, 2021 1|6 Flight tone characterisation of the South American malaria vector Anopheles darlingi (Diptera: Culicidae) Jose Pablo Montoya1, Hoover Pantoja-Sánchez2,3, Sebastian Gomez1,2, Frank William Avila4, Catalina Alfonso-Parra1,4/+ 1Universidad CES, Instituto Colombiano de Medicina Tropical, Sabaneta, Antioquia, Colombia 2Universidad de Antioquia, Departamento de Ingeniería Electrónica, Medellín, Antioquia, Colombia 3Universidad de Antioquia, Programa de Estudio y Control de Enfermedades Tropicales, Medellín, Antioquia, Colombia 4Universidad de Antioquia, Max Planck Tandem Group in Mosquito Reproductive Biology, Medellín, Antioquia, Colombia BACKGROUND Flight tones play important roles in mosquito reproduction. Several mosquito species utilise flight tones for mate localisation and attraction. Typically, the female wingbeat frequency (WBF) is lower than males, and stereotypic acoustic behaviors are instrumental for successful copulation. Mosquito WBFs are usually an important species characteristic, with female flight tones used as male attractants in surveillance traps for species identification. Anopheles darlingi is an important Latin American malaria vector, but we know little about its mating behaviors. OBJECTIVES We characterised An. darlingi WBFs and examined male acoustic responses to immobilised females. METHODS Tethered and free flying male and female An. darlingi were recorded individually to determine their WBF distributions. Male-female acoustic interactions were analysed using tethered females and free flying males. FINDINGS Contrary to most mosquito species, An. darlingi females are smaller than males. However, the male’s WBF is ~1.5 times higher than the females, a common ratio in species with larger females. When in proximity to a female, males displayed rapid frequency modulations that decreased upon genitalia engagement.
    [Show full text]
  • Ecology of Anopheles Darlingi Root with Respect to Vector Importance: a Review Hélène Hiwat1,2* and Gustavo Bretas3
    Hiwat and Bretas Parasites & Vectors 2011, 4:177 http://www.parasitesandvectors.com/content/4/1/177 REVIEW Open Access Ecology of Anopheles darlingi Root with respect to vector importance: a review Hélène Hiwat1,2* and Gustavo Bretas3 Abstract Anopheles darlingi is one of the most important malaria vectors in the Americas. In this era of new tools and strategies for malaria and vector control it is essential to have knowledge on the ecology and behavior of vectors in order to evaluate appropriateness and impact of control measures. This paper aims to provide information on the importance, ecology and behavior of An. darlingi. It reviews publications that addressed ecological and behavioral aspects that are important to understand the role and importance of An. darlingi in the transmission of malaria throughout its area of distribution. The results show that Anopheles darlingi is especially important for malaria transmission in the Amazon region. Although numerous studies exist, many aspects determining the vectorial capacity of An. darlingi, i.e. its relation to seasons and environmental conditions, its gonotrophic cycle and longevity, and its feeding behavior and biting preferences, are still unknown. The vector shows a high degree of variability in behavioral traits. This makes it difficult to predict the impact of ongoing changes in the environment on the mosquito populations. Recent studies indicate a good ability of An. darlingi to adapt to environments modified by human development. This allows the vector to establish populations in areas where it previously did not exist or had been controlled to date. The behavioral variability of the vector, its adaptability, and our limited knowledge of these impede the establishment of effective control strategies.
    [Show full text]
  • Supplemental Materials
    The infection-tolerant mammalian reservoir of Lyme disease and other zoonoses broadly counters the inflammatory effects of endotoxin Supplemental Materials Figures S1-S5 Tables S1-S20 Figure S1. Digital photograph of two adult Peromyscus leucopus with exudative conjunctivitis and huddled together. The animals had received 10 mg/gm body of Escherichia coli lipopolysaccharide intraperitoneally the day before. Figure S2. Species- and tissue-specific responses to LPS. Independent differential gene expression analysis of RNA-seq data were performed for blood, spleen, and liver tissues of P. leucopus and M. musculus collected 4 h after injection with LPS or buffer alsone as control. These are represented as volcano plots with range- adjusted scales for the log2-transformed fold-changes on x-axes and log10-transformed FDR p values on y- axes. Colors of symbols denote the following: red, up-regulated gene with absolute fold-change > 4.0 and p value < 0.05; purple, down-regulated gene with absolute fold-change > 4.0 and p value < 0.05; and gray, all others. Numbers at the top left and right corners in each plot respresent numbers of down- and up-regulated genes, respectively. Figure 3 is same data with constant scales for x- and y-axes across the plots. Numerical values for each gene in the 6 datasets are provided in Tables S4-S9. Figure S3. Correlation of IL-10 and IL-10 P. leucopus and M. musculus from RNA-seq of spleen and of Figure 6B and TaBle S14. The scatter plot is log10 values of normalized unique reads of one coding sequence against another for each of the four groups, as defined in the legend for Figure 6 and indicated By different symBols.
    [Show full text]