Alfalfa PMG 12 19 11

Total Page:16

File Type:pdf, Size:1020Kb

Alfalfa PMG 12 19 11 UC IPM Pest Management Guidelines: ALFALFA September 2010 Contents (Dates in parenthesis indicate when each topic was updated) Alfalfa Year-Round IPM Program Checklist (11/06) ........................................................................................................................ iv General Information Integrated Pest Management (11/06) ................................................................................................................................................... 1 Selecting the Field (11/06) ................................................................................................................................................................... 2 Transgenic Herbicide-Tolerant Alfalfa (11/06) ................................................................................................................................... 3 Biological Control (11/06) ................................................................................................................................................................... 5 Sampling with a Sweep Net (11/06) .................................................................................................................................................... 6 Crop Rotation (11/06) .......................................................................................................................................................................... 8 Aphid Monitoring (9/07) ...................................................................................................................................................................... 9 Alfalfa Caterpillar and Armyworm Monitoring (11/06) .................................................................................................................... 10 Border-Strip Harvesting (11/06) ........................................................................................................................................................ 11 Harvest Scheduling (7/09) .................................................................................................................................................................. 12 Relative Toxicities of Insecticides and Miticides Used in Alfalfa to Natural Enemies and Honey Bees (9/10) ............................... 13 Insects and Mites (section reviewed 11/06) Alfalfa Caterpillar (9/10) .................................................................................................................................................................... 14 Beet Armyworm (9/10) ...................................................................................................................................................................... 16 Blister Beetles (11/06) ........................................................................................................................................................................ 18 Blue Alfalfa Aphid and Pea Aphid (4/08) .......................................................................................................................................... 19 Clover Root Curculio (11/06) ............................................................................................................................................................ 21 Cowpea Aphid (4/08) ......................................................................................................................................................................... 22 Grasshoppers (11/06) ......................................................................................................................................................................... 24 Ground Mealybug (11/06) .................................................................................................................................................................. 25 Leafhoppers (4/08) ............................................................................................................................................................................. 26 Mormon Cricket (11/06) .................................................................................................................................................................... 29 Sharpshooters (4/08) .......................................................................................................................................................................... 30 Silverleaf Whitefly (11/06) ................................................................................................................................................................ 32 Spider Mites (11/06) ........................................................................................................................................................................... 33 Spotted Alfalfa Aphid (4/08) .............................................................................................................................................................. 35 Threecornered Alfalfa Hopper (11/06) .............................................................................................................................................. 37 Thrips (11/06) ..................................................................................................................................................................................... 39 Variegated and Other Cutworms (11/06) ........................................................................................................................................... 40 Webworm (11/06) .............................................................................................................................................................................. 42 Weevils (Alfalfa and Egyptian Alfalfa) (9/10) ................................................................................................................................... 43 Western Yellowstriped Armyworm (9/10) ........................................................................................................................................ 46 Diseases (section reviewed 11/06) Alfalfa Dwarf (11/06) ......................................................................................................................................................................... 48 Alfalfa Mosaic Virus and Cucumber Mosaic Virus (11/06) .............................................................................................................. 48 Air Pollution (11/06) .......................................................................................................................................................................... 49 Anthracnose (11/06) ........................................................................................................................................................................... 49 Bacterial Wilt (11/06) ......................................................................................................................................................................... 50 Common Leafspot (11/06) ................................................................................................................................................................. 51 Continued on next page . An illustrated version of this guideline is available online at http://www.ipm.ucdavis.edu/PMG/selectnewpest.alfalfa-hay.html Publication 3430 University of California Agriculture and Natural Resources UC Statewide Integrated Pest Management Program UC IPM Pest Management Guidelines – ALFALFA Table of contents, continued Downy Mildew (11/06) ...................................................................................................................................................................... 51 Fusarium Wilt (11/06) ........................................................................................................................................................................ 52 Phymatotrichum Root Rot (11/06) ..................................................................................................................................................... 52 Phytophthora Root and Crown Rot (11/06) ....................................................................................................................................... 53 Rhizoctonia Root Canker (11/06) ...................................................................................................................................................... 54 Scald (Flooding and High Temperature Injury) (11/06) .................................................................................................................... 54 Sclerotinia Stem and Crown Rot (White Mold) (11/06) .................................................................................................................... 55 Seedling or Damping-off Diseases (11/06) ........................................................................................................................................ 56 Spring Black Stem (11/06) ................................................................................................................................................................. 57 Stagonospora Crown and Root Rot (11/06) ....................................................................................................................................... 57 Stemphyllium Leaf Spot (11/06) .......................................................................................................................................................
Recommended publications
  • ELIZABETH LOCKARD SKILLEN Diversity of Parasitic Hymenoptera
    ELIZABETH LOCKARD SKILLEN Diversity of Parasitic Hymenoptera (Ichneumonidae: Campopleginae and Ichneumoninae) in Great Smoky Mountains National Park and Eastern North American Forests (Under the direction of JOHN PICKERING) I examined species richness and composition of Campopleginae and Ichneumoninae (Hymenoptera: Ichneumonidae) parasitoids in cut and uncut forests and before and after fire in Great Smoky Mountains National Park, Tennessee (GSMNP). I also compared alpha and beta diversity along a latitudinal gradient in Eastern North America with sites in Ontario, Maryland, Georgia, and Florida. Between 1997- 2000, I ran insect Malaise traps at 6 sites in two habitats in GSMNP. Sites include 2 old-growth mesic coves (Porters Creek and Ramsay Cascades), 2 second-growth mesic coves (Meigs Post Prong and Fish Camp Prong) and 2 xeric ridges (Lynn Hollow East and West) in GSMNP. I identified 307 species (9,716 individuals): 165 campoplegine species (3,273 individuals) and a minimum of 142 ichneumonine species (6,443 individuals) from 6 sites in GSMNP. The results show the importance of habitat differences when examining ichneumonid species richness at landscape scales. I report higher richness for both subfamilies combined in the xeric ridge sites (Lynn Hollow West (114) and Lynn Hollow East (112)) than previously reported peaks at mid-latitudes, in Maryland (103), and lower than Maryland for the two cove sites (Porters Creek, 90 and Ramsay Cascades, 88). These subfamilies appear to have largely recovered 70+ years after clear-cutting, yet Campopleginae may be more susceptible to logging disturbance. Campopleginae had higher species richness in old-growth coves and a 66% overlap in species composition between previously cut and uncut coves.
    [Show full text]
  • Thrips-Transmitted Tomato Spotted Wilt Virus (TSWV) in California Crops
    Emergence and integrated management of thrips-transmitted Tomato spotted wilt virus (TSWV) in California crops UCCE-Monterey County; 2015 Plant Disease Seminar November 4, 2015; County of Monterey Agricultural Center; Salinas, California Ozgur Batuman Department of Plant Pathology, UC Davis California Processing Tomatoes And Peppers • Today, California grows 95 percent of the USA’s processing tomatoes and approximately 30 percent of the world processing tomatoes production! • California produced 60 and 69 percent of the bell peppers and chile peppers, respectively, grown in the USA in 2014! Pepper-infecting viruses • ~70 viruses known to infect peppers worldwide • ~10 of these known to occur in California • Most are not seed-transmitted • Difficult to identify based on symptoms • Mixed infections are common • Transmitted from plant-to-plant by various insects, primarily aphids and thrips • Best managed by an IPM approach TSWV Key viruses affecting peppers in CA production areas • Alfalfa mosaic virus (AMV) Alfamovirus • Cucumber mosaic virus (CMV) Cucumovirus • Pepper mottle virus (PepMoV) Potyvirus Aphid • Potato virus Y (PVY) Potyvirus • Tobacco etch virus (TEV) Potyvirus • Pepper mild mottle virus (PMMV) Tobamovirus • Tobacco mosaic virus (TMV) Tobamovirus Seed & Mechanical • Tomato mosaic virus (ToMV) Tobamovirus • Tomato spotted wilt virus (TSWV) Tospovirus Thrips • Impatient necrotic spot virus (INSV) Tospovirus • Beet curly top virus (BCTV) Curtovirus Leafhopper *Whitefly-transmitted geminiviruses in peppers are not present in
    [Show full text]
  • The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera)
    BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2010) Vol. 3 : 55-143 The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera) David MIFSUD1 & Enzo COLONNELLI2 ABSTRACT. The Curculionoidea of the families Anthribidae, Rhynchitidae, Apionidae, Nanophyidae, Brachyceridae, Curculionidae, Erirhinidae, Raymondionymidae, Dryophthoridae and Scolytidae from the Maltese islands are reviewed. A total of 182 species are included, of which the following 51 species represent new records for this archipelago: Araecerus fasciculatus and Noxius curtirostris in Anthribidae; Protapion interjectum and Taeniapion rufulum in Apionidae; Corimalia centromaculata and C. tamarisci in Nanophyidae; Amaurorhinus bewickianus, A. sp. nr. paganettii, Brachypera fallax, B. lunata, B. zoilus, Ceutorhynchus leprieuri, Charagmus gressorius, Coniatus tamarisci, Coniocleonus pseudobliquus, Conorhynchus brevirostris, Cosmobaris alboseriata, C. scolopacea, Derelomus chamaeropis, Echinodera sp. nr. variegata, Hypera sp. nr. tenuirostris, Hypurus bertrandi, Larinus scolymi, Leptolepurus meridionalis, Limobius mixtus, Lixus brevirostris, L. punctiventris, L. vilis, Naupactus cervinus, Otiorhynchus armatus, O. liguricus, Rhamphus oxyacanthae, Rhinusa antirrhini, R. herbarum, R. moroderi, Sharpia rubida, Sibinia femoralis, Smicronyx albosquamosus, S. brevicornis, S. rufipennis, Stenocarus ruficornis, Styphloderes exsculptus, Trichosirocalus centrimacula, Tychius argentatus, T. bicolor, T. pauperculus and T. pusillus in Curculionidae; Sitophilus zeamais and
    [Show full text]
  • Diversification, Selective Sweep, and Body Size in the Invasive Palearctic
    www.nature.com/scientificreports OPEN Diversifcation, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia Midori Tuda1,2,12*, Shun‑ichiro Iwase1,11,12, Khadim Kébé3,12, Julien Haran4,12, Jiri Skuhrovec5,12, Ehsan Sanaei6, Naomichi Tsuji7, Attila Podlussány8, Ottó Merkl8, Ahmed H. El‑Heneidy9 & Katsura Morimoto10 The alfalfa weevil Hypera postica, native to the Western Palearctic, is an invasive legume pest with two divergent mitochondrial clades in its invading regions, the Western clade and the Eastern/Egyptian clade. However, knowledge regarding the native populations is limited. The Western clade is infected with the endosymbiotic bacteria Wolbachia that cause cytoplasmic incompatibility in host weevils. Our aim was to elucidate the spatial genetic structure of this insect and the efect of Wolbachia on its population diversity. We analyzed two mitochondrial and two nuclear genes of the weevil from its native ranges. The Western clade was distributed in western/central Europe, whereas the Eastern/ Egyptian clade was distributed from the Mediterranean basin to central Asia. Intermediate mitotypes were found from the Balkans to central Asia. Most Western clade individuals in western Europe were infected with an identical Wolbachia strain. Mitochondrial genetic diversity of the infected individuals was minimal. The infected clades demonstrated a higher nonsynonymous/synonymous substitution rate ratio than the uninfected clades, suggesting a higher fxation of nonsynonymous mutations due to a selective sweep by Wolbachia. Trans‑Mediterranean and within‑European dispersal routes were supported. We suggest that the ancestral populations diversifed by geographic isolation due to glaciations and that the diversity was reduced in the west by a recent Wolbachia‑driven sweep(s).
    [Show full text]
  • Viral Diseases of Soybeans
    SoybeaniGrow BEST MANAGEMENT PRACTICES Chapter 60: Viral Diseases of Soybeans Marie A.C. Langham ([email protected]) Connie L. Strunk ([email protected]) Four soybean viruses infect South Dakota soybeans. Bean Pod Mottle Virus (BPMV) is the most prominent and causes significant yield losses. Soybean Mosaic Virus (SMV) is the second most commonly identified soybean virus in South Dakota. It causes significant losses either in single infection or in dual infection with BPMV. Tobacco Ringspot Virus (TRSV) and Alfalfa Mosaic Virus (AMV) are found less commonly than BPMV or SMV. Managing soybean viruses requires that the living bridge of hosts be broken. Key components for managing viral diseases are provided in Table 60.1. The purpose of this chapter is to discuss the symptoms, vectors, and management of BPMV, SMV, TRSV, and AMV. Table 60.1. Key components to consider in viral management. 1. Viruses are obligate pathogens that cannot be grown in artificial culture and must always pass from living host to living host in what is referred to as a “living or green” bridge. 2. Breaking this “living bridge” is key in soybean virus management. a. Use planting dates to avoid peak populations of insect vectors (bean leaf beetle for BPMV and aphids for SMV). b. Use appropriate rotations. 3. Use disease-free seed, and select tolerant varieties when available. 4. Accurate diagnosis is critical. Contact Connie L. Strunk for information. (605-782-3290 or [email protected]) 5. Fungicides and bactericides cannot be used to manage viral problems. 60-541 extension.sdstate.edu | © 2019, South Dakota Board of Regents What are viruses? Viruses that infect soybeans present unique challenges to soybean producers, crop consultants, breeders, and other professionals.
    [Show full text]
  • Molecular Characterization of the Alfalfa Mosaic Virus Infecting
    plants Article Molecular Characterization of the Alfalfa mosaic virus Infecting Solanum melongena in Egypt and the Control of Its Deleterious Effects with Melatonin and Salicylic Acid Ahmed R. Sofy 1,* , Mahmoud R. Sofy 1,* , Ahmed A. Hmed 1, Rehab A. Dawoud 2,3 , Ehab E. Refaey 1, Heba I. Mohamed 4 and Noha K. El-Dougdoug 5 1 Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; [email protected] (A.A.H.); [email protected] (E.E.R.) 2 Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 3 Department of Biology, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia 4 Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11566, Egypt; [email protected] 5 Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt; [email protected] * Correspondence: [email protected] (A.R.S.); [email protected] (M.R.S.) Abstract: During the spring of 2019, distinct virus-like symptoms were observed in the Kafr El-Sheikh Governorate in Egypt in naturally infected eggplants. Leaves of affected plants showed interveinal Citation: Sofy, A.R.; Sofy, M.R.; leaf chlorosis, net yellow, chlorotic sectors, mottling, blisters, vein enation, necrotic intervention, and Hmed, A.A.; Dawoud, R.A.; Refaey, narrowing symptoms. The Alfalfa mosaic virus (AMV) was suspected of to be involved in this disease. E.E.; Mohamed, H.I.; El-Dougdoug, Forty plant samples from symptomatic eggplants and 10 leaf samples with no symptoms were N.K.
    [Show full text]
  • Biosecurity Risk Assessment
    An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries RIRDC Publication No. 11/141 RIRDCInnovation for rural Australia An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries by Dr Robert C Keogh February 2012 RIRDC Publication No. 11/141 RIRDC Project No. PRJ-007347 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-320-8 ISSN 1440-6845 An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries Publication No. 11/141 Project No. PRJ-007347 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
    Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture.
    [Show full text]
  • A Larval Parasitoid of the Alfalfa Weevil, Hypera Postica (Coleoptera: Curculionidae) in Japan
    Biological Control 34 (2005) 144–151 www.elsevier.com/locate/ybcon Establishment of Bathyplectes anurus (Hymenoptera: Ichneumonidae), a larval parasitoid of the alfalfa weevil, Hypera postica (Coleoptera: Curculionidae) in Japan Megumi Shoubu a,¤, Masami Okumura a, Akinori Shiraishi a, Hidenori Kimura a, Masami Takagi b, Takatoshi Ueno b a Moji Plant Protection Station, Ministry of Agriculture and Fisheries, Moji Ward, Kitakyushu City, Fukuoka 801-0841, Japan b Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan Received 15 November 2004; accepted 21 April 2005 Available online 1 June 2005 Abstract The alfalfa weevil invaded Japan in the early 1980s. In Southwestern Japan, the weevil infests Chinese milk vetch, which is a main source of honey products. Since apiarists avoid application of insecticides, four species of parasitoid wasps were introduced from the US into Japan for biological control of the weevil in 1988 and 1989. In 1996, one of the parasitoids, Bathyplectes anurus (Thomson) was recovered. Accordingly, we started the survey to assess the incidence and eVectiveness of this parasitoid in suppressing the alfalfa weevil. B. anurus expanded its distribution during 1998–2003. In 1998 and 1999, the percentages of parasitism were mostly less than 5% but quickly increased to about 40% in 2003. The survey also showed that the extent of damage of the weevil on Chinese milk vetch decreased from 2001 to 2004; there was a negative correlation between the extent of weevil damage and the percentage parasit- ism one year previously. These results suggest that the parasitoid reduced damage by the alfalfa weevil. 2005 Elsevier Inc.
    [Show full text]
  • Alfalfa Weevil (Hypera Postica Gyllenahl) Insect Fact Sheet University of Illinois Integrated Pest Management
    Alfalfa Weevil (Hypera postica Gyllenahl) Insect Fact Sheet University of Illinois integrated pest management The alfalfa weevil is one of the primary insect defoliators of alfalfa. Thought to be of Asian origin, the alfalfa weevil was introduced into the United States from southern Europe. First discovered in 1904 in Utah, it is now present in all 48 mainland states. Annually, insect pests of alfalfa, including the alfalfa weevil and potato leafhopper, cause hundreds of millions of dollars in losses. Though difficult to estimate, these same insects are estimated to reduce yields by 10 to 15% annually (forage quality not taken into account). Introduced biologicalcontrol agents and natural enemies have reduced alfalfa weevil populations in many areas, though it continues to be a sporadic pest of alfalfa. Description Alfalfa weevil adults are small (1/4 inch) brown snout beetles that have a distinctive dark, narrow stripe which extends down their back. Adult weevils insert yellow oval eggs into alfalfa stems. Following egg hatch, small legless yellowish-green larvae, each with a white stripe along the middle of the back, emerge. A fainter white stripe is also present on each side of the more prominent central stripe. Each larva has a very conspicuous black head and is approximately 3/8 inch when mature. Transformation to the adult stage is passed in a loosely woven white cocoon, about the size of a pea, to which leaves may be attached. The alfalfa weevil can be confused with the clover leaf weevil which is another pest of alfalfa. However, clover leaf weevils rarely cause economic injury in alfalfa in Illinois.
    [Show full text]
  • Alfalfa Weevils : a New Look at an Old Pest
    ALFALFA WEEVILS : A NEW LOOK AT AN OLD PEST Larry Godfrey, Karey Windbiel-Rojas, Richard Lewis, Dan Putnam, Mick Canevari, Carol Frate, Dan Marcum, Steve Orloff, and Jerry Schmierer1 ABSTRACT Alfalfa fields can act as an “insectary” (producer of beneficial insects) for other neighboring crops in the Central Valley and other areas. However, several insect pests also injure alfalfa plants reducing crop yields and quality. The alfalfa weevil complex, comprised of the Egyptian alfalfa weevil (EAW), Hypera brunneipennis, and alfalfa weevil, Hypera postica, is the most damaging arthropod in California alfalfa. An insecticide application is commonplace in the late winter/early spring to control this pest. Organophosphate, carbamate, and pyrethroid materials as well as other products are used. These treatments are generally effective and the effects on populations of natural enemies appear fairly short-term. However, the occurrence of organophosphate insecticides in surface waters, particularly chlorpyrifos (Lorsban®), coinciding with the timing of treatment for EAW larvae, has placed added emphasis on refining IPM programs for this pest in alfalfa. Pyrethroid insecticides have also recently been implicated in some environmental concerns. We initiated studies in 2002 to re-evaluate the EAW treatment threshold under current production practices and to improve sampling strategies for this pest. Preliminary data were collected from one site in 2002-03 and 2004 and 2005 studies were expanded to several locations. At the Davis location, first harvest yield losses from EAW larvae were very severe in 2002 (~50% from 10 larvae per sweep), moderate in 2003 (25% from 10 larvae per sweep), no losses from 35 larvae per sweep in 2004, and ~10% from 10 larvae per sweep in 2005.
    [Show full text]
  • Intraspecific Larval Aggression in Two Species of Hyperini (Coleoptera: Curculionidae) Jiří Skuhroveca*, Pavel Štysb and Alice Exnerováb
    Journal of Natural History, 2015 Vol. 49, Nos. 19–20, 1131–1146, http://dx.doi.org/10.1080/00222933.2014.974704 Intraspecific larval aggression in two species of Hyperini (Coleoptera: Curculionidae) Jiří Skuhroveca*, Pavel Štysb and Alice Exnerováb aGroup Function of Invertebrate and Plant Biodiversity in Agrosystems, Crop Research Institute, Praha, Czech Republic; bDepartment of Zoology, Charles University in Prague, Praha, Czech Republic (Received 19 November 2013; accepted 6 October 2014; first published online 5 November 2014) Two unusual types of behaviour (wandering and intraspecific aggressive beha- viour) have been observed when rearing larvae of two species of the tribe Hyperini. Wandering of Hypera postica in search for food was observed in L1, L2 and L3 larvae, as well as in young L4 larvae. L1 larvae also disperse in response to crowding. Wandering of L2 to young L4 instars was a response to food shortage. Wandering of late L4 larva (‘prepupa’) occurs because of searching for a place to spin the cocoon and pupate. Encounters between the larvae may result in agonistic behaviour, and some larvae may die as a consequence of fighting. This aggression increases with food limitation. Agonistic intraspecific behaviour has not been described to date in weevil’s larvae and it probably may not occur under natural conditions when there is a plenty of food and larval densities are decreased by pathogens or parasitoids. Keywords: resource competition; intraspecific aggressive behaviour of coleopteran larvae; pest; Hypera postica; Brachypera vidua; Palaearctic region Introduction Intraspecific aggressiveness (IA) is a common phenomenon among insects, may take different forms and may evolve for a variety of reasons.
    [Show full text]