Diversification, Selective Sweep, and Body Size in the Invasive Palearctic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alfalfa PMG 12 19 11
UC IPM Pest Management Guidelines: ALFALFA September 2010 Contents (Dates in parenthesis indicate when each topic was updated) Alfalfa Year-Round IPM Program Checklist (11/06) ........................................................................................................................ iv General Information Integrated Pest Management (11/06) ................................................................................................................................................... 1 Selecting the Field (11/06) ................................................................................................................................................................... 2 Transgenic Herbicide-Tolerant Alfalfa (11/06) ................................................................................................................................... 3 Biological Control (11/06) ................................................................................................................................................................... 5 Sampling with a Sweep Net (11/06) .................................................................................................................................................... 6 Crop Rotation (11/06) .......................................................................................................................................................................... 8 Aphid Monitoring (9/07) ..................................................................................................................................................................... -
ELIZABETH LOCKARD SKILLEN Diversity of Parasitic Hymenoptera
ELIZABETH LOCKARD SKILLEN Diversity of Parasitic Hymenoptera (Ichneumonidae: Campopleginae and Ichneumoninae) in Great Smoky Mountains National Park and Eastern North American Forests (Under the direction of JOHN PICKERING) I examined species richness and composition of Campopleginae and Ichneumoninae (Hymenoptera: Ichneumonidae) parasitoids in cut and uncut forests and before and after fire in Great Smoky Mountains National Park, Tennessee (GSMNP). I also compared alpha and beta diversity along a latitudinal gradient in Eastern North America with sites in Ontario, Maryland, Georgia, and Florida. Between 1997- 2000, I ran insect Malaise traps at 6 sites in two habitats in GSMNP. Sites include 2 old-growth mesic coves (Porters Creek and Ramsay Cascades), 2 second-growth mesic coves (Meigs Post Prong and Fish Camp Prong) and 2 xeric ridges (Lynn Hollow East and West) in GSMNP. I identified 307 species (9,716 individuals): 165 campoplegine species (3,273 individuals) and a minimum of 142 ichneumonine species (6,443 individuals) from 6 sites in GSMNP. The results show the importance of habitat differences when examining ichneumonid species richness at landscape scales. I report higher richness for both subfamilies combined in the xeric ridge sites (Lynn Hollow West (114) and Lynn Hollow East (112)) than previously reported peaks at mid-latitudes, in Maryland (103), and lower than Maryland for the two cove sites (Porters Creek, 90 and Ramsay Cascades, 88). These subfamilies appear to have largely recovered 70+ years after clear-cutting, yet Campopleginae may be more susceptible to logging disturbance. Campopleginae had higher species richness in old-growth coves and a 66% overlap in species composition between previously cut and uncut coves. -
The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera)
BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2010) Vol. 3 : 55-143 The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera) David MIFSUD1 & Enzo COLONNELLI2 ABSTRACT. The Curculionoidea of the families Anthribidae, Rhynchitidae, Apionidae, Nanophyidae, Brachyceridae, Curculionidae, Erirhinidae, Raymondionymidae, Dryophthoridae and Scolytidae from the Maltese islands are reviewed. A total of 182 species are included, of which the following 51 species represent new records for this archipelago: Araecerus fasciculatus and Noxius curtirostris in Anthribidae; Protapion interjectum and Taeniapion rufulum in Apionidae; Corimalia centromaculata and C. tamarisci in Nanophyidae; Amaurorhinus bewickianus, A. sp. nr. paganettii, Brachypera fallax, B. lunata, B. zoilus, Ceutorhynchus leprieuri, Charagmus gressorius, Coniatus tamarisci, Coniocleonus pseudobliquus, Conorhynchus brevirostris, Cosmobaris alboseriata, C. scolopacea, Derelomus chamaeropis, Echinodera sp. nr. variegata, Hypera sp. nr. tenuirostris, Hypurus bertrandi, Larinus scolymi, Leptolepurus meridionalis, Limobius mixtus, Lixus brevirostris, L. punctiventris, L. vilis, Naupactus cervinus, Otiorhynchus armatus, O. liguricus, Rhamphus oxyacanthae, Rhinusa antirrhini, R. herbarum, R. moroderi, Sharpia rubida, Sibinia femoralis, Smicronyx albosquamosus, S. brevicornis, S. rufipennis, Stenocarus ruficornis, Styphloderes exsculptus, Trichosirocalus centrimacula, Tychius argentatus, T. bicolor, T. pauperculus and T. pusillus in Curculionidae; Sitophilus zeamais and -
Temporal Lags and Overlap in the Diversification of Weevils and Flowering Plants
Temporal lags and overlap in the diversification of weevils and flowering plants Duane D. McKennaa,1, Andrea S. Sequeirab, Adriana E. Marvaldic, and Brian D. Farrella aDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; bDepartment of Biological Sciences, Wellesley College, Wellesley, MA 02481; and cInstituto Argentino de Investigaciones de Zonas Aridas, Consejo Nacional de Investigaciones Científicas y Te´cnicas, C.C. 507, 5500 Mendoza, Argentina Edited by May R. Berenbaum, University of Illinois at Urbana-Champaign, Urbana, IL, and approved March 3, 2009 (received for review October 22, 2008) The extraordinary diversity of herbivorous beetles is usually at- tributed to coevolution with angiosperms. However, the degree and nature of contemporaneity in beetle and angiosperm diversi- fication remain unclear. Here we present a large-scale molecular phylogeny for weevils (herbivorous beetles in the superfamily Curculionoidea), one of the most diverse lineages of insects, based on Ϸ8 kilobases of DNA sequence data from a worldwide sample including all families and subfamilies. Estimated divergence times derived from the combined molecular and fossil data indicate diversification into most families occurred on gymnosperms in the Jurassic, beginning Ϸ166 Ma. Subsequent colonization of early crown-group angiosperms occurred during the Early Cretaceous, but this alone evidently did not lead to an immediate and ma- jor diversification event in weevils. Comparative trends in weevil diversification and angiosperm dominance reveal that massive EVOLUTION diversification began in the mid-Cretaceous (ca. 112.0 to 93.5 Ma), when angiosperms first rose to widespread floristic dominance. These and other evidence suggest a deep and complex history of coevolution between weevils and angiosperms, including codiver- sification, resource tracking, and sequential evolution. -
Weevils) of the George Washington Memorial Parkway, Virginia
September 2020 The Maryland Entomologist Volume 7, Number 4 The Maryland Entomologist 7(4):43–62 The Curculionoidea (Weevils) of the George Washington Memorial Parkway, Virginia Brent W. Steury1*, Robert S. Anderson2, and Arthur V. Evans3 1U.S. National Park Service, 700 George Washington Memorial Parkway, Turkey Run Park Headquarters, McLean, Virginia 22101; [email protected] *Corresponding author 2The Beaty Centre for Species Discovery, Research and Collection Division, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, ON. K1P 6P4, CANADA;[email protected] 3Department of Recent Invertebrates, Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, Virginia 24112; [email protected] ABSTRACT: One-hundred thirty-five taxa (130 identified to species), in at least 97 genera, of weevils (superfamily Curculionoidea) were documented during a 21-year field survey (1998–2018) of the George Washington Memorial Parkway national park site that spans parts of Fairfax and Arlington Counties in Virginia. Twenty-three species documented from the parkway are first records for the state. Of the nine capture methods used during the survey, Malaise traps were the most successful. Periods of adult activity, based on dates of capture, are given for each species. Relative abundance is noted for each species based on the number of captures. Sixteen species adventive to North America are documented from the parkway, including three species documented for the first time in the state. Range extensions are documented for two species. Images of five species new to Virginia are provided. Keywords: beetles, biodiversity, Malaise traps, national parks, new state records, Potomac Gorge. INTRODUCTION This study provides a preliminary list of the weevils of the superfamily Curculionoidea within the George Washington Memorial Parkway (GWMP) national park site in northern Virginia. -
Biological Control of Gonipterus Platensis
BIOLOGICAL CONTROL OF GONIPTERUS PLATENSIS: CURRENT STATUS AND NEW POSSIBILITIES CARLOS MANUEL FERREIRA VALENTE ORIENTADORA: Doutora Manuela Rodrigues Branco Simões TESE ELABORADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA FLORESTAL E DOS RECURSOS NATURAIS 2018 BIOLOGICAL CONTROL OF GONIPTERUS PLATENSIS: CURRENT STATUS AND NEW POSSIBILITIES CARLOS MANUEL FERREIRA VALENTE ORIENTADORA: Doutora Manuela Rodrigues Branco Simões TESE ELABORADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA FLORESTAL E DOS RECURSOS NATURAIS JÚRI: Presidente: Doutora Maria Teresa Marques Ferreira Professora Catedrática Instituto Superior de Agronomia Universidade de Lisboa Vogais: Doutora Maria Rosa Santos de Paiva Professora Catedrática Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa; Doutora Manuela Rodrigues Branco Simões Professora Auxiliar com Agregação Instituto Superior de Agronomia Universidade de Lisboa; Doutor José Carlos Franco Santos Silva Professor Auxiliar Instituto Superior de Agronomia Universidade de Lisboa; Doutor Edmundo Manuel Rodrigues de Sousa Investigador Auxiliar Instituto Nacional de Investigação Agrária e Veterinária. 2018 À Susana e à Leonor i Em memória da minha Avó, Maria dos Anjos Valente (1927-2017) ii Agradecimentos Agradeço, em primeiro lugar, à Professora Manuela Branco, pelo apoio incansável na orientação desta tese, a total disponibilidade e os inúmeros ensinamentos. Ao RAIZ, pelo financiamento do doutoramento, e à sua Direção, em particular ao Engenheiro Serafim Tavares, ao Engenheiro José Nordeste, ao Professor Carlos Pascoal Neto, à Engenheira Leonor Guedes, ao Gabriel Dehon e ao Nuno Borralho, pelo voto de confiança e incentivo que sempre me transmitiram. Deixo um especial agradecimento à Catarina Gonçalves e à Catarina Afonso, pela amizade, por terem ajudado a manter os projetos do RAIZ e a biofábrica a funcionar, pelas horas infindáveis passadas no laboratório e pelos excelentes contributos científicos que muito melhoraram a qualidade desta tese. -
Biosecurity Risk Assessment
An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries RIRDC Publication No. 11/141 RIRDCInnovation for rural Australia An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries by Dr Robert C Keogh February 2012 RIRDC Publication No. 11/141 RIRDC Project No. PRJ-007347 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-320-8 ISSN 1440-6845 An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries Publication No. 11/141 Project No. PRJ-007347 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. -
A Larval Parasitoid of the Alfalfa Weevil, Hypera Postica (Coleoptera: Curculionidae) in Japan
Biological Control 34 (2005) 144–151 www.elsevier.com/locate/ybcon Establishment of Bathyplectes anurus (Hymenoptera: Ichneumonidae), a larval parasitoid of the alfalfa weevil, Hypera postica (Coleoptera: Curculionidae) in Japan Megumi Shoubu a,¤, Masami Okumura a, Akinori Shiraishi a, Hidenori Kimura a, Masami Takagi b, Takatoshi Ueno b a Moji Plant Protection Station, Ministry of Agriculture and Fisheries, Moji Ward, Kitakyushu City, Fukuoka 801-0841, Japan b Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan Received 15 November 2004; accepted 21 April 2005 Available online 1 June 2005 Abstract The alfalfa weevil invaded Japan in the early 1980s. In Southwestern Japan, the weevil infests Chinese milk vetch, which is a main source of honey products. Since apiarists avoid application of insecticides, four species of parasitoid wasps were introduced from the US into Japan for biological control of the weevil in 1988 and 1989. In 1996, one of the parasitoids, Bathyplectes anurus (Thomson) was recovered. Accordingly, we started the survey to assess the incidence and eVectiveness of this parasitoid in suppressing the alfalfa weevil. B. anurus expanded its distribution during 1998–2003. In 1998 and 1999, the percentages of parasitism were mostly less than 5% but quickly increased to about 40% in 2003. The survey also showed that the extent of damage of the weevil on Chinese milk vetch decreased from 2001 to 2004; there was a negative correlation between the extent of weevil damage and the percentage parasit- ism one year previously. These results suggest that the parasitoid reduced damage by the alfalfa weevil. 2005 Elsevier Inc. -
Alfalfa Weevil (Hypera Postica Gyllenahl) Insect Fact Sheet University of Illinois Integrated Pest Management
Alfalfa Weevil (Hypera postica Gyllenahl) Insect Fact Sheet University of Illinois integrated pest management The alfalfa weevil is one of the primary insect defoliators of alfalfa. Thought to be of Asian origin, the alfalfa weevil was introduced into the United States from southern Europe. First discovered in 1904 in Utah, it is now present in all 48 mainland states. Annually, insect pests of alfalfa, including the alfalfa weevil and potato leafhopper, cause hundreds of millions of dollars in losses. Though difficult to estimate, these same insects are estimated to reduce yields by 10 to 15% annually (forage quality not taken into account). Introduced biologicalcontrol agents and natural enemies have reduced alfalfa weevil populations in many areas, though it continues to be a sporadic pest of alfalfa. Description Alfalfa weevil adults are small (1/4 inch) brown snout beetles that have a distinctive dark, narrow stripe which extends down their back. Adult weevils insert yellow oval eggs into alfalfa stems. Following egg hatch, small legless yellowish-green larvae, each with a white stripe along the middle of the back, emerge. A fainter white stripe is also present on each side of the more prominent central stripe. Each larva has a very conspicuous black head and is approximately 3/8 inch when mature. Transformation to the adult stage is passed in a loosely woven white cocoon, about the size of a pea, to which leaves may be attached. The alfalfa weevil can be confused with the clover leaf weevil which is another pest of alfalfa. However, clover leaf weevils rarely cause economic injury in alfalfa in Illinois. -
Alfalfa Weevils : a New Look at an Old Pest
ALFALFA WEEVILS : A NEW LOOK AT AN OLD PEST Larry Godfrey, Karey Windbiel-Rojas, Richard Lewis, Dan Putnam, Mick Canevari, Carol Frate, Dan Marcum, Steve Orloff, and Jerry Schmierer1 ABSTRACT Alfalfa fields can act as an “insectary” (producer of beneficial insects) for other neighboring crops in the Central Valley and other areas. However, several insect pests also injure alfalfa plants reducing crop yields and quality. The alfalfa weevil complex, comprised of the Egyptian alfalfa weevil (EAW), Hypera brunneipennis, and alfalfa weevil, Hypera postica, is the most damaging arthropod in California alfalfa. An insecticide application is commonplace in the late winter/early spring to control this pest. Organophosphate, carbamate, and pyrethroid materials as well as other products are used. These treatments are generally effective and the effects on populations of natural enemies appear fairly short-term. However, the occurrence of organophosphate insecticides in surface waters, particularly chlorpyrifos (Lorsban®), coinciding with the timing of treatment for EAW larvae, has placed added emphasis on refining IPM programs for this pest in alfalfa. Pyrethroid insecticides have also recently been implicated in some environmental concerns. We initiated studies in 2002 to re-evaluate the EAW treatment threshold under current production practices and to improve sampling strategies for this pest. Preliminary data were collected from one site in 2002-03 and 2004 and 2005 studies were expanded to several locations. At the Davis location, first harvest yield losses from EAW larvae were very severe in 2002 (~50% from 10 larvae per sweep), moderate in 2003 (25% from 10 larvae per sweep), no losses from 35 larvae per sweep in 2004, and ~10% from 10 larvae per sweep in 2005. -
Intraspecific Larval Aggression in Two Species of Hyperini (Coleoptera: Curculionidae) Jiří Skuhroveca*, Pavel Štysb and Alice Exnerováb
Journal of Natural History, 2015 Vol. 49, Nos. 19–20, 1131–1146, http://dx.doi.org/10.1080/00222933.2014.974704 Intraspecific larval aggression in two species of Hyperini (Coleoptera: Curculionidae) Jiří Skuhroveca*, Pavel Štysb and Alice Exnerováb aGroup Function of Invertebrate and Plant Biodiversity in Agrosystems, Crop Research Institute, Praha, Czech Republic; bDepartment of Zoology, Charles University in Prague, Praha, Czech Republic (Received 19 November 2013; accepted 6 October 2014; first published online 5 November 2014) Two unusual types of behaviour (wandering and intraspecific aggressive beha- viour) have been observed when rearing larvae of two species of the tribe Hyperini. Wandering of Hypera postica in search for food was observed in L1, L2 and L3 larvae, as well as in young L4 larvae. L1 larvae also disperse in response to crowding. Wandering of L2 to young L4 instars was a response to food shortage. Wandering of late L4 larva (‘prepupa’) occurs because of searching for a place to spin the cocoon and pupate. Encounters between the larvae may result in agonistic behaviour, and some larvae may die as a consequence of fighting. This aggression increases with food limitation. Agonistic intraspecific behaviour has not been described to date in weevil’s larvae and it probably may not occur under natural conditions when there is a plenty of food and larval densities are decreased by pathogens or parasitoids. Keywords: resource competition; intraspecific aggressive behaviour of coleopteran larvae; pest; Hypera postica; Brachypera vidua; Palaearctic region Introduction Intraspecific aggressiveness (IA) is a common phenomenon among insects, may take different forms and may evolve for a variety of reasons. -
Classical Biological Control of the Alfalfa Weevil in Japan
Takagi et al. __________________________________________________________________________________ CLASSICAL BIOLOGICAL CONTROL OF THE ALFALFA WEEVIL IN JAPAN Masami TAKAGI1, Masami OKUMURA2, Megumi SHOUBU2, Akinori SHIRAISHI2, and Takatoshi UENO3 1Institute of Biological Control, Faculty of Agriculture, Kyushu University Fukuoka 812-8581, Japan [email protected]. 2Moji Plant Protection Station, Ministry of Agriculture Forestry and Fisheries of Japan Fukuoka 801-0841, Japan 3Institute of Biological Control, Faculty of Agriculture, Kyushu University Fukuoka 812-8581, Japan ABSTRACT The alfalfa weevil was accidentally introduced into Japan in early 1980’s and has been heavily infesting the Chinese milk vetch in paddy fields ever since. Chinese milk vetch is main source 14 of honey products for apiarists in spring. Thus, the alfalfa weevil is not a pasture pest but a pest of apiculture. Four species of parasitoids were introduced into Japan as biological con- trol agents for this pest from U.S.A. in 1988 and 1989. One of the parasitoids, Bathyplectes anurus was recovered in 1997. The percentage parasitism by B. anurus is higher on Narrow- leafed vetch in surrounding grasslands than on the Chinese milk vetch in paddy fields, sug- gesting that the conservation of these grasslands is important for the biological control of the alfalfa weevil. INTRODUCTION The alfalfa weevil, Hypera postica (Gyllenhal) (Coleoptera: Curculionidae) is the most seri- ous pest of alfalfa in the United States (USDA 1991). This pest is of Eurasian origin and was accidentally introduced into North America. Classical biological control of this pasture pest has a had almost 100 years of history in the U.S.A. and this has been summarized by Radcaliffe et al.