Occurrence and Alteration of Phosphate Minerals at the Stewart
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WO 2017/106925 Al 29 June 2017 (29.06.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/106925 Al 29 June 2017 (29.06.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, C22B 26/12 (2006.01) C22B 3/06 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (21) International Application Number: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, PCT/AU20 16/05 1278 MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (22) International Filing Date: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, 22 December 2016 (22. 12.2016) RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (25) Filing Language: English ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 20159053 17 22 December 201 5 (22. 12.2015) AU GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 2016900774 2 March 2016 (02.03.2016) AU TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (72) Inventor; and DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant : HUNWICK, Richard [AU/AU]; 59 Abing LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, don Road, Roseville, New South Wales 2069 (AU). -
L. Jahnsite, Segelerite, and Robertsite, Three New Transition Metal Phosphate Species Ll. Redefinition of Overite, an Lsotype Of
American Mineralogist, Volume 59, pages 48-59, 1974 l. Jahnsite,Segelerite, and Robertsite,Three New TransitionMetal PhosphateSpecies ll. Redefinitionof Overite,an lsotypeof Segelerite Pnur BnnN Moone Thc Departmcntof the GeophysicalSciences, The Uniuersityof Chicago, Chicago,Illinois 60637 ilt. lsotypyof Robertsite,Mitridatite, and Arseniosiderite Peur BmaN Moonp With Two Chemical Analvsesbv JUN Iro Deryrtrnent of GeologicalSciences, Haraard Uniuersity, Cambridge, Massrchusetts 02 I 38 Abstract Three new species,-jahnsite, segelerite, and robertsite,-occur in moderate abundance as late stage products in corroded triphylite-heterosite-ferrisicklerite-rockbridgeite masses, associated with leucophosphite,hureaulite, collinsite, laueite, etc.Type specimensare from the Tip Top pegmatite, near Custer, South Dakota. Jahnsite, caMn2+Mgr(Hro)aFe3+z(oH)rlPC)oln,a 14.94(2),b 7.14(l), c 9.93(1)A, p 110.16(8)", P2/a, Z : 2, specific gavity 2.71, biaxial (-), 2V large, e 1.640,p 1.658,t l.6lo, occurs abundantly as striated short to long prismatic crystals, nut brown, yellow, yellow-orange to greenish-yellowin color.Formsarec{001},a{100},il2oll, jl2}ll,ft[iol],/tolll,nt110],andz{itt}. Segeierite,CaMg(HrO)rFes+(OH)[POdz, a 14.826{5),b 18.751(4),c7.30(1)A, Pcca, Z : 8, specific gaavity2.67, biaxial (-), 2Ylarge,a 1.618,p 1.6t5, z 1.650,occurs sparingly as striated yellow'green prismaticcrystals, with c[00], r{010}, nlll0l and qll2l } with perfect {010} cleavage'It is the Feg+-analogueofoverite; a restudy on type overite revealsthe spacegroup Pcca and the ideal formula CaMg(HrO)dl(OH)[POr]r. Robertsite,carMna+r(oH)o(Hro){Ponlr, a 17.36,b lg.53,c 11.30A,p 96.0o,A2/a, Z: 8, specific gravity3.l,T,cleavage[l00] good,biaxial(-) a1.775,8 *t - 1.82,2V-8o,pleochroismextreme (Y, Z = deep reddish brown; 17 : pale reddish-pink), @curs as fibrous massesand small wedge- shapedcrystals showing c[001 f , a{1@}, qt031}. -
Alteration of Spodumene, Montebrasite and Lithiophilite In
American Mineralogist, Volume 67, pages 97-113, 1982 Alteration of spodumene,montebrasite and lithiophilite in pegmatites of the White PicachoDistrict, Arizona Davrp Lor.rooxrnNo DoNer-uM. Bunr Department of Geology Arizona State University Tempe, Arizona 85281 Abstract The crystallization sequence and metasomatic alteration of spodumene (LiAlSizOe), montebrasite(LiAIPO4(OH,F)), and lithiophilite (Li(Mn,Fe)PO+)are describedfor nine zoned lithium pegmatitesin the White Picacho district, Arizona. The observedcrystalliza- tion trends suggesta progressiveincrease in the activities of lithium species(spodumene follows microcline as the principal alkali aluminosilicate), as well as an increase in the activities of the acidic volatiles phosphorus and fluorine (montebrasite succeedsspodu- mene as the stableprimary lithium phase).Much of the lithiophilite occurs with columbite, apatite, beryl, zircon, and tourmaline in cleavelanditecomplexes that formed in part at the expenseof quartz-spodumenepegmatite. Fracture-controlledpseudomorphic alteration of the primary lithium minerals is widespread and apparently is the result of subsolidus reactionswith residualpegmatitic fluids. Spodumenehas been replacedby eucryptite, albite, and micas. Alteration products of montebrasite include low-fluorine secondary montebrasite,crandallite (tentative), hydroxylapatite, muscovite, brazilianite, augelite (tentative),scorzalite, kulanite, wyllieite, and carbonate-apatite.Secondary phases identi- fied in altered lithiophilite include hureaulite, triploidite, eosphorite, -
Geology of the Hugo Pegmatite Keystone, South Dakota
Geology of the Hugo Pegmatite Keystone, South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-B Geology of the Hugo Pegmatite Keystone, South Dakota By J. J. NORTON, L. R. PAGE, and D. A. BROBST PEGMATITES AND OTHER PRECAMBRIAN ROCKS IN THE SOUTHERN BLACK HILLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-P A detailed structural and petrologic study of a pegmatite containing seven zones and two replacement bodies UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Abstract.. _ ________________________________________ 49 Mineral distribution and paragenesis of the entire Introduction. ______________________________________ 49 pegmatite_ _ ______________________-___---------_ 96 General geology. ___________________________________ 52 Comparison of the zonal sequence with that in other Metamorphic rocks_ ____________________________ 52 pegmatites. ______________________________________ 97 Roy and Monte Carlo pegmatites.- _ __---__-______ 53 Replacement features-______________________________ 100 Structure __________________________________________ 53 Review of the evidence for replacement in pegma Pegmatite units ____________________________________ 53 tites __ _____________________________________ 100 Zone 1 : Albite-quartz-musco vite pegmatite ________ 56 Replacement in the Hugo pegmatite.____-_____-_- 102 -
University of Oklahoma Graduate College
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE EVOLUTION OF THE HYDROTHERMAL STAGE WITHIN MIAROLITIC CAVITIES IN GRANITIC PEGMATITES OF CALIFORNIA AND MAINE, USA A THESIS SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE By CHARLES LORIN DUVAL Norman, Oklahoma 2019 EVOLUTION OF THE HYDROTHERMAL STAGE WITHIN MIAROLITIC CAVITIES IN GRANITIC PEGMATITES OF CALIFORNIA AND MAINE, USA A THESIS APPROVED FOR THE SCHOOL OF GEOSCIENCES BY Dr. David London, Chair Dr. Andrew S. Elwood Madden Dr. Megan E. Elwood Madden © Copyright by CHARLES LORIN DUVAL 2019 All Rights Reserved. Table of Contents Abstract………………………………………………………………..……………………….. vi 1. INTRODUCTION/PROBLEM STATEMENT…………………………………………... 1 2. OBJECTIVES…………………………………………………………………………..…... 2 3. BACKGROUND……………………………………………………………………………. 2 3.1 Minerals present within miarolitic cavities….…………………………………………… 2 3.2 Prior studies……………………………………………………………………………... 5 4. CLAY SAMPLE LOCATIONS……………….…………………………………………. 10 4.1 California………………………………………………………………………………. 10 4.2 Maine…………………………………………………………………………………… 11 5. ALKALI FELDSPAR SAMPLE LOCATIONS………………………………………… 11 6. METHODOLOGY………………………………………………………………………... 11 6.1 X-ray diffraction analysis of clay minerals……………………………………………... 12 6.2 Electron microprobe analysis of clay minerals…………………………………………. 12 6.3 X-ray diffraction analysis of alkali feldspars…………………………………………… 13 7. RESULTS………………………………………………………………………………….. 13 7.1 XRD of pocket clay samples…………………………………………………………….. 13 7.2 EDXA of pocket clay samples…………………………………………………………… -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Tin, Tungsten, and Tantalum Deposits of South Dakota
TIN, TUNGSTEN, AND TANTALUM DEPOSITS OF SOUTH DAKOTA. By FRANK L. HESS. INTRODUCTION. Many articles have been written 011 the tin deposits of the Black Hills, and an excellent paper by J. D. Irving a on the tungsten deposits at Lead was published in 1901. Nothing is known to have been pub lished on the tungsten deposits of the southern Black Hills, but several articles have been written on the deposits of tantalum. Nearly all the papers on these different deposits, however, are a num ber of years old, and later developments have given several of the deposits an aspect somewhat different from their appearance at the time they were described. It therefore seems well to give a brief account of observations made by the writer during a short reconnais sance trip in September, 1908, together with such reviews of the his tory and the literature of the region as may seem advisable. All the known deposits of tin, tungsten, and tantalum in South Dakota occur in the Black Hills, in Lawrence and Pennington coun ties, in the southwestern part of the State. Although designated as "hills," these elevations reach a height of 7,216 feet in Harney Peak, 500 feet above the highest of the Appalachians (Mount Mitchell, 6,711 feet) and almost a thousand feet above the highest of the White Mountains (Mount Washington, 6,279 feet). They are about 60 to 75 miles long by 50 miles wide, the longer axis lying nearly north and south. There is a considerable diversity of topography in the different parts of the area to be considered. -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
II BOQUEIRAO Josnlu \Iunnocn, Uniaersity of Catijornia Al. Los
TI{E AMERICAN MINERALOGIST, VOL 4J, NOVEMBER.DECEMBER, 1958 PHOSPHAI'EIIINERALS OF THE BORBORET{APEG}IATITES: II BOQUEIRAO Josnlu \Iunnocn, Uniaersityof CatiJorniaal. Los Angeles. ABSTRACT The "alto" Boqueirlo is a tl,pical zoned pegmatite of the heterogeneoustype, which carries some unusual minerals besides those of the normal ber1,1-tantaliteassemblage. Among them are minor arnounts of uraninitc, altered in part to uranophane and other secondary compoundsl native bismuth. Lithiophilite and manl' secondary phosphates appear as usual in the general inner portion of the pegmatite near the cluartz core. Among these phosphates appear a pink variscite (carrying minor ber)'jlium); metastrengite as sometimes showy blue coatings of minute crystals; huriaulite and minor tavorite as coat- ings on fractures of lithiophilitel stewartite, massive or in rare crystals; mitridatite (a hydrous calcium iron phosphate), in deep red blades, or very fine grained massesyerlowish to greenish in color. A new mineral, chavesite is described. rt is a hydrous calcium man- ganese phosphate, occurring as thin platy crystals coating lithiophilite, and associated rvithhur6auliteandtavorite. Triclinic, ooS 49bol3.O7,coS79;a97"lgl;,,p 109.3,,t99"44,. The powder pattern resemblesthat of monetite, ivith which it may be isostructural. The stronger powder lines have the follou'ing spacings and intensities: :.35 A-lo, 3.0% A-2, 2.945i\-3,2.74 A-2. IxrnoouctroN This is the secondin a projectedseries of reportson the phosphatesand associatedminerals from the complex, lithium-bearing beryl-tantalite pegmatitesof NortheasternBrazil. Their generalposition is shown on the key map (Fig. 1). The first report wason the ,,alto',patrimonio, \,Iurdoch (1955) and the present one describesthe occurrenceat the ,,alto,' Boqueirao. -
WO 2014/138933 Al 18 September 2014 (18.09.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/138933 Al 18 September 2014 (18.09.2014) P O P C T (51) International Patent Classification: Jersey 08873 (US). LANGEVIN, Marie-Eve; 20 Worlds C25B 1/16 (2006.01) C25B 9/00 (2006.01) Fair Dr., Somerset, New Jersey 08873 (US). BOW 61/46 (2006.01) (74) Agent: BERESKIN & PARR LLP/S.E.N.C.R.L., S.R.L.; (21) International Application Number: 40th Floor, 40 King Street West, Scotia Plaza, Toronto, PCT/CA20 14/000264 Ontario M5H 3Y2 (CA). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 17 March 2014 (17.03.2014) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/788,292 15 March 2013 (15.03.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (71) Applicant: NEMASKA LITHIUM INC. [CA/CA]; 450 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, rue de la Gare-du-Palais, ler etage, Quebec, Quebec G1K SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 3X2 (CA). -
Mineral Index
Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU, -
39015003286252.Pdf
raY a ... 3 4 _' J t+..,+1 /y s t O'C4 LOOM lescE NATUML- 010SIS OF THE TUNGSTEN EPOSITS OF THE UNITED STATES 4 Itoag tn February,. 1936 CONTENTS INTRODUCTION .. .. .............................. 1 LOCATION AND DISTRIBUTION ............................... 2 TYPES OF DEPOSITS OF COMMERCIAL TUNGSTEN ORE...........lO1 Pyrometasomatic deposits ................. ........ 10 Hypothermal deposits .................. S......0.12 Mesothermal deposits.......................... .12 Epithermal deposits...............................13 General features .... ............ .. .. .. 16 Non-Commercial Deposits .. .. ... .. ... ... .. .. .. ... .. 19 Segregation deposits .. .. ... .. .. ... .,.. .. .,.. .19 General features . ..... ....... .. .. .. 19 General features ......... ... .. .. .. .. .".". ."20 Associated minerals.. .. .". .. ."..".."""" 21 Commercial Deposits . .... * . .. .29.. Pyrometasomatic or contact-metamorphic deposits... .22 Location of deposits ............. "..... ... "". 23 Intrusive rocks. .. .23 CONTENTS (concluded) Sedimnrta~ry rocks. ... ......9" . 0 . .24 Process of contacte-metamorphism.0........ .... 24 Size and form of the deposits ................. 26 Zones of metamorphism.................. ".O".S" .26 Progression of the contact-metamorphism. ..... .27 General features and classification..g09.....28 Associated minerals............... "." " " ..... "29. Outcrop of tungsten veins.9......0.. 00"03 Downward extent of tungsten ve ins...........3 Gelaeenral.fatur.. .. .. ... .. .. ..... .. ........ 39 General features.......9. .