Alteration of Spodumene, Montebrasite and Lithiophilite In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Manufacturing Scalability Implications of Materials Choice in Inorganic Solid-State Batteries Abstract Context & Scale Intro
1 Manufacturing Scalability Implications of Materials Choice in Inorganic 2 Solid-State Batteries 3 Kevin J. Huang1, Gerbrand Ceder2, Elsa A. Olivetti1* 4 5 1Department of Materials Science & Engineering, MIT, Cambridge, MA 02139; 2Department of Materials 6 Science & Engineering, University of California Berkeley, Berkeley, CA 94720, USA 7 Abstract 8 The pursuit of scalable and manufacturable all-solid-state batteries continues to intensify, motivated by the 9 rapidly increasing demand for safe, dense electrical energy storage. In this Perspective, we describe the 10 numerous, often conflicting, implications of materials choices that have been made in the search for 11 effective mitigations to the interfacial instabilities plaguing solid-state batteries. Specifically, we show that 12 the manufacturing scalability of solid-state batteries can be governed by at least three principal 13 consequences of materials selection: (1) the availability, scaling capacity, and price volatility of the chosen 14 materials’ constituents, (2) the manufacturing processes needed to integrate the chosen materials into full 15 cells, and (3) the cell performance that may be practically achieved with the chosen materials and processes. 16 While each of these factors is, in isolation, a pivotal determinant of manufacturing scalability, we show that 17 consideration and optimization of their collective effects and tradeoffs is necessary to more completely 18 chart a scalable pathway to manufacturing. 19 Context & Scale 20 With examples pulled from recent developments in solid-state batteries, we illustrate the consequences of 21 materials choice on materials availability, processing requirements and challenges, and resultant device 22 performance. We demonstrate that while each of these factors is, by itself, essential to understanding 23 manufacturing scalability, joint consideration of all three provides for a more comprehensive understanding 24 of the specific factors that could impede the scale up to production. -
L. Jahnsite, Segelerite, and Robertsite, Three New Transition Metal Phosphate Species Ll. Redefinition of Overite, an Lsotype Of
American Mineralogist, Volume 59, pages 48-59, 1974 l. Jahnsite,Segelerite, and Robertsite,Three New TransitionMetal PhosphateSpecies ll. Redefinitionof Overite,an lsotypeof Segelerite Pnur BnnN Moone Thc Departmcntof the GeophysicalSciences, The Uniuersityof Chicago, Chicago,Illinois 60637 ilt. lsotypyof Robertsite,Mitridatite, and Arseniosiderite Peur BmaN Moonp With Two Chemical Analvsesbv JUN Iro Deryrtrnent of GeologicalSciences, Haraard Uniuersity, Cambridge, Massrchusetts 02 I 38 Abstract Three new species,-jahnsite, segelerite, and robertsite,-occur in moderate abundance as late stage products in corroded triphylite-heterosite-ferrisicklerite-rockbridgeite masses, associated with leucophosphite,hureaulite, collinsite, laueite, etc.Type specimensare from the Tip Top pegmatite, near Custer, South Dakota. Jahnsite, caMn2+Mgr(Hro)aFe3+z(oH)rlPC)oln,a 14.94(2),b 7.14(l), c 9.93(1)A, p 110.16(8)", P2/a, Z : 2, specific gavity 2.71, biaxial (-), 2V large, e 1.640,p 1.658,t l.6lo, occurs abundantly as striated short to long prismatic crystals, nut brown, yellow, yellow-orange to greenish-yellowin color.Formsarec{001},a{100},il2oll, jl2}ll,ft[iol],/tolll,nt110],andz{itt}. Segeierite,CaMg(HrO)rFes+(OH)[POdz, a 14.826{5),b 18.751(4),c7.30(1)A, Pcca, Z : 8, specific gaavity2.67, biaxial (-), 2Ylarge,a 1.618,p 1.6t5, z 1.650,occurs sparingly as striated yellow'green prismaticcrystals, with c[00], r{010}, nlll0l and qll2l } with perfect {010} cleavage'It is the Feg+-analogueofoverite; a restudy on type overite revealsthe spacegroup Pcca and the ideal formula CaMg(HrO)dl(OH)[POr]r. Robertsite,carMna+r(oH)o(Hro){Ponlr, a 17.36,b lg.53,c 11.30A,p 96.0o,A2/a, Z: 8, specific gravity3.l,T,cleavage[l00] good,biaxial(-) a1.775,8 *t - 1.82,2V-8o,pleochroismextreme (Y, Z = deep reddish brown; 17 : pale reddish-pink), @curs as fibrous massesand small wedge- shapedcrystals showing c[001 f , a{1@}, qt031}. -
Geology of the Hugo Pegmatite Keystone, South Dakota
Geology of the Hugo Pegmatite Keystone, South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-B Geology of the Hugo Pegmatite Keystone, South Dakota By J. J. NORTON, L. R. PAGE, and D. A. BROBST PEGMATITES AND OTHER PRECAMBRIAN ROCKS IN THE SOUTHERN BLACK HILLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-P A detailed structural and petrologic study of a pegmatite containing seven zones and two replacement bodies UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Abstract.. _ ________________________________________ 49 Mineral distribution and paragenesis of the entire Introduction. ______________________________________ 49 pegmatite_ _ ______________________-___---------_ 96 General geology. ___________________________________ 52 Comparison of the zonal sequence with that in other Metamorphic rocks_ ____________________________ 52 pegmatites. ______________________________________ 97 Roy and Monte Carlo pegmatites.- _ __---__-______ 53 Replacement features-______________________________ 100 Structure __________________________________________ 53 Review of the evidence for replacement in pegma Pegmatite units ____________________________________ 53 tites __ _____________________________________ 100 Zone 1 : Albite-quartz-musco vite pegmatite ________ 56 Replacement in the Hugo pegmatite.____-_____-_- 102 -
University of Oklahoma Graduate College
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE EVOLUTION OF THE HYDROTHERMAL STAGE WITHIN MIAROLITIC CAVITIES IN GRANITIC PEGMATITES OF CALIFORNIA AND MAINE, USA A THESIS SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE By CHARLES LORIN DUVAL Norman, Oklahoma 2019 EVOLUTION OF THE HYDROTHERMAL STAGE WITHIN MIAROLITIC CAVITIES IN GRANITIC PEGMATITES OF CALIFORNIA AND MAINE, USA A THESIS APPROVED FOR THE SCHOOL OF GEOSCIENCES BY Dr. David London, Chair Dr. Andrew S. Elwood Madden Dr. Megan E. Elwood Madden © Copyright by CHARLES LORIN DUVAL 2019 All Rights Reserved. Table of Contents Abstract………………………………………………………………..……………………….. vi 1. INTRODUCTION/PROBLEM STATEMENT…………………………………………... 1 2. OBJECTIVES…………………………………………………………………………..…... 2 3. BACKGROUND……………………………………………………………………………. 2 3.1 Minerals present within miarolitic cavities….…………………………………………… 2 3.2 Prior studies……………………………………………………………………………... 5 4. CLAY SAMPLE LOCATIONS……………….…………………………………………. 10 4.1 California………………………………………………………………………………. 10 4.2 Maine…………………………………………………………………………………… 11 5. ALKALI FELDSPAR SAMPLE LOCATIONS………………………………………… 11 6. METHODOLOGY………………………………………………………………………... 11 6.1 X-ray diffraction analysis of clay minerals……………………………………………... 12 6.2 Electron microprobe analysis of clay minerals…………………………………………. 12 6.3 X-ray diffraction analysis of alkali feldspars…………………………………………… 13 7. RESULTS………………………………………………………………………………….. 13 7.1 XRD of pocket clay samples…………………………………………………………….. 13 7.2 EDXA of pocket clay samples…………………………………………………………… -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Lithium in Lithium-Ion Batteries for Electric Vehicles
Office of Industries Working Paper ID-069 July 2020 Global Value Chains: Lithium in Lithium-ion Batteries for Electric Vehicles Gregory M. LaRocca Abstract Lithium is an essential material in the production of lithium-ion batteries (LIBs), which power electric vehicles. This paper examines the global value chain (GVC) for lithium as part of a series of working papers that map out the global sources of mining, refining, and value-added for the key LIB materials. Results show that few countries have economically viable resources of the upstream raw materials that supply the lithium GVC. Most lithium-rich ores are exported from Australia to China for processing, while most lithium brine concentrates are exported from Chile to South Korea, Japan, and China for processing. The large inflows of lithium to China support its dominant position in the downstream refining process, which is where the largest share of value-added occurs. Consequently, China is capturing the largest shares of value-added along the lithium GVC, despite lacking in resource endowment. Disclaimer: Office of Industries working papers are the result of the ongoing professional research of USITC staff and solely represent the opinions and professional research of individual authors. These papers do not necessarily represent the views of the U.S. International Trade Commission or any of its individual Commissioners. U.S. International Trade Commission Global Value Chains: Lithium in Lithium-ion Batteries for Electric Vehicles Gregory M. LaRocca Office of Industries U.S. International Trade Commission (USITC) July 2020 The author is staff with the Office of Industries of the U.S. -
Maricopa County Regional Trail System Plan
Maricopa County Regional Trail System Plan Adopted August 16, 2004 Maricopa Trail Maricopa County Trail Commission Maricopa County Department of Transportation Maricopa County Parks and Recreation Maricopa County Planning and Development Flood Control District of Maricopa County We have an obligation to protect open spaces for future generations. Maricopa County Regional Trail System Plan VISION Our vision is to connect the majestic open spaces of the Maricopa County Regional Parks with a nonmotorized trail system. The Maricopa Trail Maricopa County Regional Trail System Plan - page 1 Credits Maricopa County Board of Supervisors Andrew Kunasek, District 3, Chairman Fulton Brock, District 1 Don Stapley, District 2 Max Wilson, District 4 Mary Rose Wilcox, District 5 Maricopa County Trail Commission Supervisor Max Wilson, District 4 Chairman Supervisor Andrew Kunasek, District 3 Parks Commission Members: Citizen Members: Laurel Arndt, Chair Art Wirtz, District 2 Randy Virden, Vice-Chair Jim Burke, District 3 Felipe Zubia, District 5 Stakeholders: Carol Erwin, Bureau of Reclamation (BOR) Fred Pfeifer, Arizona Public Service (APS) James Duncan, Salt River Project (SRP) Teri Raml, Bureau of Land Management (BLM) Ex-officio Members: William Scalzo, Chief Community Services Officer Pictured from left to right Laurel Arndt, Supervisor Andy Kunasek, Fred Pfeifer, Carol Erwin, Arizona’s Official State Historian, Marshall Trimble, and Art Wirtz pose with the commemorative branded trail marker Mike Ellegood, Director, Public Works at the Maricopa Trail -
Tin, Tungsten, and Tantalum Deposits of South Dakota
TIN, TUNGSTEN, AND TANTALUM DEPOSITS OF SOUTH DAKOTA. By FRANK L. HESS. INTRODUCTION. Many articles have been written 011 the tin deposits of the Black Hills, and an excellent paper by J. D. Irving a on the tungsten deposits at Lead was published in 1901. Nothing is known to have been pub lished on the tungsten deposits of the southern Black Hills, but several articles have been written on the deposits of tantalum. Nearly all the papers on these different deposits, however, are a num ber of years old, and later developments have given several of the deposits an aspect somewhat different from their appearance at the time they were described. It therefore seems well to give a brief account of observations made by the writer during a short reconnais sance trip in September, 1908, together with such reviews of the his tory and the literature of the region as may seem advisable. All the known deposits of tin, tungsten, and tantalum in South Dakota occur in the Black Hills, in Lawrence and Pennington coun ties, in the southwestern part of the State. Although designated as "hills," these elevations reach a height of 7,216 feet in Harney Peak, 500 feet above the highest of the Appalachians (Mount Mitchell, 6,711 feet) and almost a thousand feet above the highest of the White Mountains (Mount Washington, 6,279 feet). They are about 60 to 75 miles long by 50 miles wide, the longer axis lying nearly north and south. There is a considerable diversity of topography in the different parts of the area to be considered. -
Lithium 2017
2017 Minerals Yearbook LITHIUM [ADVANCE RELEASE] U.S. Department of the Interior September 2020 U.S. Geological Survey Lithium By Brian W. Jaskula Domestic survey data and tables were prepared by Annie Hwang, statistical assistant. In the United States, one lithium brine operation with an cobalt oxide and 2,160 kg of lithium-nickel-cobalt-aluminum associated lithium carbonate plant operated in Silver Peak, oxide (Defense Logistics Agency Strategic Materials, 2017). At NV. Domestic and imported lithium carbonate, lithium yearend 2017, the NDS held 540 kg of lithium-cobalt oxide and chloride, and lithium hydroxide were consumed directly 1,620 kg of lithium-nickel-cobalt-aluminum oxide. in industrial applications and used as raw materials for downstream lithium compounds. In 2017, lithium consumption Production in the United States was estimated to be equivalent to The U.S. Geological Survey (USGS) collected domestic 3,000 metric tons (t) of elemental lithium (table 1) [16,000 t production data for lithium from a voluntary canvass of the of lithium carbonate equivalent (LCE)], primarily owing to only U.S. lithium carbonate producer, Rockwood Lithium Inc. demand for lithium-based battery, ceramic and glass, grease, (a subsidiary of Albemarle Corp. of Charlotte, NC). Production pharmaceutical, and polymer products. In 2017, the gross weight and stock data collected from Rockwood Lithium were withheld of lithium compounds imported into the United States increased from publication to avoid disclosing company proprietary data. by 7% and the gross weight of exports increased by 29% from The company’s 6,000-metric-ton-per-year (t/yr) Silver Peak those in 2016. -
Ore Deposits of the Jerome and Bradshaw Mountains Quadrangles, Arizona
DEPARTMENT OF THE INTERIOR Hubert Work, Secretary U. S. GEOLOGICAL SURVEY George Otis Smith, Director Bulletin 782 ORE DEPOSITS OF THE JEROME AND BRADSHAW MOUNTAINS QUADRANGLES, ARIZONA BY WALDEMAR LINDGREN WITH STATISTICAL NOTES BY V. C. HEIKES WASHINGTON GOVERNMENT PRINTING OFFICE 1926 CONTENTS Page Introduction - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 History of mining - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2 Production - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 Mining districts near area here described - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 General geology - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7 Physiography - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7 Paleozoic sediments - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 Pre-Paleozoic peneplain - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10 Relation of the plateau province to the mountain region - - - - - - - - - - - - - - - - - - - - - 10 Post-Paleozoic erosion - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13 Volcanic flows - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
~Ui&£R5itt! of J\Rij!Oua
Minerals and metals of increasing interest, rare and radioactive minerals Authors Moore, R.T. Rights Arizona Geological Survey. All rights reserved. Download date 06/10/2021 17:57:35 Link to Item http://hdl.handle.net/10150/629904 Vol. XXIV, No.4 October, 1953 ~ui&£r5itt! of J\rij!oua ~ul1etiu ARIZONA BUREAU OF MINES MINERALS AND METALS OF INCREASING INTEREST RARE AND RADIOACTIVE MINERALS By RICHARD T. MOORE ARIZONA BUREAU OF MINES MINERAL TECHNOLOGY SERIES No. 47 BULLETIN No. 163 THIRTY CENTS (Free to Residents of Arizona) PUBLISHED BY ~tti£ll~r5itt! of ~rh!Omt TUCSON, ARIZONA TABLE OF CONTENTS INTRODUCTION 5 Acknowledgments 5 General Features 5 BERYLLIUM 7 General Features 7 Beryllium Minerals 7 Beryl 7 Phenacite 8 Gadolinite 8 Helvite 8 Occurrence 8 Prices and Possible Buyers ,........................................ 8 LITHIUM 9 General Features 9 Lithium Minerals 9 Amblygonite 9 Spodumene 10 Lepidolite 10 Triphylite 10 Zinnwaldite 10 Occurrence 10 Prices and Possible Buyers 10 CESIUM AND RUBIDIUM 11 General Features 11 Cesium and Rubidium Minerals 11 Pollucite ..................•.........................................................................., 11 Occurrence 12 Prices and Producers 12 TITANIUM 12 General Features 12 Titanium Minerals 13 Rutile 13 Ilmenite 13 Sphene 13 Occurrence 13 Prices and Buyers 14 GALLIUM, GERMANIUM, INDIUM, AND THALLIUM 14 General Features 14 Gallium, Germanium, Indium and Thallium Minerals 15 Germanite 15 Lorandite 15 Hutchinsonite : 15 Vrbaite 15 Occurrence 15 Prices and Producers ~ 16 RHENIUM 16