Field Programmable Gate Array Implementation Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Programmable Gate Arrays with Hardwired Networks on Chip
Field Programmable Gate Arrays with Hardwired Networks on Chip PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 6 november 2012 om 15:00 uur door MUHAMMAD AQEEL WAHLAH Master of Science in Information Technology Pakistan Institute of Engineering and Applied Sciences (PIEAS) geboren te Lahore, Pakistan. Dit proefschrift is goedgekeurd door de promotor: Prof. dr. K.G.W. Goossens Copromotor: Dr. ir. J.S.S.M. Wong Samenstelling promotiecommissie: Rector Magnificus voorzitter Prof. dr. K.G.W. Goossens Technische Universiteit Eindhoven, promotor Dr. ir. J.S.S.M. Wong Technische Universiteit Delft, copromotor Prof. dr. S. Pillement Technical University of Nantes, France Prof. dr.-Ing. M. Hubner Ruhr-Universitat-Bochum, Germany Prof. dr. D. Stroobandt University of Gent, Belgium Prof. dr. K.L.M. Bertels Technische Universiteit Delft Prof. dr.ir. A.J. van der Veen Technische Universiteit Delft, reservelid ISBN: 978-94-6186-066-8 Keywords: Field Programmable Gate Arrays, Hardwired, Networks on Chip Copyright ⃝c 2012 Muhammad Aqeel Wahlah All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without permission of the author. Printed in The Netherlands Acknowledgments oday when I look back, I find it a very interesting journey filled with different emotions, i.e., joy and frustration, hope and despair, and T laughter and sadness. -
System Design for a Computational-RAM Logic-In-Memory Parailel-Processing Machine
System Design for a Computational-RAM Logic-In-Memory ParaIlel-Processing Machine Peter M. Nyasulu, B .Sc., M.Eng. A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Ottaw a-Carleton Ins titute for Eleceical and Computer Engineering, Department of Electronics, Faculty of Engineering, Carleton University, Ottawa, Ontario, Canada May, 1999 O Peter M. Nyasulu, 1999 National Library Biôiiothkque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 39S Weiiington Street 395. nie WeUingtm OnawaON KlAW Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, ban, distribute or seU reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microficbe/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract Integrating several 1-bit processing elements at the sense amplifiers of a standard RAM improves the performance of massively-paralle1 applications because of the inherent parallelism and high data bandwidth inside the memory chip. -
NASDAQ Stock Market
Nasdaq Stock Market Friday, December 28, 2018 Name Symbol Close 1st Constitution Bancorp FCCY 19.75 1st Source SRCE 40.25 2U TWOU 48.31 21st Century Fox Cl A FOXA 47.97 21st Century Fox Cl B FOX 47.62 21Vianet Group ADR VNET 8.63 51job ADR JOBS 61.7 111 ADR YI 6.05 360 Finance ADR QFIN 15.74 1347 Property Insurance Holdings PIH 4.05 1-800-FLOWERS.COM Cl A FLWS 11.92 AAON AAON 34.85 Abiomed ABMD 318.17 Acacia Communications ACIA 37.69 Acacia Research - Acacia ACTG 3 Technologies Acadia Healthcare ACHC 25.56 ACADIA Pharmaceuticals ACAD 15.65 Acceleron Pharma XLRN 44.13 Access National ANCX 21.31 Accuray ARAY 3.45 AcelRx Pharmaceuticals ACRX 2.34 Aceto ACET 0.82 Achaogen AKAO 1.31 Achillion Pharmaceuticals ACHN 1.48 AC Immune ACIU 9.78 ACI Worldwide ACIW 27.25 Aclaris Therapeutics ACRS 7.31 ACM Research Cl A ACMR 10.47 Acorda Therapeutics ACOR 14.98 Activision Blizzard ATVI 46.8 Adamas Pharmaceuticals ADMS 8.45 Adaptimmune Therapeutics ADR ADAP 5.15 Addus HomeCare ADUS 67.27 ADDvantage Technologies Group AEY 1.43 Adobe ADBE 223.13 Adtran ADTN 10.82 Aduro Biotech ADRO 2.65 Advanced Emissions Solutions ADES 10.07 Advanced Energy Industries AEIS 42.71 Advanced Micro Devices AMD 17.82 Advaxis ADXS 0.19 Adverum Biotechnologies ADVM 3.2 Aegion AEGN 16.24 Aeglea BioTherapeutics AGLE 7.67 Aemetis AMTX 0.57 Aerie Pharmaceuticals AERI 35.52 AeroVironment AVAV 67.57 Aevi Genomic Medicine GNMX 0.67 Affimed AFMD 3.11 Agile Therapeutics AGRX 0.61 Agilysys AGYS 14.59 Agios Pharmaceuticals AGIO 45.3 AGNC Investment AGNC 17.73 AgroFresh Solutions AGFS 3.85 -
Introduction to ASIC Design
’14EC770 : ASIC DESIGN’ An Introduction Application - Specific Integrated Circuit Dr.K.Kalyani AP, ECE, TCE. 1 VLSI COMPANIES IN INDIA • Motorola India – IC design center • Texas Instruments – IC design center in Bangalore • VLSI India – ASIC design and FPGA services • VLSI Software – Design of electronic design automation tools • Microchip Technology – Offers VLSI CMOS semiconductor components for embedded systems • Delsoft – Electronic design automation, digital video technology and VLSI design services • Horizon Semiconductors – ASIC, VLSI and IC design training • Bit Mapper – Design, development & training • Calorex Institute of Technology – Courses in VLSI chip design, DSP and Verilog HDL • ControlNet India – VLSI design, network monitoring products and services • E Infochips – ASIC chip design, embedded systems and software development • EDAIndia – Resource on VLSI design centres and tutorials • Cypress Semiconductor – US semiconductor major Cypress has set up a VLSI development center in Bangalore • VDAT 2000 – Info on VLSI design and test workshops 2 VLSI COMPANIES IN INDIA • Sandeepani – VLSI design training courses • Sanyo LSI Technology – Semiconductor design centre of Sanyo Electronics • Semiconductor Complex – Manufacturer of microelectronics equipment like VLSIs & VLSI based systems & sub systems • Sequence Design – Provider of electronic design automation tools • Trident Techlabs – Power systems analysis software and electrical machine design services • VEDA IIT – Offers courses & training in VLSI design & development • Zensonet Technologies – VLSI IC design firm eg3.com – Useful links for the design engineer • Analog Devices India Product Development Center – Designs DSPs in Bangalore • CG-CoreEl Programmable Solutions – Design services in telecommunications, networking and DSP 3 Physical Design, CAD Tools. • SiCore Systems Pvt. Ltd. 161, Greams Road, ... • Silicon Automation Systems (India) Pvt. Ltd. ( SASI) ... • Tata Elxsi Ltd. -
IBIS Open Forum Minutes
IBIS Open Forum Minutes Meeting Date: March 12, 2010 Meeting Location: Teleconference VOTING MEMBERS AND 2010 PARTICIPANTS Actel (Prabhu Mohan) Agilent Radek Biernacki, Ming Yan, Fangyi Rao AMD Nam Nguyen Ansoft Corporation (Steve Pytel) Apple Computer (Matt Herndon) Applied Simulation Technology (Fred Balistreri) ARM (Nirav Patel) Cadence Design Systems Terry Jernberg*, Wenliang Dai, Ambrish Varma Cisco Systems Syed Huq*, Mike LaBonte*, Tony Penaloza, Huyen Pham, Bill Chen, Ravindra Gali, Zhiping Yang Ericsson Anders Ekholm*, Pete Tomaszewski Freescale Jon Burnett, Om Mandhana Green Streak Programs Lynne Green Hitachi ULSI Systems (Kazuyoshi Shoji) Huawei Technologies (Jinjun Li) IBM Adge Hawes* Infineon Technologies AG (Christian Sporrer) Intel Corporation (Michael Mirmak), Myoung (Joon) Choi, Vishram Pandit, Richard Mellitz IO Methodology Lance Wang* LSI Brian Burdick* Mentor Graphics Arpad Muranyi*, Neil Fernandes, Zhen Mu Micron Technology Randy Wolff* Nokia Siemens Networks GmbH Eckhard Lenski* Samtec (Corey Kimble) Signal Integrity Software Walter Katz*, Mike Steinberger, Todd Westerhoff, Barry Katz Sigrity Brad Brim, Kumar Keshavan Synopsys Ted Mido Teraspeed Consulting Group Bob Ross*, Tom Dagostino Toshiba (Yasumasa Kondo) Xilinx Mike Jenkins ZTE (Huang Min) Zuken Michael Schaeder OTHER PARTICIPANTS IN 2010 AET, Inc. Mikio Kiyono Altera John Oh, Hui Fu Avago Razi Kaw Broadcom Mohammad Ali Curtiss-Wright John Phillips ECL, Inc. Tom Iddings eSilicon Hanza Rahmai Exar Corp. Helen Nguyen Mindspeed Bobby Altaf National Semiconductor Hsinho Wu* NetLogic Microsystems Eric Hsu, Edward Wu Renesas Technology Takuji Komeda Simberian Yuriy Shlepnev Span Systems Corporation Vidya (Viddy) Amirapu Summit Computer Systems Bob Davis Tabula David Banas* TechAmerica (Chris Denham) Texas Instruments Bonnie Baker Independent AbdulRahman (Abbey) Rafiq, Robert Badal In the list above, attendees at the meeting are indicated by *. -
Actel Smartfusion and Keil
Microsemi® SmartFusion®2 Lab: M2S090TS-EVAL-KIT with ARM® Keil™ MDK toolkit featuring Serial Wire Viewer and ETM Instruction Trace Spring 2017 Version 1.1 by Robert Boys [email protected] The latest version of this document is here: www.keil.com/appnotes/docs/apnt_292.asp Introduction: This note describes the process of operating the ARM® Keil™ MDK toolkit featuring μVision® and Microsemi’s (Actel™) SmartFusion2 (SF2) family which contains an embedded ARM® Cortex™-M3 processor. SmartFusion2 implements ARM Serial Wire Viewer (SWV) and Embedded Trace Macrocell (ETM) CoreSight debug technology. This note describes how to get all the components of this important technology working with µVision. This article uses MDK® 5.23 or later and a Microsemi M2S090TS-EVAL-KIT. You can adapt this document to your own target board. Keil supports 8051, ARM7, Cortex-M1 and Cortex-M3 processors as used in various Microsemi (Actel) products. For more information see www.keil.com/Microsemi Keil MDK-Lite™ is a free evaluation version that limits code size to 32 Kbytes. Nearly all Keil examples will compile within this 32K limit. The addition of a valid license number will turn it into an unrestricted commercial version. CMSIS is an ARM standard. CMSIS 5 has an Apache 2.0 license. GitHub: https://github.com/ARM-software/CMSIS_5 Why Use Keil MDK ? MDK provides these features suited for Microsemi products: 1. µVision IDE with Debugger, Flash programmer and the ARM® Compiler. MDK is turn-key "out-of-the-box". 2. ARM Compiler 5 and ARM Compiler 6 (LLVM) included. GCC is supported. -
A System-Level Synthetic Circuit Generator for FPGA Architectural Analysis
A System-Level Synthetic Circuit Generator for FPGA Architectural Analysis by Cindy Mark B.A.Sc., Queen’s University, 2006 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Applied Science in The Faculty of Graduate Studies (Electrical and Computer Engineering) The University Of British Columbia (Vancouver) November, 2008 c Cindy Mark 2008 Abstract Architectural research for Field-Programmable Gate Arrays (FPGAs) tends to use an experimental approach. The benchmark circuits are used not only to compare different architectures, but also to ensure that the FPGA is sufficiently flexible to implement the desired variety of circuits. The most common benchmark circuits used for architectural research are circuits from the Microelectronics Center of North Carolina (MCNC). These circuits are small; they occupy less than 3% [5] of the largest available commercial FPGA. Moreover, these circuits are more representative of the glue logic circuits that were targets of early devices. This contrasts with the trend towards implementing Systems on Chip (SoCs) on FPGAs where several functional modules are integrated into a single circuit which is mapped onto one device. In this thesis, we develop a synthetic system-level circuit generator that connects pre- existing circuits in a realistic manner to build large netlists that share the characteristics of real SoC circuits. This generator is based on a survey of contemporary circuit designs from industrial and academic sources. We demonstrate that these system-level circuits scale well and that their post-routing characteristics match the results of large pre-existing benchmarks better than the results of circuits from previous synthetic generators. -
Coverstory by Robert Cravotta, Technical Editor
coverstory By Robert Cravotta, Technical Editor u WELCOME to the 31st annual EDN Microprocessor/Microcontroller Di- rectory. The number of companies and devices the directory lists continues to grow and change. The size of this year’s table of devices has grown more than NEW PROCESSOR OFFERINGS 25% from last year’s. Also, despite the fact that a number of companies have disappeared from the list, the number of companies participating in this year’s CONTINUE TO INCLUDE directory has still grown by 10%. So what? Should this growth and change in the companies and devices the directory lists mean anything to you? TARGETED, INTEGRATED One thing to note is that this year’s directory has experienced more compa- ny and product-line changes than the previous few years. One significant type PERIPHERAL SETS THAT SPAN of change is that more companies are publicly offering software-programma- ble processors. To clarify this fact, not every company that sells processor prod- ALL ARCHITECTURE SIZES. ucts decides to participate in the directory. One reason for not participating is that the companies are selling their processors only to specific customers and are not yet publicly offering those products. Some of the new companies par- ticipating in this year’s directory have recently begun making their processors available to the engineering public. Another type of change occurs when a company acquires another company or another company’s product line. Some of the acquired product lines are no longer available in their current form, such as the MediaQ processors that Nvidia acquired or the Triscend products that Arm acquired. -
Designing with Smartfusion Intelligent Mixed Signal Fpgas Webinar
™ Designing with SmartFusion Wendy Lockhart Sr. Manager, Design Solutions Agenda SmartFusion Overview SmartFusion Design Flows Embedded design FPGA design Analog design MSS Configurator and Embedded Example Ecosystem SmartFusion Design Hardware Actel Corporation © 2010 2 What is SmartFusion? Actel Corporation © 2010 3 SmartFusion: Innovative, Intelligent, Integration Proven FPGA fabric Complete ARM® Cortex™-M3 MCU subsystem...& it’s ‘hard’ Programmable analog In a flash-based device In production now! Actel Corporation © 2010 4 Why SmartFusion is a Smart Decision No-compromise integration Complete ARM Cortex-M3 subsystem running at 100 MHz Proven flash-based FPGA fabric Programmable high-voltage analog Full customization Design the exact system you need Hardware and software co-design IP protection FlashLock® technology with AES encryption Ease-of-use Optimized for hardware and software co-design Actel Corporation © 2010 5 No-Compromise FPGA Fabric Proven flash-based FPGA fabric 60,000 to 500,000 system gates 350 MHz system performance Embedded SRAMs and FIFOs Up to 128 FPGA I/Os Actel Corporation © 2010 6 No-Compromise Microcontroller Subsystem (MSS) 100 MHz 32-bit ARM Cortex-M3 processor Bus matrix with up to 16 Gbps throughput 10/100 Ethernet MAC SPI, I2C, UART, 32-bit Timers Up to 512 KB flash and 64 KB of SRAM External memory controller 8-channel DMA controller 32 GPIOs; Extendable via the FPGA Fabric Up to 41 MSS I/Os Actel Corporation © 2010 7 Programmable Analog Analog compute engine (ACE) -
Efpgas : Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies Syed Zahid Ahmed
eFPGAs : Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies Syed Zahid Ahmed To cite this version: Syed Zahid Ahmed. eFPGAs : Architectural Explorations, System Integration & a Visionary Indus- trial Survey of Programmable Technologies. Micro and nanotechnologies/Microelectronics. Université Montpellier II - Sciences et Techniques du Languedoc, 2011. English. tel-00624418 HAL Id: tel-00624418 https://tel.archives-ouvertes.fr/tel-00624418 Submitted on 16 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Montpellier 2 (UM2) École Doctorale I2S LIRMM (Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier) Domain: Microelectronics PhD thesis report for partial fulfillment of requirements of Doctorate degree of UM2 Thesis conducted in French Industrial PhD (CIFRE) framework between: Menta & LIRMM lab (Dec.2007 – Feb. 2011) in Montpellier, FRANCE “eFPGAs: Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies” eFPGAs: Explorations architecturales, integration système, et une enquête visionnaire industriel des technologies programmable by Syed Zahid AHMED Presented and defended publically on: 22 June 2011 Jury: Mr. Guy GOGNIAT Prof. at STICC/UBS (Lorient, FRANCE) President Mr. Habib MEHREZ Prof. at LIP6/UPMC (Paris, FRANCE) Reviewer Mr. -
Architecture Exploration of FPGA Based Accelerators for Bioinformatics Applications Springer Series in Advanced Microelectronics
Springer Series in Advanced Microelectronics 55 B. Sharat Chandra Varma Kolin Paul M. Balakrishnan Architecture Exploration of FPGA Based Accelerators for BioInformatics Applications Springer Series in Advanced Microelectronics Volume 55 Series editors Kukjin Chun, Seoul, Korea, Republic of (South Korea) Kiyoo Itoh, Tokyo, Japan Thomas H. Lee, Stanford, CA, USA Rino Micheloni, Vimercate (MB), Italy Takayasu Sakurai, Tokyo, Japan Willy M.C. Sansen, Leuven, Belgium Doris Schmitt-Landsiedel, München, Germany The Springer Series in Advanced Microelectronics provides systematic information on all the topics relevant for the design, processing, and manufacturing of microelectronic devices. The books, each prepared by leading researchers or engineers in their fields, cover the basic and advanced aspects of topics such as wafer processing, materials, device design, device technologies, circuit design, VLSI implementation, and subsystem technology. The series forms a bridge between physics and engineering and the volumes will appeal to practicing engineers as well as research scientists. More information about this series at http://www.springer.com/series/4076 B. Sharat Chandra Varma Kolin Paul • M. Balakrishnan Architecture Exploration of FPGA Based Accelerators for BioInformatics Applications 123 B. Sharat Chandra Varma M. Balakrishnan Department of Electrical and Electronic Department of Computer Science Engineering and Engineering The University of Hong Kong Indian Institute of Technology Delhi Hong Kong New Delhi, Delhi Hong Kong India Kolin Paul Department of Computer Science and Engineering Indian Institute of Technology Delhi New Delhi, Delhi India ISSN 1437-0387 ISSN 2197-6643 (electronic) Springer Series in Advanced Microelectronics ISBN 978-981-10-0589-3 ISBN 978-981-10-0591-6 (eBook) DOI 10.1007/978-981-10-0591-6 Library of Congress Control Number: 2016931344 © Springer Science+Business Media Singapore 2016 This work is subject to copyright. -
Welcome to CSE467! Highlights
Welcome to CSE467! Highlights: Course Staff: Bruce Hemingway and Charles Giefer We'll be reading hand-outs and papers from various sources. Course web:http://www.cs.washington.edu/467/ The course work will be built around an embedded-core processor in an FPGA. My office: CSE 464 Allen Center, 206 543-6274 Tools are Active-HDL from Aldec, Synplify, and Xilinx ISE. Today: Course overview Languages are verilog and C. What is computer engineering? Applications in the FPGA will include some audio. What we will cover in this class What is “design”, and how do we do it? You may do this week’s lab at your own time. Basis for FPGAs The project- audio string model CSE467 1 CSE467 2 What is computer engineering? What we will cover in CSE467 CE is not PC design Basic digital design (much of it review) It includes PC design Combinational logic Truth tables & logic gates CE is not necessarily digital design Logic minimization Analog computers Special functions (muxes, decoders, ROMs, etc.) Real-world (analog) interfaces Sequential logic CE is about designing information-processing systems Flip-flops and registers Computers Clocking Networks and networking HW Synchronization and timing State machines Automation/controllers (smart appliances, etc.) Counters Medical/test equipment (CT scanners, etc.) State minimization and encoding Much, much more Moore vs Mealy CSE467 3 CSE467 4 What we will cover (con’t) CSE467 is about design Advanced topics Design is an art Field-programmable gate arrays (FPGAs) You learn