Coverstory by Robert Cravotta, Technical Editor

Total Page:16

File Type:pdf, Size:1020Kb

Coverstory by Robert Cravotta, Technical Editor coverstory By Robert Cravotta, Technical Editor u WELCOME to the 31st annual EDN Microprocessor/Microcontroller Di- rectory. The number of companies and devices the directory lists continues to grow and change. The size of this year’s table of devices has grown more than NEW PROCESSOR OFFERINGS 25% from last year’s. Also, despite the fact that a number of companies have disappeared from the list, the number of companies participating in this year’s CONTINUE TO INCLUDE directory has still grown by 10%. So what? Should this growth and change in the companies and devices the directory lists mean anything to you? TARGETED, INTEGRATED One thing to note is that this year’s directory has experienced more compa- ny and product-line changes than the previous few years. One significant type PERIPHERAL SETS THAT SPAN of change is that more companies are publicly offering software-programma- ble processors. To clarify this fact, not every company that sells processor prod- ALL ARCHITECTURE SIZES. ucts decides to participate in the directory. One reason for not participating is that the companies are selling their processors only to specific customers and are not yet publicly offering those products. Some of the new companies par- ticipating in this year’s directory have recently begun making their processors available to the engineering public. Another type of change occurs when a company acquires another company or another company’s product line. Some of the acquired product lines are no longer available in their current form, such as the MediaQ processors that Nvidia acquired or the Triscend products that Arm acquired. Those architec- tures and technologies may publicly resurface in the next year as different prod- www.edn.com August 5, 2004 | edn 39 m i crop rocessor ucts. The recent creation of As for the directory contents itself, this print version con- Freescale, a spinoff of Motoro- tains an alphabetical company-and-product summary to give la, is similar to last year’s spinoff you a high-level overview of this year’s participating compa- of Renesas from Hitachi and nies, their products, and any product or development-tool Mitsubishi; these types of spin- highlights from the last year.You can access the tables exclu- offs allow the new companies to sively at the Web version of this directory at EDN’s Web site, better focus on being more suc- www.edn.com, as a set of PDF files. The site provides multi- cessfully competitive with their ple versions of the tables, sorting the data across multiple products. columns. The growth in the size and company-participation rate in We welcome your feedback about the directory, because it the directory suggests that these changes are not an industry can help us to make the directory more useful to you. Please consolidation but rather are consistent with a budding or ex- let us know what types of information, such as development pected resurgence in embedded-design starts. This directo- tools and third-party-support cross-indexing for each device, ry includes only software-programmable microcontrollers you’d like the directory to include. Send your comments to and microprocessors, including processor cores and pro- [email protected]. If this directory helps you choose a grammable-logic devices with embedded-processor cores. processor, please let the vendor know how you found its part. The directory does not include DSPs; EDN lists DSPs in the If you cannot find your favorite processor company or de- annual DSP directory, which it publishes six months out of vices, please notify both that company and EDN that you phase with this one. missed reading about them in the directory. ACTEL CORP (WWW.ACTEL.COM) family offers an EVP (enhanced- performance embedded Geode SOPC (system-on-programmable- Actel’s 8-bit Core8051 micro- virus-protection) capability for a processors that the company built chip)-builder tool that Altera’s controller core targets consumer, more secure computing environ- on the AMD Athlon core. The Quartus II design software fea- automotive, industrial, and military ment, and it features the Direct ÉlanSC5220 x86 controller covers tures. Altera continues to support and aerospace applications operat- Connect Architecture that directly the datacomm, telecom, and infor- its first-generation Nios embedded ing on Actel’s nonvolatile, single- connects the memory controller mation-appliance markets. processor. chip ProASIC Plus, Axcelerator, SX- and I/O to the CPU to improve the AMD’s MIPS-based Alchemy Altera’s Excalibur embedded- A, and RTSX-S FPGAs. The core overall system performance and microprocessors target PDAs, Web processor offerings integrate an executes all ASM51 instructions in efficiency. tablets, and portable and wired ARM922T processor subsystem one cycle and features 13 four-pri- The AMD64 family of proces- Internet-access devices and gate- with Altera’s programmable-logic ority-level interrupts, 32 I/O ports, sors extends the x86 ISA across way applications. This year saw the architecture. The Excalibur devices two timers, and a programmable 32- and 64-bit platforms. The AMD introduction of the AMD Alchemy allow you to operate the processor serial port. You can combine the Opteron processor targets servers Au1550 security-network proces- in stand-alone mode before con- Core8051 with other Actel IP cores and workstations, and the AMD sor. The Au1550 processor’s low figuring the FPGA. Altera’s SOPC to enhance its functions. Athlon 64 processor and Mobile power consumption makes it suit- Builder system-integration tool Actel’s Platform8051 develop- AMD Athlon 64 processor target able for battery-powered and connects the processor, peripher- ment kit includes the IP cores, soft- desktop and mobile PCs. The AMD power-over-Ethernet applications. als, and user-defined peripherals ware tools, and target silicon that Athlon XP and AMD Athlon XP-M using an intelligent switch fabric enable designers to configure IP processors feature the Quanti- ALTERA (WWW.ALTERA.COM) and generates a custom software- cores, including Actel’s Core8051. Speed architecture and support for The three Nios II general-pur- development kit. Actel tested and verified its preim- AMD’s 3DNow! Professional pose RISC-processor soft cores tar- plemented, synthesizable Direct- instructions for enhanced multime- get use in Altera’s Stratix, Stratix II, ANALOG DEVICES Core IP building blocks in Actel dia. The Athlon XP-M processors Cyclone, and HardCopy device (WWW.ANALOG.COM) FPGAs. are available in smaller PGA pack- families. The standard Nios II/s Analog Devices’ ADuC702x fam- ages to support “thin-and-light” core offers a balance between core ily of precision analog microcon- ADVANCED MICRO DEVICES designs. size and performance, and the trollers integrates a 32-bit ARM7- (WWW.AMD.COM) The AMD Geode processor fam- Nios II/e and Nios II/f push the TDMI core with 12-bit ADCs. AMD offers an x86-based prod- ily targets broadband multimedia, balance toward a smaller core or Targeting industrial, optical-net- uct line addressing the needs of set-top boxes, and thin-client appli- faster performance, respectively. working, and automotive applica- embedded, mobile, and enter- cations. Developers can compare The Nios II/e core can consume as tions in which control and moni- prise-class servers and worksta- Geode processors by using a per- little as 35 cents’ worth of logic, toring are critical, the devices sup- tions and desktop PCs. This year, formance-power-rating nomencla- and the Nios II/f can achieve 200 port as many as 16 channels of AMD introduced models of the ture to select the processor with Dhrystone MIPS performance. All fast, 12-bit-accurate analog-to-digi- AMD Opteron, AMD Athlon 64, the appropriate mix of perform- three cores share a common 32- tal conversion and as many as four and Mobile AMD Athlon 64 ance and power consumption. This bit ISA and are 100% binary-code- 12-bit DACs. The ARM7TDMI fea- processors. The AMD64 processor year, AMD released a line of high- compatible. Designers use the tures a flash-based 16/32-bit RISC- 40 edn | August 5, 2004 www.edn.com d irectory processor core integrating analog core registers to further tailor the ATMEL (WWW.ATMEL.COM) V2.0B CAN controller that the peripherals, such as a precision system performance. Atmel provides standard prod- Atmel CANary microcontroller bandgap reference with a drift The seven-stage 32-bit scalar ucts, ASICs, and application-spe- family uses. The CAN controller performance of better than 10 RISC ARC 700-processor architec- cific options for the embedded- can handle 15 independent mes- ppm/ЊC. Other peripherals include ture targets high-data-rate applica- product market using seven sage objects, which you can pro- a comparator, a programmable- tions. The processor is available as microcontroller or microprocessor gram on the fly. With a 16-MIPS logic array for glue logic, and a synthesizable HDL that enables architectures. These architectures AVR RISC engine, 128-kbyte flash three-phase PWM generator. porting to almost any foundry or include the 4-bit Marc 4 that tar- program memory, 4-kbyte RAM, synthesis library. The ARC 700 uses gets low-power automotive appli- and 4-kbyte on-chip EEPROM, APPLIED MICRO CIRCUITS CORP the ARCompact ISA and is back- cations; the 8-bit AVR and 8051; AT90CAN128 is appropriate for (WWW.AMCC.COM) ward-compatible with the ARC- the 16-bit ARM Thumb; the 32-bit industrial-control applications. Over the last year, AMCC tangent -A5 and ARC 600 proces- ARM and MIPS; and the 32-bit acquired the 32-bit PowerPC 400 sors. Although the ARC 700 offers Sparc that is appropriate for radia- CIRRUS LOGIC family of processors. The Power- high clock rates, it makes few tion-tolerant aerospace designs.
Recommended publications
  • PPC400 Debugger C++ and JAVAC++ Aswell Asthe Debugging of the TPU
    BDM-PPC400 Technical Information Technical PPC400 Debugger ■ Full HLL and ASM support available ■ Batch processing ■ Supports ELF/DWARF format ■ 3.3 volt support ■ Support for internal triggers ■ Break on code or data ■ Unlimited software breakpoints ■ Fast download (ETHERNET or PARALLEL) up to 600KB/sec The debugger for IBM PowerPC 400 family allows fast access to the BDM interface of the chip. Up to 450 KByte can be downloaded in 1 second. The systems supports C, C++ and JAVA as well as the debugging of the TPU. BDM-PPC400 14.06.13 TRACE32 - Technical Information 2 Features ❏ Active and Passive JTAG ❏ Variable Debug Clock Speed Debugger available ■ 10 kHz...5 MHz ■ 1/4 CPU Clock ■ 1/8 CPU Clock ❏ Software Compatible to In-Circuit ■ Variable up to 100 MHz (Pow- Emulator and Monitor erDebug only) ■ Operation System ■ PRACTICE ❏ ■ ASM Debugger Tr igger ■ HLL Debugger for C and C++ ■ Input from PODBUS ■ Peripheral Windows ■ Output to PODBUS ❏ High-Speed Download ❏ Support for EPROM/FLASH ■ Up to 450 KByte/sec Simulator ■ Breakpoints in ROM Area ■ 8, 16 and 32 Bit EPROM/ FLASH Emulation BDM-PPC400 Features TRACE32 - Technical Information 3 Connector Connector Type stanard 100 mil connector (BETRG, AMP, etc.) Connector 16 pin Signal Pin Pin Signal TDO 1 2 N/C TDI 3 4 TRST- (*) N/C 5 6 VCCS TCK 7 8 N/C TMS 9 10 N/C HALT- 11 12 N/C N/C 13 14 KEY N/C 15 16 GND BDM-PPC400 Connector TRACE32 - Technical Information 4 Operation Voltage Operation Voltage This list contains information on probes available for other voltage ranges.
    [Show full text]
  • Schedule 14A Employee Slides Supertex Sunnyvale
    UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 SCHEDULE 14A Proxy Statement Pursuant to Section 14(a) of the Securities Exchange Act of 1934 Filed by the Registrant Filed by a Party other than the Registrant Check the appropriate box: Preliminary Proxy Statement Confidential, for Use of the Commission Only (as permitted by Rule 14a-6(e)(2)) Definitive Proxy Statement Definitive Additional Materials Soliciting Material Pursuant to §240.14a-12 Supertex, Inc. (Name of Registrant as Specified In Its Charter) Microchip Technology Incorporated (Name of Person(s) Filing Proxy Statement, if other than the Registrant) Payment of Filing Fee (Check the appropriate box): No fee required. Fee computed on table below per Exchange Act Rules 14a-6(i)(1) and 0-11. (1) Title of each class of securities to which transaction applies: (2) Aggregate number of securities to which transaction applies: (3) Per unit price or other underlying value of transaction computed pursuant to Exchange Act Rule 0-11 (set forth the amount on which the filing fee is calculated and state how it was determined): (4) Proposed maximum aggregate value of transaction: (5) Total fee paid: Fee paid previously with preliminary materials. Check box if any part of the fee is offset as provided by Exchange Act Rule 0-11(a)(2) and identify the filing for which the offsetting fee was paid previously. Identify the previous filing by registration statement number, or the Form or Schedule and the date of its filing. (1) Amount Previously Paid: (2) Form, Schedule or Registration Statement No.: (3) Filing Party: (4) Date Filed: Filed by Microchip Technology Incorporated Pursuant to Rule 14a-12 of the Securities Exchange Act of 1934 Subject Company: Supertex, Inc.
    [Show full text]
  • Reconfigurable Embedded Control Systems: Problems and Solutions
    RECONFIGURABLE EMBEDDED CONTROL SYSTEMS: PROBLEMS AND SOLUTIONS By Dr.rer.nat.Habil. Mohamed Khalgui ⃝c Copyright by Dr.rer.nat.Habil. Mohamed Khalgui, 2012 v Martin Luther University, Germany Research Manuscript for Habilitation Diploma in Computer Science 1. Reviewer: Prof.Dr. Hans-Michael Hanisch, Martin Luther University, Germany, 2. Reviewer: Prof.Dr. Georg Frey, Saarland University, Germany, 3. Reviewer: Prof.Dr. Wolf Zimmermann, Martin Luther University, Germany, Day of the defense: Monday January 23rd 2012, Table of Contents Table of Contents vi English Abstract x German Abstract xi English Keywords xii German Keywords xiii Acknowledgements xiv Dedicate xv 1 General Introduction 1 2 Embedded Architectures: Overview on Hardware and Operating Systems 3 2.1 Embedded Hardware Components . 3 2.1.1 Microcontrollers . 3 2.1.2 Digital Signal Processors (DSP): . 4 2.1.3 System on Chip (SoC): . 5 2.1.4 Programmable Logic Controllers (PLC): . 6 2.2 Real-Time Embedded Operating Systems (RTOS) . 8 2.2.1 QNX . 9 2.2.2 RTLinux . 9 2.2.3 VxWorks . 9 2.2.4 Windows CE . 10 2.3 Known Embedded Software Solutions . 11 2.3.1 Simple Control Loop . 12 2.3.2 Interrupt Controlled System . 12 2.3.3 Cooperative Multitasking . 12 2.3.4 Preemptive Multitasking or Multi-Threading . 12 2.3.5 Microkernels . 13 2.3.6 Monolithic Kernels . 13 2.3.7 Additional Software Components: . 13 2.4 Conclusion . 14 3 Embedded Systems: Overview on Software Components 15 3.1 Basic Concepts of Components . 15 3.2 Architecture Description Languages . 17 3.2.1 Acme Language .
    [Show full text]
  • IBM Power System POWER8 Facts and Features
    IBM Power Systems IBM Power System POWER8 Facts and Features April 29, 2014 IBM Power Systems™ servers and IBM BladeCenter® blade servers using IBM POWER7® and POWER7+® processors are described in a separate Facts and Features report dated July 2013 (POB03022-USEN-28). IBM Power Systems™ servers and IBM BladeCenter® blade servers using IBM POWER6® and POWER6+™ processors are described in a separate Facts and Features report dated April 2010 (POB03004-USEN-14). 1 IBM Power Systems Table of Contents IBM Power System S812L 4 IBM Power System S822 and IBM Power System S822L 5 IBM Power System S814 and IBM Power System S824 6 System Unit Details 7 Server I/O Drawers & Attachment 8 Physical Planning Characteristics 9 Warranty / Installation 10 Power Systems Software Support 11 Performance Notes & More Information 12 These notes apply to the description tables for the pages which follow: Y Standard / Supported Optional Optionally Available / Supported N/A or - Not Available / Supported or Not Applicable SOD Statement of General Direction announced SLES SUSE Linux Enterprise Server RHEL Red Hat Enterprise Linux a One x8 PCIe slots must contain a 4-port 1Gb Ethernet LAN available for client use b Use of expanded function storage backplane uses one PCIe slot Backplane provides dual high performance SAS controllers with 1.8 GB write cache expanded up to 7.2 GB with c compression plus Easy Tier function plus two SAS ports for running an EXP24S drawer d Full benchmark results are located at ibm.com/systems/power/hardware/reports/system_perf.html e Option is supported on IBM i only through VIOS.
    [Show full text]
  • Example of Using User Boot Mode of Renesas 0.18Μm Flash Devices
    To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.
    [Show full text]
  • A Low Power Asynchronous GPS Baseband Processor
    A Low Power Asynchronous GPS Baseband Processor Benjamin Z. Tang, Stephen Longfield, Jr., Sunil A. Bhave, Rajit Manohar School of Electrical and Computer Engineering Cornell University. Ithaca, NY, 14853, U.S.A. Email: {bt48, slongfield}@csl.cornell.edu, [email protected], [email protected] Abstract—We present the design and implementation of an having power consumption of less than 10mW [4]. However, asynchronous Global Positioning System (GPS) baseband pro- more work needs to be done to lower the power consumption cessor architecture designed with a combination of Quasi-Delay- of the GPS baseband processor. Insensitive (QDI) and bundled-data techniques, with a focus on minimizing power consumption. All subsystems run at their A powerful DSP can perform all baseband processing in natural frequency without clocking and all signal processing software [5]. This approach is highly reconfigurable and easy is done on-the-fly. Transistor-level simulations show that our to develop and debug but not suitable for low power applica- system consumes only 1.4mW with position 3-D rms error below tions. An alternative is to use a hardware correlation engine 4 meters, comparing favorably to other contemporary GPS to handle the fast correlation operations and a microprocessor baseband processors. Index Terms—GPS, QDI, Bundled-Data, Asynchronous Cir- to handle the rest of the signal processing tasks [6]. cuits, Low-Power Receiver In applications where the user only requires infrequent position updates, a possible solution is proposed in [7], where I. INTRODUCTION the receiver is only powered intermittently. This approach does A. Motivation not continually track satellites, but instead focuses on rapid re- acqusition.
    [Show full text]
  • System Design for a Computational-RAM Logic-In-Memory Parailel-Processing Machine
    System Design for a Computational-RAM Logic-In-Memory ParaIlel-Processing Machine Peter M. Nyasulu, B .Sc., M.Eng. A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Ottaw a-Carleton Ins titute for Eleceical and Computer Engineering, Department of Electronics, Faculty of Engineering, Carleton University, Ottawa, Ontario, Canada May, 1999 O Peter M. Nyasulu, 1999 National Library Biôiiothkque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 39S Weiiington Street 395. nie WeUingtm OnawaON KlAW Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, ban, distribute or seU reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microficbe/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract Integrating several 1-bit processing elements at the sense amplifiers of a standard RAM improves the performance of massively-paralle1 applications because of the inherent parallelism and high data bandwidth inside the memory chip.
    [Show full text]
  • Chapter 2-1: Cpus
    Chapter 2-1: CPUs Soo-Ik Chae © 2007 Elsevier 1 Topics CPU metrics. Categories of CPUs. CPU mechanisms. High Performance Embedded Computing © 2007 Elsevier 2 Performance as a design metric Performance = speed: Latency. Throughput. Average vs. peak performance. Worst-case and best- case performance. High Performance Embedded Computing © 2007 Elsevier 3 Other metrics Cost (area). Energy and p ower. Predictability: important for embedded systems Pipelining: branch penalty. Memory system (Cache) : cache miss penalty Security: difficult to measure because of the fact that we do not know of a successful attack. High Performance Embedded Computing © 2007 Elsevier 4 Flyyypnn’s taxonomy of processors Single-instruction single-data (SISD): RISC, etc. Single-instruction multiple-data (SIMD): all processors perform the same operations. Multiple-instruction multiple-data (MIMD): homogeneou s or heterogeneou s multiprocessor. Multiple-instruction multiple data (MISD). High Performance Embedded Computing © 2007 Elsevier 5 Other axes of comparison RISC. Emphasis on software Sing le-cyclilittile, simple instructions Register to register: LOAD" and "STORE“ are independent instructions Low cycles per second, Large code sizes Spends more transistors on memory registers CISC. Emphasis on hardware multi-cycle, complex instructions Memory-to-memory: LOAD" and "STORE“ incorporated in instructions High cycles per second Small code sizes Transistors used for storing complex instructions High Performance Embedded Computing © 2007 Elsevier 6 RISC CISC 1. 1-cycle simple instructions 1. multi-cycle complex instructions 2. only LD/ST can access memory 2. any instruction may access memory 3. designed around pipeline 3. designed around instn. set 4. instns. executed by h/w 4. instns interpreted by micro-program 5.
    [Show full text]
  • Introduction to ASIC Design
    ’14EC770 : ASIC DESIGN’ An Introduction Application - Specific Integrated Circuit Dr.K.Kalyani AP, ECE, TCE. 1 VLSI COMPANIES IN INDIA • Motorola India – IC design center • Texas Instruments – IC design center in Bangalore • VLSI India – ASIC design and FPGA services • VLSI Software – Design of electronic design automation tools • Microchip Technology – Offers VLSI CMOS semiconductor components for embedded systems • Delsoft – Electronic design automation, digital video technology and VLSI design services • Horizon Semiconductors – ASIC, VLSI and IC design training • Bit Mapper – Design, development & training • Calorex Institute of Technology – Courses in VLSI chip design, DSP and Verilog HDL • ControlNet India – VLSI design, network monitoring products and services • E Infochips – ASIC chip design, embedded systems and software development • EDAIndia – Resource on VLSI design centres and tutorials • Cypress Semiconductor – US semiconductor major Cypress has set up a VLSI development center in Bangalore • VDAT 2000 – Info on VLSI design and test workshops 2 VLSI COMPANIES IN INDIA • Sandeepani – VLSI design training courses • Sanyo LSI Technology – Semiconductor design centre of Sanyo Electronics • Semiconductor Complex – Manufacturer of microelectronics equipment like VLSIs & VLSI based systems & sub systems • Sequence Design – Provider of electronic design automation tools • Trident Techlabs – Power systems analysis software and electrical machine design services • VEDA IIT – Offers courses & training in VLSI design & development • Zensonet Technologies – VLSI IC design firm eg3.com – Useful links for the design engineer • Analog Devices India Product Development Center – Designs DSPs in Bangalore • CG-CoreEl Programmable Solutions – Design services in telecommunications, networking and DSP 3 Physical Design, CAD Tools. • SiCore Systems Pvt. Ltd. 161, Greams Road, ... • Silicon Automation Systems (India) Pvt. Ltd. ( SASI) ... • Tata Elxsi Ltd.
    [Show full text]
  • Instrumentation Control Using the Rabbit 2000 Embedded Microcontroller
    Instrumentation Control Using the Rabbit 2000 Embedded Microcontroller Ian S. Schofield*, David A. Naylor Astronomical Instrumentation Group, Department of Physics, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada ABSTRACT Embedded microcontroller modules offer many advantages over the standard PC such as low cost, small size, low power consumption, direct access to hardware, and if available, access to an efficient preemptive real-time multitasking kernel. Typical difficulties associated with an embedded solution include long development times, limited memory resources, and restricted memory management capabilities. This paper presents a case study on the successes and challenges in developing a control system for a remotely controlled, Alt-Az steerable, water vapour detector using the Rabbit 2000 family of 8-bit microcontroller modules in conjunction with the MicroC/OS-II multitasking real-time kernel. Keywords: Embedded processor, Rabbit, instrument control, MicroC/OS-II 1. INTRODUCTION The Astronomical Instrumentation Group (AIG) of the University of Lethbridge’s Department of Physics has been designing instruments for use in infrared and (sub)millimetre astronomy for over twenty years, with an emphasis on Fourier transform spectroscopy. Historically, these instruments have been driven by control software hosted on standard desktop personal computers (PCs). This approach has been highly successful, allowing for rapid and inexpensive system development using widely available software development tools and low cost, commercial off-the- shelf hardware. In the fall of 2001, the AIG began work on a remotely controlled atmospheric water vapour detector called IRMA (Infrared Radiometer for Millimetre Astronomy). IRMA mechanically consists of a shoebox-size detector system attached to an Alt-Az motorized fork mount, which allows it to point to any position in the sky, and is attached to the end of an umbilical cable, through which it receives its power and network connection.
    [Show full text]
  • Embedded Market Study, 2013
    2013 EMBEDDED MARKET STUDY Essential to Engineers DATASHEETS.COM | DESIGNCON | DESIGN EAST & DESIGN WEST | EBN | EDN | EE TIMES | EMBEDDED | PLANET ANALOG | TECHONLINE | TEST & MEASUREMENT WORLD 2013 Embedded Market Study 2 UBM Tech Electronics’ Brands Unparalleled Reach & Experience UBM Tech Electronics is the media and marketing services solution for the design engineering and electronics industry. Our audience of over 2,358,928 (as of March 5, 2013) are the executives and engineers worldwide who design, develop, and commercialize technology. We provide them with the essentials they need to succeed: news and analysis, design and technology, product data, education, and fun. Copyright © 2013 by UBM. All rights reserved. 2013 Embedded Market Study 5 Purpose and Methodology • Purpose: To profile the findings of the 2013 results of EE Times Group annual comprehensive survey of the embedded systems markets worldwide. Findings include types of technology used, all aspects of the embedded development process, tools used, work environment, applications, methods and processes, operating systems used, reasons for using and not using chips and technology, and brands and chips currently used by or being considered by embedded developers. Many questions in this survey have been trended over two to five years. • Methodology: A web-based online survey instrument based on the previous year’s survey was developed and implemented by independent research company Wilson Research Group from January 18, 2013 to February 13, 2013 by email invitation • Sample: E-mail invitations were sent to subscribers to UBM/EE Times Group Embedded Brands with one reminder invitation. Each invitation included a link to the survey. • Returns: 2,098 valid respondents for an overall confidence of 95% +/- 2.13%.
    [Show full text]
  • Renesas Mcus H8S Family H8S/Tiny Series
    To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.
    [Show full text]