Poxvirus in a Swine Farm in Italy: a Sporadic Outbreak? O

Total Page:16

File Type:pdf, Size:1020Kb

Poxvirus in a Swine Farm in Italy: a Sporadic Outbreak? O Mariano_imp:ok 20-06-2016 11:23 Pagina 219 V. Mariano et al. Large Animal Review 2015; 21: 219-220 219 Poxvirus in a swine farm in Italy: a sporadic outbreak? O V. MARIANOa, A. NARDIa, E. VERGARIa, F. CARLETTIb, L. BARBIERIc, G. CARDETId a Laboratory of Veterinary Diagnostic Disease of Grosseto, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Europa 30, Grosseto, Italy b Virology Laboratory, National Institute for Infectious Diseases, IRCCS “L. Spallanzani”, Via Portuense 292, 00149 Rome, Italy c Veterinarian freelancer, Grosseto, Italy d Laboratory of Electron Microscopy and Specialistic Virology, Biotechnology Dept., Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, Rome, Italy SUMMARY The aim of this report is to describe the occurrence of a Swinepox virus (SWPV) outbreak in Central Italy in 2013 and the pos- sibility of its reappearance. SWPV is the only member belonging to the Suipoxvirus genus in the Poxviridae family and it re- presents the etiologic agent of a worldwide disease specific for swine with an affinity for epidermis. In Italy it has been rarely observed. In November 2013 an outbreak was registered in a biological farm of about 110 animals located in Tuscany. Skin le- sions were observed in a group of 3 months old piglets born in the farms from crossbreed animals. The disease affected 50 of the youngest animals. Diagnosis was based on clinical and pathological signs which were pustular lesions at first located mainly around the neck and the ears and in a later stage disseminated all around the body, especially concentrated in the groin and the abdomen. Skin samples were processed for negative staining electron microscopy technique and ruled positive for brick vi- ral particle consistent with Suipoxvirus. To rule out Orthopoxvirus infection, possibly causative of similar pustular lesions, mo- lecular analysis was performed but no evidence of specific target amplification for Orthopoxvirus was observed, thus it was ex- cluded as differential diagnosis. The course of the disease was of about 20 days. As a concomitant infection with Salmonella tiphymurium was found in the outbreak, it is not possible to define which of the two diseases could have been causative of the registered mortality. Unfortunately the source of the poxvirus infection has not been demonstrated, however a great role in the transmission of the disease within the farm could be attributed to the lice Haematopinus suis which was parasiting the animals. As Suipoxvirus is mechanically transmitted by lice and extensive farming systems are common in the area, as well as wild boars, future outbreaks could be expected. KEY WORDS Swine pox, Suipoxvirus, swine, wild boar, Italy. This short communication reports on an outbreak of swi- disease was first reported in slaughtered pigs in 2006 (data ne pox in a biological pig farm in Tuscany, Italy. Swinepox not published). In November 2013 a new outbreak was re- virus (SWPV) is the only member belonging to the Suipox- gistered in a biological farm of about 110 animals located virus genus in the Poxviridae family and it represents the in a different area in Tuscany. Skin lesions (Figure 1) were etiologic agent of a worldwide disease specific for swine observed in a group of 3 months old piglets born in the with an affinity for epidermis1,2. Suipoxvirus is morphologi- farms from crossbreed animals of the indigenous breeds cally, genetically and antigenically related to the others 8 “Macchiaiola maremmana”, “Nero dei nebrodi” and the En- genera of the subfamily Chordopoxvirinae3. This virus pre- glish breed “Large Black”. The disease affected 50 of the sents a brick-shaped complex envelope and a large linear youngest animals. “Large White” pigs kept in the same farm double-stranded DNA genome with a cytoplasmic site of didn’t show any signs of illness. At a first site an ectoparasi- replication4,5. SWPV produces generalized pustular lesions ticide was dispensed to all the animals while an antibiotic which in severe infections can be associated with a high ra- and cortisone treatment was administered to the ill ani- te (80% or more) of neonatal illness6,7. It is mechanically mals. As the condition didn’t show any improvement and transmitted by lice or through direct animal contact and a instead kept deteriorating, a first suspect of poxvirus was congenitally-acquired infection is described in literature6. formulated. Diagnosis was based on clinical and pathologi- The presence of Poxvirus in swine has been demonstrated cal signs which were pustular lesions at first located mainly in Northern Italy since 20028. However in central Italy, the around the neck and the ears and in a later stage dissemi- nated all around the body, especially concentrated in the groin and the abdomen. One dead animal was submitted to the Diagnostic Laboratory of the IZSLT for post-mortem Autore per la corrispondenza: examination. Skin samples were sent to the Biotechnology Valeria Mariano ([email protected]). Laboratory of the IZS LT to investigate for viral agents. Mariano_imp:ok 20-06-2016 11:23 Pagina 220 220 Poxvirus in a swine farm in Italy: a sporadic outbreak? been executed in the area since many years. The course of the disease was of about 20 days. As a concomitant infection with Salmonella tiphymurium was found in the outbreak, it is not possible to define which of the two diseases could have been causative of the registered mor- tality. As well the source of the poxvirus infection has not been demonstrated. Although only fences divide the farms from the surrounding area inhabited by wild boars, since now no ca- ses have been reported in this species. On the other hand, a great role in the transmission of the disease within the farm could be attributed to the lice Haematopinus suis which was parasiting the animals. It is known that this parasite per- Figure 1 - Pustular lesions observed on piglets. mits the survival of the virus for one year2 and this could be the reason of the following less se- vere outbreak in piglets registered in the same farm in June 2014. Although ectoparasite treatments are dispensed as well as bio-control security measures to avoid contact with wild boars, lice eradication in semi-extensive farming sy- stems is difficult and thus other cases are likely to be ex- pected within the territory in the future. References 1. Afonso C.L., Tulman E.R., Lu, Z., Zsak L., Osorio F.A., Balinsky C., Ku- tish G.F., Rock D.L. (2002) The genome of swinepox virus. J Virol 76:783-790. 2. Sharma S.N., Adhlaka S.C. (1996) Poxviridae. In: Textbook of Veteri- nary Microbiology, Eds. Sharma, S.N., Adhlaka, S.C., 268-278, Vikas press, New Delhi, India. 3. Delhon G.A., Tulman E.R., Afonso C.L., Rock D.L. (2007) Genus Sui- poxvirus. In: Poxviruses. Eds. Mercer E., Schmidt A., Weber O., 203- 215, Birkhauser press, Switzerland. 4. Lefkowitz E.J., Wang C., Upton C. (2006) Poxviruses: past, present and future. Virus Res 117:105-118. 5. Moss, B. (2006) Poxvirus entry and membrane fusion. Virology 344:48-54. 6. Olufemi B.E., Ayoade G.O., Ikede B.O., Akpavie S.O., Nwufoh K.J. Figure 2 - Electron micrography image of skin lesion sample (1981) Swine pox in Nigeria. Vet Rec 109:278-280. ≈ showing a negatively stained brick viral particle of 160-220 nm, 7. Medaglia M.L., Pereira Ade C., Freitas T.R., Damaso C.R. (2011) Swi- consistent with Suipoxvirus. Scale bar = 100 nm. nepox virus outbreak, Brazil, 2011. Emerg Infect Dis 17:1976-1978. 8. Tittarelli C., Sozzi E., Spaggiari B., Alborali G.L., Cordioli P., Lavazza A. (2009) Diagnosi al microscopio elettronico di swinepoxvirus, agen- te di malattia cutanea sporadica, durante il periodo 2002-2008 nel They were processed for negative staining electron micro- Nord Italia. In Atti della SIPAS, Società Italiana di Patologia ed Alleva- scopy technique9 and ruled positive for brick viral particle mento dei suini XXXV Meeting Annuale, Modena, 12-13 Marzo 2009, consistent with Suipoxvirus (Figure 2). Vaccinia virus can pp. 507-512. 9. Biel S.S., Gelderblom H.R. (1999) Electron microscopy of viruses. In: also cause similar pustular disease in pigs, impossible to be Virus Culture - A Practical Approach., Ed. Cann, A.J., 111-147, Oxford clinically distinguished from swine poxvirus, as well as the University Press, UK. TEM morphology2. To rule out Orthopoxvirus infection 10. Carletti F., Di Caro A., Calcaterra S., Grolla A., Czub M., Ippolito G., molecular analysis was performed; in particular, PCR tests, Capobianchi M.R., Horejsh D. (2005) Rapid, differential diagnosis of orthopox- and herpesviruses based upon real-time PCR product mel- targeting two different regions of Orthopoxvirus genome, ting temperature and restriction enzyme analysis of amplicons. J Virol i.e. cytokine response-modifying protein B (crmB) gene10 Methods 129:97-100. and hemagglutinin gene (HA)11, were carried out. No evi- 11. Damaso C.R.A., Esposito J.J., Condit R.C., Moussatché N. (2000) An Emergent Poxvirus from Humans and Cattle in Rio de Janeiro State: dence of specific target amplification was observed with Cantagalo Virus May Derive from Brazilian Smallpox Vaccine. Virology both assays. Furthermore no smallpox vaccination had 227:439-449..
Recommended publications
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • First Molecular Characterization of Poxviruses in Cattle, Sheep, And
    Modise et al. Virol J (2021) 18:167 https://doi.org/10.1186/s12985-021-01634-9 RESEARCH Open Access First molecular characterization of poxviruses in cattle, sheep, and goats in Botswana Boitumelo Magret Modise1* , Tirumala Bharani Kumar Settypalli2, Tebogo Kgotlele1, Dingrong Xue2,3, Kebonyemodisa Ntesang1, Kago Kumile1, Ivancho Naletoski2, John Frederick Nyange1, Carter Thanda1, Kenny Nametso Macheng1, Chandapiwa Marobela‑Raborokgwe1, Gerrit Johannes Viljoen2, Giovanni Cattoli2 and Charles Euloge Lamien2 Abstract Background: Poxviruses within the Capripoxvirus, Orthopoxvirus, and Parapoxvirus genera can infect livestock, with the two former having zoonotic importance. In addition, they induce similar clinical symptoms in common host spe‑ cies, creating a challenge for diagnosis. Although endemic in the country, poxvirus infections of small ruminants and cattle have received little attention in Botswana, with no prior use of molecular tools to diagnose and characterize the pathogens. Methods: A high‑resolution melting (HRM) assay was used to detect and diferentiate poxviruses in skin biopsy and skin scab samples from four cattle, one sheep, and one goat. Molecular characterization of capripoxviruses and para‑ poxviruses was undertaken by sequence analysis of RPO30 and GPCR genes. Results: The HRM assay revealed lumpy skin disease virus (LSDV) in three cattle samples, pseudocowpox virus (PCPV) in one cattle sample, and orf virus (ORFV) in one goat and one sheep sample. The phylogenetic analyses, based on the RPO30 and GPCR multiple sequence alignments showed that the LSDV sequences of Botswana were similar to common LSDV feld isolates encountered in Africa, Asia, and Europe. The Botswana PCPV presented unique features and clustered between camel and cattle PCPV isolates.
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • FUNCTIONAL IMPLICATIONS of the BAF-B1 AXIS DURING the VACCINIA VIRUS LIFE CYCLE Nouhou Ibrahim University of Nebraska-Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Biological Sciences Biological Sciences, School of Spring 2-13-2014 FUNCTIONAL IMPLICATIONS OF THE BAF-B1 AXIS DURING THE VACCINIA VIRUS LIFE CYCLE Nouhou Ibrahim University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscidiss Part of the Other Microbiology Commons, and the Virology Commons Ibrahim, Nouhou, "FUNCTIONAL IMPLICATIONS OF THE BAF-B1 AXIS DURING THE VACCINIA VIRUS LIFE CYCLE" (2014). Dissertations and Theses in Biological Sciences. 61. http://digitalcommons.unl.edu/bioscidiss/61 This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FUNCTIONAL IMPLICATIONS OF THE BAF-B1 AXIS DURING THE VACCINIA VIRUS LIFE CYCLE by Nouhou Ibrahim A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Biological Sciences (Microbiology and Molecular Biology) Under the Supervision of Professor Matthew S. Wiebe Lincoln, Nebraska May, 2014 FUNCTIONAL IMPLICATIONS OF THE BAF-B1 AXIS DURING THE VACCINIA VIRUS LIFE CYCLE Nouhou Ibrahim, MSc., Ph.D. University of Nebraska, 2014 Advisor: Matthew Wiebe Vaccinia virus is the prototypic member of the Poxviridae family, which includes variola virus, the agent of smallpox. Poxviruses encode their own transcriptional machinery and a set of proteins to evade the host defense system, and thus are able to replicate entirely in the cytoplasm of their host.
    [Show full text]
  • Here, There, and Everywhere: the Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses
    viruses Review Here, There, and Everywhere: The Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses Natalia Ingrid Oliveira Silva, Jaqueline Silva de Oliveira, Erna Geessien Kroon , Giliane de Souza Trindade and Betânia Paiva Drumond * Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais: Belo Horizonte, Minas Gerais 31270-901, Brazil; [email protected] (N.I.O.S.); [email protected] (J.S.d.O.); [email protected] (E.G.K.); [email protected] (G.d.S.T.) * Correspondence: [email protected] Abstract: The global emergence of zoonotic viruses, including poxviruses, poses one of the greatest threats to human and animal health. Forty years after the eradication of smallpox, emerging zoonotic orthopoxviruses, such as monkeypox, cowpox, and vaccinia viruses continue to infect humans as well as wild and domestic animals. Currently, the geographical distribution of poxviruses in a broad range of hosts worldwide raises concerns regarding the possibility of outbreaks or viral dissemination to new geographical regions. Here, we review the global host ranges and current epidemiological understanding of zoonotic orthopoxviruses while focusing on orthopoxviruses with epidemic potential, including monkeypox, cowpox, and vaccinia viruses. Keywords: Orthopoxvirus; Poxviridae; zoonosis; Monkeypox virus; Cowpox virus; Vaccinia virus; host range; wild and domestic animals; emergent viruses; outbreak Citation: Silva, N.I.O.; de Oliveira, J.S.; Kroon, E.G.; Trindade, G.d.S.; Drumond, B.P. Here, There, and Everywhere: The Wide Host Range 1. Poxvirus and Emerging Diseases and Geographic Distribution of Zoonotic diseases, defined as diseases or infections that are naturally transmissible Zoonotic Orthopoxviruses. Viruses from vertebrate animals to humans, represent a significant threat to global health [1].
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Swinepox Virus
    SWINEPOX VIRUS Prepared for the Swine Health Information Center By the Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University August 2015 SUMMARY Etiology • Swinepox virus (SwPV) is an enveloped DNA virus in the family Poxviridae; it is the only member of the genus Suipoxvirus and there is little genetic variability among strains. Cleaning and Disinfection • SwPV can persist in the environment, even in dry conditions. • SwPV is susceptible to most common forms of disinfectants including acid treatment, alcohols, aldehydes, alkalis, biguanides, halogens, oxidizing agents, phenolic compounds, and quaternary ammonium compounds. Epidemiology • Swine are the only natural hosts for SwPV. Humans are not affected; however, SwPV in pigs cannot be easily distinguished from vaccinia virus (VV), which is zoonotic. • SwPV is found worldwide. • Morbidity can be very high in pigs up to four months of age. Mortality is generally low (<5%), although congenital infections are frequently fatal. Transmission • SwPV is mechanically transmitted by the hog louse, Hematopinus suis, and possibly by biting flies (Stomoxys calcitrans) and black flies (Simuliidae). Pig-to-pig transmission can also occur. Infection in Swine/Pathogenesis • Classic pox disease is characterized by formation of macules, followed by progression to papules, vesicles, pustules, and crusts. Secondary bacterial infections can also occur. • Disease primarily occurs in pigs up to four months of age, while infection in adults is typically self-limiting. Diagnosis • SwPV may be cultivated in a range of host cells in vitro. Immunofluorescence and immunohistochemistry are used to detect SwPV antigens in infected epithelium. • A polymerase chain reaction (PCR) assay has been developed for rapid detection and differentiation from the clinically similar and zoonotic vaccinia virus (VV).
    [Show full text]
  • Virus Kit Description List
    VIRUS –Complete list and description CONTENTS – italics names are the common names you might be more familiar with. ADENOVIRUS 46. Cytomegalovirus 98. Parapoxvirus 1. Atadenovirus 47. Muromegalovirus 99. Suipoxvirus 2. Aviadenovirus 48. Proboscivirus 100. Yatapoxvirus 3. Ichtadenovirus 49. Roseolovirus 101. Alphaentomopoxvirus 4. Mastadenovirus 50. Lymphocryptovirus 102. Betaentomopoxvirus 5. Siadenovirus 51. Rhadinovirus 103. Gammaentomopoxvirus ANELLOVIRUS 52. Misc. herpes REOVIRUS 6. Alphatorquevirus IFLAVIRUS 104. Cardoreovirus 7. Betatorquevirus 53. Iflavirus 105. Mimoreovirus 8. Gammatorquevirus ORTHOMYXOVIRUS 106. Orbivirus 9. Deltatorquevirus 54. Influenzavirus A 107. Phytoreovirus 10. Epsilontorquevirus 55. Influenzavirus B 108. Rotavirus 11. Etatorquevirus 56. Influenzavirus C 109. Seadornavirus 12. Iotatorquevirus 57. Isavirus 110. Aquareovirus 13. Thetatorquevirus 58. Thogotovirus 111. Coltivirus 14. Zetatorquevirus PAPILLOMAVIRUS 112. Cypovirus ARTERIVIRUS 59. Papillomavirus 113. Dinovernavirus 15. Equine arteritis virus PARAMYXOVIRUS 114. Fijivirus ARENAVIRUS 60. Avulavirus 115. Idnoreovirus 16. Arena virus 61. Henipavirus 116. Mycoreovirus ASFIVIRUS 62. Morbillivirus 117. Orthoreovirus 17. African swine fever virus 63. Respirovirus 118. Oryzavirus ASTROVIRUS 64. Rubellavirus RETROVIRUS 18. Mamastrovirus 65. TPMV~virus 119. Alpharetrovirus 19. Avastrovirus 66. Pneumovirus 120. Betaretrovirus BORNAVIRUS 67. Metapneumovirus 121. Deltaretrovirus 20. Borna virus 68. Para. Unassigned 122. Epsilonretrovirus BUNYAVIRUS PARVOVIRUS
    [Show full text]
  • 1 a Single Vertebrate DNA Virus Protein Disarms Invertebrate
    A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection Don B. Gammon1, Sophie Duraffour2, Daniel K. Rozelle3, Heidi Hehnly4, Rita Sharma1,9, Michael E. Sparks5, Cara C. West6, Ying Chen1, James J. Moresco7, Graciela Andrei2, John H. Connor3, Darryl Conte Jr1., Dawn E. Gundersen-Rindal5, William L. Marshall6,8#, John R. Yates III7, Neal Silverman6 and Craig C. Mello1,9,*. 1University of Massachusetts Medical School, RNA Therapeutics Institute, Worcester, MA, USA. 2Rega Institute for Medical Research, Leuven, Belgium. 3Boston University, Department of Microbiology, Boston, MA, USA. 4University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, MA, USA. 5United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA. 6University of Massachusetts Medical School, Department of Medicine, Worcester, MA, USA. 7The Scripps Research Institute, Department of Chemical Physiology, La Jolla, CA, USA. 8Merck Research Laboratories, Boston, MA, USA. #Current Address. 9Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA. *Corresponding author: Please address all correspondence to Dr. Craig Mello at the University of Massachusetts Medical School. Email: [email protected]. Telephone: 508-856-1602. 1 1 Abstract 2 Virus-host interactions drive a remarkable diversity of immune responses and 3 countermeasures. We found that two RNA viruses with broad host ranges, vesicular 4 stomatitis virus (VSV) and Sindbis virus (SINV), are completely restricted in their 5 replication after entry into Lepidopteran cells. This restriction is overcome when cells 6 are co-infected with vaccinia virus (VACV), a vertebrate DNA virus. Using RNAi 7 screening, we show that Lepidopteran RNAi, Nuclear Factor-κB, and ubiquitin- 8 proteasome pathways restrict RNA virus infection.
    [Show full text]
  • A Single Vertebrate DNA Virus Protein Disarms Invertebrate Immunity To
    RESEARCH ARTICLE elifesciences.org A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection Don B Gammon1, Sophie Duraffour2, Daniel K Rozelle3, Heidi Hehnly4, Rita Sharma1,5, Michael E Sparks6†, Cara C West7, Ying Chen1, James J Moresco8, Graciela Andrei2, John H Connor3, Darryl Conte Jr.1, Dawn E Gundersen-Rindal6, William L Marshall7‡, John R Yates8, Neal Silverman7, Craig C Mello1,5* 1RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States; 2Rega Institute for Medical Research, KU Leuven, Leuven, Belgium; 3Department of Microbiology, Boston University, Boston, United States; 4Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States; 5Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States; 6Agricultural Research Service, United States Department of Agriculture, Beltsville, United States; 7Department of Medicine, University of Massachusetts Medical School, Worcester, United States; 8Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States *For correspondence: craig. [email protected] Abstract Virus-host interactions drive a remarkable diversity of immune responses and Present address: †Multidrug- countermeasures. We found that two RNA viruses with broad host ranges, vesicular stomatitis resistant Organism Repository virus (VSV) and Sindbis virus (SINV), are completely restricted in their replication after entry into and Surveillance Network, Walter Lepidopteran cells. This restriction is overcome when cells are co-infected with vaccinia virus Reed Army Institute of Research, (VACV), a vertebrate DNA virus. Using RNAi screening, we show that Lepidopteran RNAi, Nuclear Silver Spring, United States; Factor-κB, and ubiquitin-proteasome pathways restrict RNA virus infection. Surprisingly, a highly ‡Merck Research Laboratories, conserved, uncharacterized VACV protein, A51R, can partially overcome this virus restriction.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0042898A1 Berenson Et Al
    US 20170042898A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0042898A1 Berenson et al. (43) Pub. Date: Feb. 16, 2017 (54) METHODS AND COMPOSITIONS FOR Publication Classification TREATINGVIRAL OR VIRALLY-INDUCED (51) Int. Cl. CONDITIONS A63L/506 (2006.01) A6IR 9/00 (2006.01) (71) Applicants: HEMAQUEST A638/12 (2006.01) PHARMACEUTICALS, INC., San A6II 3/19 (2006.01) Diego, CA (US); TRUSTEES OF A6II 3/18 (2006.01) BOSTON UNIVERSITY, Boston, MA A6II 3/167 (2006.01) (US) A63L/4045 (2006.01) (72) Inventors: Ronald J. Berenson, Mercer Island, A6II 3/165. (2006.01) WA (US); Douglas V. Faller, Weston, A638/15 (2006.01) A6II 3/4402 (2006.01) MA (US) A6II 3/522 (2006.01) (73) Assignees: HEMAQUEST A6II 3/473 (2006.01) PHARMACEUTICALS, INC., San (52) U.S. Cl. Diego, CA (US); TRUSTEES OF CPC ........... A61 K3I/506 (2013.01); A61 K3I/522 BOSTON UNIVERSITY, Boston, MA (2013.01); A61K 9/0053 (2013.01); A61 K (US) 38/12 (2013.01); A61K 31/19 (2013.01); A61 K 3 1/473 (2013.01); A61K 31/167 (2013.01); (21) Appl. No.: 15/335,776 A61K 31/4045 (2013.01); A61K 3 1/165 (2013.01); A61K 38/15 (2013.01); A61 K (22) Filed: Oct. 27, 2016 3I/4402 (2013.01); A61K 31/18 (2013.01) Related U.S. Application Data (63) Continuation of application No. 14/728,592, filed on (57) ABSTRACT Jun. 2, 2015, now abandoned, which is a continuation of application No. 13/912,637, filed on Jun. 7, 2013, Provided are methods and compositions for the prevention now abandoned, which is a continuation of applica and/or treatment of viral conditions, virally-induced condi tion No.
    [Show full text]
  • Supporting Information
    Supporting Information Wu et al. 10.1073/pnas.0905115106 20 15 10 5 0 10 15 20 25 30 35 40 Fig. S1. HGT cutoff and tree topology. Robinson-Foulds (RF) distance [Robinson DF, Foulds LR (1981) Math Biosci 53:131–147] between viral proteome trees with different horizontal gene transfer (HGT) cutoffs h at feature length 8. Tree distances are between h and h-1. The tree topology remains stable for h in the range 13–31. We use h ϭ 20 in this work. Wu et al. www.pnas.org/cgi/content/short/0905115106 1of6 20 18 16 14 12 10 8 6 0.0/0.5 0.5/0.7 0.7/0.9 0.9/1.1 1.1/1.3 1.3/1.5 Fig. S2. Low complexity features and tree topology. Robinson-Foulds (RF) distance between viral proteome trees with different low-complexity cutoffs K2 for feature length 8 and HGT cutoff 20. The tree topology changes least for K2 ϭ 0.9, 1.1 and 1.3. We choose K2 ϭ 1.1 for this study. Wu et al. www.pnas.org/cgi/content/short/0905115106 2of6 Table S1. Distribution of the 164 inter-viral-family HGT instances bro hr RR2 RR1 IL-10 Ubi TS Photol. Total Baculo 45 1 10 9 11 1 77 Asco 11 7 1 19 Nudi 1 1 1 3 SGHV 1 1 2 Nima 1 1 2 Herpes 48 12 Pox 18 8 2 3 1 3 35 Irido 1 1 2 4 Phyco 2 3 2 1 8 Allo 1 1 2 Total 56 8 35 24 6 17 14 4 164 The HGT cutoff is 20 8-mers.
    [Show full text]