Virus Kit Description List
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RS 97 GE 33 KOR Eng.Pdf
(WP)CDS/ICP/OCD/OII-E English only Report series number: RS/97/GE/33(KOR) REPORT WORKING GROUP ON THE PREVENTION AND CONTROL OF HANT AVIRUS INFECTIONS Convened by: WORLD HEALTH ORGANIZATION REGIONAL OFFICE FOR THE WESTERN PACIFIC Seoul, Republic of Korea 5-6 November 1997 Not for sale Printed and distributed by: World Health Organization Regional Office for the Western Pacific Manila, Philippines June 1998 " 1 ..i A{Ij 1999 NOTE The issue of this document does not constitute fonnal publication. It should not be reviewed, abstracted or quoted without the agreement of the World Health Organization. The authors alone are responsible for the views expressed. This report has been prepared by the World Health Regional Office for the Western Pacific for goveruments of Member States in the Region and for those who participated in the meeting of the Working Group on the Prevention and Control of Hantavirus Infections, which was held in Seoul, Republic of Korea from 5 to 6 November 1997. CONTENTS SUMMARY I. INTRODUCTION ................................................................................................................. 1 2. PROCEEDINGS .................................................................................................................... I 2.1 Update on the epidemiological situation of hantavirus infections ................................ I 2.2 Update of laboratory diagnosis ..................................................................................... 5 2.3 Update of vaccines ................................................ -
For the Riparian Brush Rabbit (Sylvilagus Bachmani Riparius)
CONTROLLED PROPAGATION AND REINTRODUCTION PLAN FOR THE RIPARIAN BRUSH RABBIT (SYLVILAGUS BACHMANI RIPARIUS) Ó B. Moose Peterson, Wildlife Research Photography by DANIEL F. WILLIAMS, PATRICK A. KELLY, AND LAURISSA P. HAMILTON ENDANGERED SPECIES RECOVERY PROGRAM CALIFORNIA STATE UNIVERSITY, STANISLAUS TURLOCK, CA 95382 6 JULY 2002 EXECUTIVE SUMMARY We present a plan for controlled propagation and reintroduction of riparian brush rab- bits (Sylvilagus bachmani riparius), a necessary set of tasks for its recovery, as called for in the Recovery Plan for Upland Species of the San Joaquin Valley, California1. This controlled propagation and reintroduction plan follows the criteria and recommendations of the U.S. Fish and Wildlife Service’s Policy Regarding Controlled Propagation of Spe- cies Listed under the Endangered Species Act2. It is organized along the lines recom- mended in the draft version of that policy and meets the criteria of the final policy. It should be viewed in an adaptive management context in that as events unfold, unexpected changes and new information will require modifications. Modifications will be appended to this document. Controlled Propagation is necessary for the riparian brush rabbit 1) to provide a source of individuals for reintroduction to restored habitat for establishing new, self- sustaining populations, 2) to augment existing populations if needed, 3) and to ensure the prevention of extinction of the species in the wild. We propose to establish three breed- ing colonies in separate enclosures of 1.2-1.4 acres each. Predator-resistant enclosures will be erected around existing, but unoccupied natural habitat for brush rabbits. Enclo- sures will be located on State land surrounded by irrigated agriculture that provides no habitat for brush rabbits. -
TRBA 462 "Einstufung Von Viren in Risikogruppen"
Quelle: Bundesanstalt für Arbeitsschutz und Arbeitsmedizin - www.baua.de ArbSch 5.2.462 TRBA 462 „Einstufung von Viren in Risikogruppen“ Seite 1 Ausgabe: April 2012 GMBl Nr. 15-20 vom 25.4.2012 7. Änderung vom 10.11.2020, GMBl Nr. 45 Technische Regeln für Einstufung von Viren in TRBA 462 Biologische Arbeitsstoffe Risikogruppen Die Technischen Regeln für Biologische Arbeitsstoffe (TRBA) geben den Stand der Technik, Arbeitsmedizin und Arbeitshygiene sowie sonstige gesicherte wissenschaftliche Erkenntnisse für Tätigkeiten mit biologischen Arbeitsstoffen, einschließlich deren Einstufung, wieder. Sie werden vom Ausschuss für Biologische Arbeitsstoffe ermittelt bzw. angepasst und vom Bundesministerium für Arbeit und Soziales im Gemeinsamen Ministerialblatt (GMBl) bekannt gegeben. Diese TRBA „Einstufung von Viren in Risikogruppen“ konkretisiert im Rahmen des Anwendungsbereichs die Anforderungen der Biostoffverordnung. Bei Einhaltung der Technischen Regeln kann der Arbeitgeber insoweit davon ausgehen, dass die entsprechenden Anforderungen der Verordnung erfüllt sind. Wählt der Arbeitgeber eine andere Lösung, muss er damit mindestens die gleiche Sicherheit und den gleichen Gesundheitsschutz für die Beschäftigten erreichen. Die vorliegende Technische Regel beruht auf der BGI 631 „Sichere Biotechnologie – Einstufung biologischer Arbeitsstoffe: Viren“ des Fachausschusses „Chemie“ der Deutschen Gesetzlichen Unfallversicherung (DGUV). Der Ausschuss für Biologische Arbeitsstoffe hat die Inhalte der BGI 631 „Sichere Biotechnologie – Einstufung biologischer -
Changes to Virus Taxonomy 2004
Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales -
Physicochemical Properties of Double-Stranded RNA Used to Discover a Reo-Like Virus from Blue Crab Callinectes Sapidus
Vol. 93: 17–29, 2010 DISEASES OF AQUATIC ORGANISMS Published December 7 doi: 10.3354/dao02280 Dis Aquat Org OPENPEN ACCESSCCESS Physicochemical properties of double-stranded RNA used to discover a reo-like virus from blue crab Callinectes sapidus Holly A. Bowers1, Gretchen A. Messick2, Ammar Hanif1, Rosemary Jagus1, Lee Carrion3, Oded Zmora4, Eric J. Schott1,* 1Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland 21202, USA 2Center for Coastal Environmental Health & Biomolecular Research at Charleston USDOC/NOAA/NOS/NCCOS, Oxford, Maryland 21654, USA 3Coveside Crabs, Inc., Dundalk, Maryland 21222, USA 4Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland 21202, USA ABSTRACT: Mortality among blue crab Callinectes sapidus in soft shell production facilities is typi- cally 25% or greater. The harvest, handling, and husbandry practices of soft shell crab production have the potential to spread or exacerbate infectious crab diseases. To investigate the possible role of viruses in soft shell crab mortalities, we took advantage of the physicochemical properties of double- stranded RNA (dsRNA) to isolate a putative virus genome. Further characterization confirmed the presence of a reo-like virus that possesses 12 dsRNA genome segments. The virus was present in >50% of dead or dying soft shell crabs, but fewer than 5% of healthy hard crabs. Injection of the virus caused mortality and resulted in the appearance of viral RNA and virus inclusions in hemocytes. The genome of the virus was partially sequenced and the information used to develop a reverse transcrip- tion polymerase chain reaction (RT-PCR) assay that is able to detect the virus genome in as little as 7.5 pg of total RNA. -
Escherichia Coli Saccharomyces Cerevisiae Bacillus Subtilis はB
研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止措 置等を定める省令の規定に基づき認定宿主ベクター系等を定める件 (平成十六年一月二十九日文部科学省告示第七号) 最終改正:令和三年二月十五日文部科学省告示第十三号 (認定宿主ベクター系) 第一条 研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止 措置等を定める省令(以下「省令」という。)第二条第十三号の文部科学大臣が定める認 定宿主ベクター系は、別表第一に掲げるとおりとする。 (実験分類の区分ごとの微生物等) 第二条 省令第三条の表第一号から第四号までの文部科学大臣が定める微生物等は、別表第 二の上欄に掲げる区分について、それぞれ同表の下欄に掲げるとおりとする。 (特定認定宿主ベクター系) 第三条 省令第五条第一号ロの文部科学大臣が定める特定認定宿主ベクター系は、別表第一 の2の項に掲げる認定宿主ベクター系とする。 (自立的な増殖力及び感染力を保持したウイルス及びウイロイド) 第四条 省令別表第一第一号ヘの文部科学大臣が定めるウイルス及びウイロイドは、別表第 三に掲げるとおりとする。 別表第1(第1条関係) 区 分 名 称 宿主及びベクターの組合せ 1 B1 (1) EK1 Escherichia coli K12株、B株、C株及びW株又は これら各株の誘導体を宿主とし、プラスミド又は バクテリオファージの核酸であって、接合等によ り宿主以外の細菌に伝達されないものをベクター とするもの(次項(1)のEK2に該当するものを除 く。) (2) SC1 Saccharomyces cerevisiae又はこれと交雑可能な 分類学上の種に属する酵母を宿主とし、これらの 宿主のプラスミド、ミニクロモソーム又はこれら の誘導体をベクターとするもの(次項(2)のSC2 に該当するものを除く。) (3) BS1 Bacillus subtilis Marburg168株、この誘導体又 はB. licheniformis全株のうち、アミノ酸若しく は核酸塩基に対する複数の栄養要求性突然変異を 有する株又は胞子を形成しない株を宿主とし、こ れらの宿主のプラスミド(接合による伝達性のな いものに限る。)又はバクテリオファージの核酸 をベクターとするもの(次項(3)のBS2に該当す るものを除く。) (4) Thermus属細菌 Thermus属細菌(T. thermophilus、T. aquaticus、 T. flavus、T. caldophilus及びT. ruberに限る。) を宿主とし、これらの宿主のプラスミド又はこの 誘導体をベクターとするもの (5) Rhizobium属細菌 Rhizobium属細菌(R. radiobacter(別名Agroba- cterium tumefaciens)及びR. rhizogenes(別名 Agrobacterium rhizogenes)に限る。)を宿主と し、これらの宿主のプラスミド又はRK2系のプラ スミドをベクターとするもの (6) Pseudomonas putida Pseudomonas putida KT2440株又はこの誘導体を 宿主とし、これら宿主への依存性が高く、宿主以 外の細胞に伝達されないものをベクターとするも の (7) Streptomyces属細菌 Streptomyces属細菌(S. avermitilis、S. coel- icolor [S. violaceoruberとして分類されるS. coelicolor A3(2)株を含む]、S. lividans、S. p- arvulus、S. griseus及びS. -
Mgr. Marie Vilánková
www.novinky.cz www.rozhlas.cz VIRY Mgr. Marie Vilánková © ECC s.r.o. www.stefajir.cz Všechna práva vyhrazena Viry • Jejich zařazení do živé přírody • Virus jako informace • Jejich členění, • způsoby pronikání do lidského organismu, • nejčastější zdravotní problémy s nimi spojené • Možnosti řešení, včetně akutních infekcí, preparáty Joalis • Proč preparát Antivex je velmi důležitý © ECC s.r.o. Všechna práva vyhrazena Země • Životní prostředí – živé organismy - rostliny, živočichové… – tvořeny buňkami • Rostliny – počátek potravního řetězce, umí zachytávat sluneční energii a ukládat do chemických vazeb • Zvířata – zdroj potravy – rostliny nebo jiná zvířata • Houby a plísně – rozklad hmoty na základní prvky • Bakterie – také rozklad, velký význam v oběhu živin, prospěšné svazky s jinými organismy, mohou také škodit - Různé vztahy mezi organismy – boj o potravu, získání životního prostoru, přežití… © ECC s.r.o. Všechna práva vyhrazena Živé organismy • Živé organismy tvořeny buňkami – jednobuněčné (bakterie, prvoci, některé plísně), vícebuněčné • Buňka – tvořena ze specializovaných částí organel - cytoplasma, jádro, mitochondrie, endoplasmatické retikulum … • Buněčná membrána: dvojitá vrstva fosfolipidů s molekulami bílkovin – velmi důležité NENAsycené mastné kyseliny – VÝŽIVA!!! • Každá buňka – samostatný organismus – přijímá potravu, vylučuje, rozmnožuje se, reaguje na okolí, má nějakou fci -stavební produkuje stavební materiál (bílkoviny), transportní bariérová – přenáší částice přes bariéru, pohybová – natahuje a smršťuje se, signalizační © ECC s.r.o. Všechna práva vyhrazena Organismus = společnost buněk Soubor buněk = základní funkční jednotka • Propojeny pojivem – mezibuněčná hmota – produkt buněk vazivo, chrupavky, kosti, tekutiny • Tkáně: soubor buněk stejného typu (nervová, svalová, epitel...) • Orgány: skládají se z tkání, tvoří soustavy orgánů • Tělo: je složeno z buněk – 3,5 x 1013 buněk (lidí na Zemi 109) • Délka těla= 1,7 m, průměrná velikost buňky 10 - 20 mikrometru, měřítko 10-6 - člověk se dívá na svět z družice © ECC s.r.o. -
Marine Surface Microlayer As a Source of Enteric Viruses
MARINE SURFACE MICROLAYER AS A SOURCE OF ENTERIC VIRUSES Ana Catarina Bispo Prata Tese de Doutoramento em Ciências do Mar e do Ambiente 2014 Ana Catarina Bispo Prata MARINE SURFACE MICROLAYER AS A SOURCE OF ENTERIC VIRUSES Tese de Candidatura ao grau de Doutor em Ciências do Mar e do Ambiente Especialidade em Oceanografia e Ecossistemas Marinhos submetida ao Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto. Programa Doutoral da Universidade do Porto (Instituto de Ciências Biomédicas de Abel Salazar e Faculdade de Ciências) e da Universidade de Aveiro. Orientador – Doutor Adelaide Almeida Categoria – Professora Auxiliar Afiliação – Departamento de Biologia da Universidade de Aveiro Co-orientador – Doutor Newton Carlos Marcial Gomes Categoria – Investigador Principal do CESAM Afiliação – Departamento de Biologia da Universidade de Aveiro LEGAL DETAILS In compliance with what is stated in the legislation in vigor, it is hereby declared that the author of this thesis participated in the creation and execution of the experimental work leading to the results here stated, as well as in their interpretation and writing of the respective manuscripts. This thesis includes one scientific paper published in an international journal and three articles in preparation originated from part of the results obtained in the experimental work referenced as: • Prata C, Ribeiro A, Cunha A , Gomes NCM, Almeida A, 2012, Ultracentrifugation as a direct method to concentrate viruses in environmental waters: virus-like particles enumeration as a new approach to determine the efficiency of recovery, Journal of Environmental Monitoring, 14 (1), 64-70. • Prata C, Cunha A, Gomes N, Almeida A, Surface Microlayer as a source of health relevant enteric viruses in Ria de Aveiro. -
The Viruses of Wild Pigeon Droppings
The Viruses of Wild Pigeon Droppings Tung Gia Phan1,2, Nguyen Phung Vo1,3,A´ kos Boros4,Pe´ter Pankovics4,Ga´bor Reuter4, Olive T. W. Li6, Chunling Wang5, Xutao Deng1, Leo L. M. Poon6, Eric Delwart1,2* 1 Blood Systems Research Institute, San Francisco, California, United States of America, 2 Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America, 3 Pharmacology Department, School of Pharmacy, Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh, Vietnam, 4 Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, A´ NTSZ Regional Institute of State Public Health Service, Pe´cs, Hungary, 5 Stanford Genome Technology Center, Stanford, California, United States of America, 6 Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR Abstract Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia) from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads), as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. -
Molecular Characterization of 52K Protein of Bovine Adenovirus Type 3
MOLECULAR CHARACTERIZATION OF 52K PROTEIN OF BOVINE ADENOVIRUS TYPE 3 A Thesis Submitted to the Faculty of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Veterinary Microbiology University of Saskatchewan Saskatoon By Carolyn Patricia Paterson © Copyright Carolyn P. Paterson, August 2010. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from the University of Saskatchewan, I agree that the libraries of this university may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or in their absence, the Head of the Department or the Dean of the college in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts therof for financial gain shall not be allowed without any written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Request for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Veterinary Microbiology University of Saskatchewan Saskatoon, Saskatchewan, S7N 5B4 i ABSTRACT Bovine adenovirus (BAdV)-3 is a non-enveloped, icosahedral virus with a double-stranded DNA genome, and is being developed as a vector for vaccination of animals and humans (Rasmussen et al., 1999; Zakhartchouk et al., 1999). -
And Γ- Cytoplasmic Actin in Vaccinia Virus Infection
Lights, Camera, Actin: Divergent roles of β- and γ- cytoplasmic actin in vaccinia virus infection NOORUL BISHARA MARZOOK A thesis submitted in fulfillment of requirements for the degree of Doctor of Philosophy FACULTY OF SCIENCE SCHOOL OF MOLECULAR BIOSCIENCE UNIVERSITY OF SYDNEY 2017 i TABLE OF CONTENTS Table of Contents ........................................................................................................... ii Acknowledgements ....................................................................................................... v Declaration ................................................................................................................... vii Abstract ....................................................................................................................... viii List of Figures ................................................................................................................ x List of Publications Arising From This Work.............................................................. xi Abbreviations Used ..................................................................................................... xii Chapter 1: Introduction ............................................................................................... 1 1.1 The Cytoskeleton ............................................................................................................ 2 1.1.1 The Eukaryotic Cytoskeleton ..................................................................................... -
Terminal Dna Sequences of Varicella-Zoster and Marek's
TERMINAL DNA SEQUENCES OF VARICELLA-ZOSTER AND MAREK’S DISEASE VIRUS: ROLES IN GENOME REPLICATION, INTEGRATION, AND REACTIVATION A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Benedikt Bertold Kaufer May 2010 © 2010 Benedikt Bertold Kaufer TERMINAL DNA SEQUENCES OF VARICELLA-ZOSTER AND MAREK’S DISEASE VIRUS: ROLES IN GENOME REPLICATION, INTEGRATION, AND REACTIVATION Benedikt Bertold Kaufer, Ph. D. Cornell University 2010 One of the major obstacles in varicella-zoster virus (VZV) research has been the lack of an efficient genetic system. To overcome this problem, we generated a full- length, infectious bacterial artificial chromosome (BAC) system of the P-Oka strain (pP-Oka), which facilitates generation of mutant viruses and allowed light to be shed on the role in VZV replication of the ORF9 gene product, a major tegument protein, and ORFS/L (ORF0), a gene with no known function and no direct orthologue in other alphaherpesviruses. Mutation of the ORF9 start codon in pP-Oka, abrogated pORF9 expression and severely impaired virus replication. Delivery of ORF9 in trans via baculovirus-mediated gene transfer partially restored virus replication of ORF9 deficient viruses, confirming that ORF9 function is essential for VZV replication in vitro. Next we targeted ORFS/L and could prove that the ORFS/L gene product is important for efficient VZV replication in vitro. Furthermore, we identified a 5’ region of ORFS/L that is essential for replication and plays a role in cleavage and packaging of viral DNA. To elucidate the mechanisms of Marek’s disease virus (MDV) integration and tumorigenesis, we investigated two sequence elements of the MDV genome: vTR, a virus encoded telomerase RNA, and telomeric repeats present at the termini of the virus genome.