And Γ- Cytoplasmic Actin in Vaccinia Virus Infection

Total Page:16

File Type:pdf, Size:1020Kb

And Γ- Cytoplasmic Actin in Vaccinia Virus Infection Lights, Camera, Actin: Divergent roles of β- and γ- cytoplasmic actin in vaccinia virus infection NOORUL BISHARA MARZOOK A thesis submitted in fulfillment of requirements for the degree of Doctor of Philosophy FACULTY OF SCIENCE SCHOOL OF MOLECULAR BIOSCIENCE UNIVERSITY OF SYDNEY 2017 i TABLE OF CONTENTS Table of Contents ........................................................................................................... ii Acknowledgements ....................................................................................................... v Declaration ................................................................................................................... vii Abstract ....................................................................................................................... viii List of Figures ................................................................................................................ x List of Publications Arising From This Work.............................................................. xi Abbreviations Used ..................................................................................................... xii Chapter 1: Introduction ............................................................................................... 1 1.1 The Cytoskeleton ............................................................................................................ 2 1.1.1 The Eukaryotic Cytoskeleton ...................................................................................... 3 1.1.1.1 The Actin Cytoskeleton......................................................................................................... 5 1.1.1.2 Actin Dynamics ..................................................................................................................... 5 1.2 Host-Pathogen Interactions At The Cytoskeleton ......................................................... 9 1.2.1 Knocking On Actin’s Door – Cell Entry ...................................................................... 11 1.2.1.1 Virus-cell surfing ................................................................................................................. 11 1.2.1.2 Clathrin-mediated entry ...................................................................................................... 11 1.2.1.3 Macropinocytosis ................................................................................................................ 13 1.2.2 Viral Revolution – Seizing the Means of Cellular Transportation ............................... 15 1.2.2.1 Intracellular transport .......................................................................................................... 15 1.2.2.2 Intracellular replication........................................................................................................ 16 1.2.2.3 Post-replicative transport and assembly ............................................................................ 17 1.2.3 Pathogen Exit ........................................................................................................... 18 1.2.4 Pathogens Are Doing It For Themselves – Hijacking Actin-Based Motility ................ 19 1.3 Poxviruses ..................................................................................................................... 24 1.3.1 Vaccinia Virus and its Life Cycle ............................................................................... 27 1.3.1.1 Vaccinia virus and the actin cytoskeleton........................................................................... 30 1.4 Project Aims .................................................................................................................. 37 Chapter 2: Materials and Methods ........................................................................... 38 2.1 Building blocks .............................................................................................................. 39 2.1.1 Reagents .................................................................................................................. 39 2.1.2 Cell lines ................................................................................................................... 40 2.1.3 Viruses ..................................................................................................................... 41 2.1.4 Buffers and solutions ................................................................................................ 42 2.1.5 Primary antibodies used for immunoblots ................................................................. 43 2.1.6 Secondary antibodies used for immunoblots ............................................................ 43 2.1.7 Reagents for immunofluorescent staining ................................................................. 44 2.1.8 Primers ..................................................................................................................... 45 2.1.9 Vector constructs made and/or used ........................................................................ 46 2.2 Fantastic viruses and how we use them ...................................................................... 48 2.2.1 Viral infection ............................................................................................................ 48 2.2.2 Transfection .............................................................................................................. 48 2.2.3 Plaque assays .......................................................................................................... 48 2.2.3.1 Plaque picking for virus purification ........................................................................ 48 2.2.3.2 Plaque visualisation ............................................................................................... 48 2.2.3.3 Plaque size measurement ..................................................................................... 49 2.2.4 EEV release assays ................................................................................................. 49 2.2.5 Virus DNA extraction ................................................................................................ 49 2.3 Under the Microscope ................................................................................................... 51 2.3.1 Immunofluorescence assays .................................................................................... 51 2.3.2 Image acquisition ...................................................................................................... 51 2.3.2.1 Wide-field microscopy ............................................................................................ 51 2.3.2.2 Confocal microscopy ............................................................................................. 51 ii 2.3.2.3 Live-cell wide-field microscopy .............................................................................. 52 2.3.3 Image analysis ......................................................................................................... 52 2.3.3.1 Actin tail measurements ........................................................................................ 52 2.3.3.2 Virus particles at the cell surface ........................................................................... 52 2.3.3.3 Measuring virus speed ........................................................................................... 52 2.4 DNA ................................................................................................................................ 53 2.4.1 Polymerase chain reaction (PCR) and cloning .......................................................... 53 2.4.2 Plasmid vector construction ...................................................................................... 53 2.5 Proteins .......................................................................................................................... 55 2.5.1 Bacterial expression of proteins ................................................................................ 55 2.5.2 Protein purification using GST-pull-down assays ...................................................... 55 2.5.3 SDS-PAGE gel electrophoresis ................................................................................ 55 2.5.4 Immunoblot assays for proteins of interest ................................................................ 56 2.6 The Silent Treatment ..................................................................................................... 57 2.6.1 siRNA ....................................................................................................................... 57 2.6.2 siRNA protocol ......................................................................................................... 57 Chapter 3: Developing an optimised VACV gene-tagging method ....................... 58 3.1 Introduction ................................................................................................................... 59 3.1.1 Fluorescent Markers: The Highlights ........................................................................ 61 3.1.2 Fluorescent Labelling Goes Viral: Applications for Virology ...................................... 65 3.1.3 Creating Recombinant VACV ................................................................................... 66 3.1.4 Dominant Selection and Fluorescent Markers – With Their Powers Combined ......... 68 3.1.5 VACV Genes Of Interest ..........................................................................................
Recommended publications
  • Adams Hawii 0085O 10232.Pdf
    ANALYSIS AND DEVELOPMENT OF MANAGEMENT TOOLS FOR ORYCTES RHINOCEROS (COLEOPTERA: SCARABAEIDAE) A THESIS SUBMITTED TO THE GRAUDATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL PLANT PATHOLOGY MAY 2019 By Brandi-Leigh H. Adams Thesis Committee: Michael Melzer, Chairperson Zhiqiang Cheng Brent Sipes ACKNOWLEDGEMENTS It is with deep gratitude that I thank the members of my committee, Dr. Michael Melzer, Dr. Zhiqiang Cheng, and Dr. Brent Sipes for their expert advice and knowledge, to which I have constantly deferred to during my time as a graduate student. A very special thank you goes to Dr. Michael Melzer, who took me in as an undergraduate lab assistant, and saw enough potential in me that he felt I deserved the opportunity to learn, travel, and grow under his guidance. I would also like to give special thanks to Dr. Shizu Watanabe, who always made time to answer even the smallest, most O.C.D. of my questions, who gave me words of encouragement when experiments did not go as planned or when I would find myself in doubt, and who has become a mentor and friend along the way. To my very first mentors in science; Dr. Wendy Kuntz, Dr. Matthew Tuthill, and Keolani Noa; thank you for encouraging me to pursue a major and career in STEM in the first place. I would also like to thank my lab mates, Nelson Masang Jr., Alexandra Kong, Alejandro Olmedo Velarde, Tomie Vowell, Asoka De Silva, Megan Manley, Jarin Loristo, and Cheyenne Barela for their support with experiments, and the knowledge and skills they have passed on to me.
    [Show full text]
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M
    Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    THE ROLE OF CELL SIGNALING IN POXVIRUS TROPISM: THE CASE OF THE M-T5 HOST-RANGE PROTEIN OF MYXOMA VIRUS By STEVEN JAMES WERDEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 © 2009 Steven James Werden 2 To my family 3 ACKNOWLEDGMENTS I would like to thank Dr. Grant McFadden for continuous support, encouragement and advice during the course of my PhD. I am truly grateful for all the time and energy he has spent training me to become a better scientist and critical thinker. Without his guidance and persistent help this dissertation would not have been possible. In addition, I am appreciative to my committee members, Drs. Richard Condit, Greg Schultz and Dave Bloom for their encouraging words, fruitful discussion and most importantly, their commitment to helping me succeed. During the past five years, I have had the opportunity and privilege to work with many talented individuals. I would like to acknowledge all members of the McFadden laboratory, both past and present, for creating a work environment that fostered creativity. Special thanks go to Drs.Gen Wang, Steve Nazarian, Marianne Stanford and Fuan Wang for providing technical training. Dr. John Barrett deserves a special mention for his continued mentorship and support. I must not forget to thank those who attended the weekly “Poxaholics” meetings, for providing constructive criticism and a wonderful atmosphere to present data. Thanks go out to Doug Smith for assistance with the confocal microscope and to all who contributed reagents that were used in this dissertation.
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • Whole-Proteome Phylogeny of Large Dsdna Viruses and Parvoviruses
    Yu et al. BMC Evolutionary Biology 2010, 10:192 http://www.biomedcentral.com/1471-2148/10/192 RESEARCH ARTICLE Open Access Whole-proteomeResearch article phylogeny of large dsDNA viruses and parvoviruses through a composition vector method related to dynamical language model Zu-Guo Yu1,2, Ka Hou Chu*3, Chi Pang Li3, Vo Anh1, Li-Qian Zhou2 and Roger Wei Wang4 Abstract Background: The vast sequence divergence among different virus groups has presented a great challenge to alignment-based analysis of virus phylogeny. Due to the problems caused by the uncertainty in alignment, existing tools for phylogenetic analysis based on multiple alignment could not be directly applied to the whole-genome comparison and phylogenomic studies of viruses. There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among the alignment-free methods, a dynamical language (DL) method proposed by our group has successfully been applied to the phylogenetic analysis of bacteria and chloroplast genomes. Results: In this paper, the DL method is used to analyze the whole-proteome phylogeny of 124 large dsDNA viruses and 30 parvoviruses, two data sets with large difference in genome size. The trees from our analyses are in good agreement to the latest classification of large dsDNA viruses and parvoviruses by the International Committee on Taxonomy of Viruses (ICTV). Conclusions: The present method provides a new way for recovering the phylogeny of large dsDNA viruses and parvoviruses, and also some insights on the affiliation of a number of unclassified viruses. In comparison, some alignment-free methods such as the CV Tree method can be used for recovering the phylogeny of large dsDNA viruses, but they are not suitable for resolving the phylogeny of parvoviruses with a much smaller genome size.
    [Show full text]
  • A Systematic Review of the Natural Virome of Anopheles Mosquitoes
    Review A Systematic Review of the Natural Virome of Anopheles Mosquitoes Ferdinand Nanfack Minkeu 1,2,3 and Kenneth D. Vernick 1,2,* 1 Institut Pasteur, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, 28 rue du Docteur Roux, 75015 Paris, France; [email protected] 2 CNRS, Unit of Evolutionary Genomics, Modeling and Health (UMR2000), 28 rue du Docteur Roux, 75015 Paris, France 3 Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, 75252 Paris, France * Correspondence: [email protected]; Tel.: +33-1-4061-3642 Received: 7 April 2018; Accepted: 21 April 2018; Published: 25 April 2018 Abstract: Anopheles mosquitoes are vectors of human malaria, but they also harbor viruses, collectively termed the virome. The Anopheles virome is relatively poorly studied, and the number and function of viruses are unknown. Only the o’nyong-nyong arbovirus (ONNV) is known to be consistently transmitted to vertebrates by Anopheles mosquitoes. A systematic literature review searched four databases: PubMed, Web of Science, Scopus, and Lissa. In addition, online and print resources were searched manually. The searches yielded 259 records. After screening for eligibility criteria, we found at least 51 viruses reported in Anopheles, including viruses with potential to cause febrile disease if transmitted to humans or other vertebrates. Studies to date have not provided evidence that Anopheles consistently transmit and maintain arboviruses other than ONNV. However, anthropophilic Anopheles vectors of malaria are constantly exposed to arboviruses in human bloodmeals. It is possible that in malaria-endemic zones, febrile symptoms may be commonly misdiagnosed.
    [Show full text]
  • The Discovery, Distribution and Diversity of DNA Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342956; this version posted March 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: The discovery, distribution and diversity of DNA viruses associated with Drosophila melanogaster in Europe Running title: DNA viruses of European Drosophila Key Words: DNA virus, Endogenous viral element, Drosophila, Nudivirus, Galbut virus, Filamentous virus, Adintovirus, Densovirus, Bidnavirus Authors: Megan A. Wallace 1,2 [email protected] 0000-0001-5367-420X Kelsey A. Coffman 3 [email protected] 0000-0002-7609-6286 Clément Gilbert 1,4 [email protected] 0000-0002-2131-7467 Sanjana Ravindran 2 [email protected] 0000-0003-0996-0262 Gregory F. Albery 5 [email protected] 0000-0001-6260-2662 Jessica Abbott 1,6 [email protected] 0000-0002-8743-2089 Eliza Argyridou 1,7 [email protected] 0000-0002-6890-4642 Paola Bellosta 1,8,9 [email protected] 0000-0003-1913-5661 Andrea J. Betancourt 1,10 [email protected] 0000-0001-9351-1413 Hervé Colinet 1,11 [email protected] 0000-0002-8806-3107 Katarina Eric 1,12 [email protected] 0000-0002-3456-2576 Amanda Glaser-Schmitt 1,7 [email protected] 0000-0002-1322-1000 Sonja Grath 1,7 [email protected] 0000-0003-3621-736X Mihailo Jelic 1,13 [email protected] 0000-0002-1637-0933 Maaria Kankare 1,14 [email protected] 0000-0003-1541-9050 Iryna Kozeretska 1,15 [email protected] 0000-0002-6485-1408 Volker Loeschcke 1,16 [email protected] 0000-0003-1450-0754 Catherine Montchamp-Moreau 1,4 [email protected] 0000-0002-5044-9709 Lino Ometto 1,17 [email protected] 0000-0002-2679-625X Banu Sebnem Onder 1,18 [email protected] 0000-0002-3003-248X Dorcas J.
    [Show full text]
  • The Discovery, Distribution and Diversity of DNA Viruses Associated with Drosophila Melanogaster in Europe Authors: Megan A
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342956; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. DNA viruses of European Drosophila The discovery, distribution and diversity of DNA viruses associated with Drosophila melanogaster in Europe Authors: Megan A. Wallace 1,2 [email protected] 0000-0001-5367-420X Kelsey A. Coffman 3 [email protected] 0000-0002-7609-6286 Clément Gilbert 1,4 [email protected] 0000-0002-2131-7467 Sanjana Ravindran 2 [email protected] 0000-0003-0996-0262 Gregory F. Albery 5 [email protected] 0000-0001-6260-2662 Jessica Abbott 1,6 [email protected] 0000-0002-8743-2089 Eliza Argyridou 1,7 [email protected] 0000-0002-6890-4642 Paola Bellosta 1,8,9 [email protected] 0000-0003-1913-5661 Andrea J. Betancourt 1,10 [email protected] 0000-0001-9351-1413 Hervé Colinet 1,11 [email protected] 0000-0002-8806-3107 Katarina Eric 1,12 [email protected] 0000-0002-3456-2576 Amanda Glaser-Schmitt 1,7 [email protected] 0000-0002-1322-1000 Sonja Grath 1,7 [email protected] 0000-0003-3621-736X Mihailo Jelic 1,13 [email protected] 0000-0002-1637-0933 Maaria Kankare 1,14 [email protected] 0000-0003-1541-9050 Iryna Kozeretska 1,15 [email protected] 0000-0002-6485-1408 Volker Loeschcke 1,16 [email protected] 0000-0003-1450-0754 Catherine Montchamp-Moreau 1,4 [email protected] 0000-0002-5044-9709 Lino Ometto 1,17 [email protected] 0000-0002-2679-625X Banu Sebnem Onder 1,18 [email protected] 0000-0002-3003-248X Dorcas J.
    [Show full text]
  • Supplementary Material
    Supplementary Material Table S1. Viral membrane transport proteins with homologs in living organisms. The shown proteins have been functionally characterized. Alga species are indicated by *. Protein NCBI Accession # Length in Virus Virus family Genome size Host Reference aa, in base pairs, (Phylum) (Predicted (accession #) TMs) NC64A chlorovirus NP_048599.1 94 Paramecium bursaria Phycodnaviridae 330.661 Chlorella variabilis Plugge et al., potassium channel Kcv (2) chlorella virus-1 (PBCV-1) (Genus (JF411744.1) NC64A* 1999 chlorellavirus) (formerly: Chlorella NC64A) (Green algae) Pbi chlorovirus ABA40764.1 95 Chlorella Pbi virus MT325 Phycodnaviridae 314.335 Micractinium Gazzarrini et potassium channel Kcv (2) (Genus (DQ491001.1) conductrix* al., 2006 chlorellavirus) (formerly: Chlorella Pbi) (Green algae) SAG chlorovirus YP_001427066.1 82 Acanthocystis turfacea Phycodnaviridae 288.047 Chlorella heliozoae* Gazzarrini et potassium channel Kcv (2) chlorella virus-1 (ATCV-1) (Genus (NC_008724.1) (fomerly: Chlorella al., 2009 chlorellavirus) SAG3.83) (Green algae) Prasinovirus YP_004061440.1 83 Bathycoccus sp. RCC1105 Phycodnaviridae 198.519 Bathycoccus sp. Siotto et al., potassium channel (2) virus (BpV1) (Genus (NC_014765.1) RCC1105* 2014 KBpV Prasinovirus) (Green algae) Prasinovirus YP_004062056.1 79 Micromonas sp. RCC1109 Phycodnaviridae 184.095 Micromonas sp. Siotto et al., potassium channel (2) virus (MpV1) (Genus (NC_014767.1) RC1109* 2014 KMpV Prasinovirus) (green algae) Prasinovirus AFC34969.1 104 Ostreococcus tauri virus RT- Phycodnaviridae
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Topological Analysis and Functional Characterization of Vaccinia Virus Morphogenesis Proteins
    ABSTRACT Title of Dissertation: TOPOLOGICAL ANALYSIS AND FUNCTIONAL CHARACTERIZATION OF VACCINIA VIRUS MORPHOGENESIS PROTEINS Seong-In Hyun, Doctor of Philosophy, 2017 Dissertation directed by: Dr. Bernard Moss, Adjunct Professor, National Institutes of Health and Dr. Jeffrey DeStefano, Professor, Department of Cell Biology and Molecular Genetics Poxviruses are large, enveloped, double-stranded DNA viruses that replicate in the cytoplasm of host cells and are responsible for diseases of humans and other animals. Vaccinia virus (VACV), the most extensively studied member in the family, encodes approximately 200 proteins, of which 100 are conserved in all members of the vertebrate subfamily of poxviruses and have roles in gene expression, DNA replication, morphogenesis and cell entry. Previous studies have shown that several vaccinia virus proteins localize to the endoplasmic reticulum (ER), suggesting that it serves as the source of viral membranes. Determining the topology of these viral proteins can provide information about protein function and viral membrane formation. My first project involved using an asymmetric self-associating split-GFP system to determine the topology of the transmembrane viral proteins L2 and A30.5 that localize in the endoplasmic reticulum. This split-GFP system uses large (215 aa) and small (16 aa) fragments of GFP that fluoresce only upon complementation. Our results showed that a short GFP fragment can be used to tag small transmembrane viral proteins to determine their localization and topology in vivo. The second project focuses on a protein called I2, which I showed is required for later stage virion morphogenesis. I deleted the I2 gene from the VACV genome by homologous recombination.
    [Show full text]