The P1N-PISPO Trans-Frame Gene of Sweet Potato Feathery Mottle
crossmark The P1N-PISPO trans-Frame Gene of Sweet Potato Feathery Mottle Potyvirus Is Produced during Virus Infection and Functions as an RNA Silencing Suppressor Downloaded from Ares Mingot,a Adrián Valli,b Bernardo Rodamilans,c David San León,c David C. Baulcombe,b Juan Antonio García,c Juan José López-Moyaa Center for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spaina; Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdomb; Centro Nacional de Biotecnología CNB, CSIC, Madrid, Spainc ABSTRACT The positive-sense RNA genome of Sweet potato feathery mottle virus (SPFMV) (genus Potyvirus, family Potyviridae) contains a /large open reading frame (ORF) of 3,494 codons translatable as a polyprotein and two embedded shorter ORFs in the ؊1 frame: http://jvi.asm.org PISPO, of 230 codons, and PIPO, of 66 codons, located in the P1 and P3 regions, respectively. PISPO is specific to some sweet potato-infecting potyviruses, while PIPO is present in all potyvirids. In SPFMV these two extra ORFs are preceded by conserved G2A6 motifs. We have shown recently that a polymerase slippage mechanism at these sites could produce transcripts bringing these ORFs in frame with the upstream polyprotein, thus leading to P1N-PISPO and P3N-PIPO products (B. Rodamilans, A. Valli, A. Mingot, D. San Leon, D. B. Baulcombe, J. J. Lopez-Moya, and J.A. Garcia, J Virol 89:6965–6967, 2015, doi:10.1128/JVI.00 337-15). Here, we demonstrate by liquid chromatography coupled to mass spectrometry that both P1 and P1N-PISPO are produced during viral infection and coexist in SPFMV-infected Ipomoea batatas plants.
[Show full text]