First Molecular Characterization of Poxviruses in Cattle, Sheep, And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide for Common Viral Diseases of Animals in Louisiana
Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. -
Poxvirus in a Swine Farm in Italy: a Sporadic Outbreak? O
Mariano_imp:ok 20-06-2016 11:23 Pagina 219 V. Mariano et al. Large Animal Review 2015; 21: 219-220 219 Poxvirus in a swine farm in Italy: a sporadic outbreak? O V. MARIANOa, A. NARDIa, E. VERGARIa, F. CARLETTIb, L. BARBIERIc, G. CARDETId a Laboratory of Veterinary Diagnostic Disease of Grosseto, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Europa 30, Grosseto, Italy b Virology Laboratory, National Institute for Infectious Diseases, IRCCS “L. Spallanzani”, Via Portuense 292, 00149 Rome, Italy c Veterinarian freelancer, Grosseto, Italy d Laboratory of Electron Microscopy and Specialistic Virology, Biotechnology Dept., Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, Rome, Italy SUMMARY The aim of this report is to describe the occurrence of a Swinepox virus (SWPV) outbreak in Central Italy in 2013 and the pos- sibility of its reappearance. SWPV is the only member belonging to the Suipoxvirus genus in the Poxviridae family and it re- presents the etiologic agent of a worldwide disease specific for swine with an affinity for epidermis. In Italy it has been rarely observed. In November 2013 an outbreak was registered in a biological farm of about 110 animals located in Tuscany. Skin le- sions were observed in a group of 3 months old piglets born in the farms from crossbreed animals. The disease affected 50 of the youngest animals. Diagnosis was based on clinical and pathological signs which were pustular lesions at first located mainly around the neck and the ears and in a later stage disseminated all around the body, especially concentrated in the groin and the abdomen. -
Scientific Opinion on Lumpy Skin Disease 2
EFSA Journal 2015;13(1):3986 SCIENTIFIC OPINION 1 1 Scientific Opinion on lumpy skin disease 2 EFSA Panel on Animal Health and Welfare (AHAW)2,3 3 European Food Safety Authority (EFSA), Parma, Italy 4 ABSTRACT 5 Lumpy skin disease (LSD) is a viral disease of cattle characterised by severe losses, especially in 6 naive animals. LSD is endemic in many African and Asian countries, and it is rapidly spreading 7 throughout the Middle East, including Turkey. LSD is transmitted by mechanical vectors, but 8 direct/indirect transmission may occur. The disease would mainly be transferred to infection-free areas 9 by transport of infected animals and vectors. In the EU, it could only happen through illegal transport 10 of animals. The risk for that depends on the prevalence in the country of origin and the number of 11 animals illegally moved. Based on a model to simulate LSD spread between farms, culling animals 12 with generalised clinical signs seems to be sufficient to contain 90 % of epidemics around the initial 13 site of incursion, but the remaining 10 % of simulated epidemics can spread up to 400 km from the site 14 of introduction by six months after incursion. Whole-herd culling of infected farms substantially 15 reduces the spread of LSD virus, and the more rapidly farms are detected and culled, the greater the 16 magnitude of the reduction is. Only live attenuated vaccines against LSD are available. Homologous 17 vaccines are more effective than sheep pox strain vaccines. The safety of the vaccines should be 18 improved and the development of vaccines for differentiating between infected and vaccinated animals 19 is recommended. -
A Scoping Review of Viral Diseases in African Ungulates
veterinary sciences Review A Scoping Review of Viral Diseases in African Ungulates Hendrik Swanepoel 1,2, Jan Crafford 1 and Melvyn Quan 1,* 1 Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; [email protected] (H.S.); [email protected] (J.C.) 2 Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium * Correspondence: [email protected]; Tel.: +27-12-529-8142 Abstract: (1) Background: Viral diseases are important as they can cause significant clinical disease in both wild and domestic animals, as well as in humans. They also make up a large proportion of emerging infectious diseases. (2) Methods: A scoping review of peer-reviewed publications was performed and based on the guidelines set out in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews. (3) Results: The final set of publications consisted of 145 publications. Thirty-two viruses were identified in the publications and 50 African ungulates were reported/diagnosed with viral infections. Eighteen countries had viruses diagnosed in wild ungulates reported in the literature. (4) Conclusions: A comprehensive review identified several areas where little information was available and recommendations were made. It is recommended that governments and research institutions offer more funding to investigate and report viral diseases of greater clinical and zoonotic significance. A further recommendation is for appropriate One Health approaches to be adopted for investigating, controlling, managing and preventing diseases. Diseases which may threaten the conservation of certain wildlife species also require focused attention. -
RVF Reported Cases in SG P Govt Last 20 Yrs Although Threat on Border with Somali
Policy Landscaping Study of RVF Control in Eastern and Southern Africa Prepared for GALVmed by Peter G. Sinyangwe, Ph. D May 2013 Copyright Peter Sinyangwe. Any views expressed, do not necessarily represent those of GALVmed. Contents 1 Introduction 1 2 Rift Valley fever Overview 1 2.1 Rift Valley fever 1 2.2 Control of RVF in livestock 1 2.3 Vector control 2 3 Objectives 2 4 Methodology 2 5 Key Findings 2 5.1 Control of RVF in Eastern Africa 2 5.1.1 Control of RVF in Kenya, Ethiopia and Tanzania 3 5.1.2 Kenya 7 5.1.3 Tanzania 8 5.1.4 Ethiopia 8 5.2 Control of RVF in Southern Africa 10 5.2.1 Control of RVF in Namibia, Zimbabwe, Botswana and South Africa 10 5.2.2 Namibia 14 5.2.3 Botswana 14 5.2.4 Zimbabwe 14 5.2.5 South Africa 14 6 Feasibility of an African wide RVF vaccine bank 19 6.1 Concept 19 6.2 Key Points for consideration 20 7 Policy analysis and Conclusions 20 7.1 Policy analysis 20 7.2 Conclusions 21 8 Recommendations 22 8.1 Specific recommendations 22 8.2 General recommendations 22 9 References 23 APPENDIX I: SUMMARY OF FINDINGS 24 APPENDIX II: GENERAL TERMS OF REFERENCE 26 APPENDIX III: LEGISLATION 28 APPENDIX IV: LIST OF RESPONDENTS 29 APPENDIX V: POLICY LANDSCAPING STUDY QUESTIONNAIRE 31 Policy Landscaping Study of RVF Control in Eastern and Southern Afric a I Page 3 Acronyms AU African Union CBPP Contagious Bovine Pleuropneumonia DRC Democratic Republic of Congo EAC East African Community FAO Food and Agriculture Organisation of the United Nations FMD Foot and mouth disease IBAR Inter-African Bureau for Animal Resources ILRI -
ICTV Code Assigned: 2011.001Ag Officers)
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . -
FUNCTIONAL IMPLICATIONS of the BAF-B1 AXIS DURING the VACCINIA VIRUS LIFE CYCLE Nouhou Ibrahim University of Nebraska-Lincoln, [email protected]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Biological Sciences Biological Sciences, School of Spring 2-13-2014 FUNCTIONAL IMPLICATIONS OF THE BAF-B1 AXIS DURING THE VACCINIA VIRUS LIFE CYCLE Nouhou Ibrahim University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscidiss Part of the Other Microbiology Commons, and the Virology Commons Ibrahim, Nouhou, "FUNCTIONAL IMPLICATIONS OF THE BAF-B1 AXIS DURING THE VACCINIA VIRUS LIFE CYCLE" (2014). Dissertations and Theses in Biological Sciences. 61. http://digitalcommons.unl.edu/bioscidiss/61 This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FUNCTIONAL IMPLICATIONS OF THE BAF-B1 AXIS DURING THE VACCINIA VIRUS LIFE CYCLE by Nouhou Ibrahim A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Biological Sciences (Microbiology and Molecular Biology) Under the Supervision of Professor Matthew S. Wiebe Lincoln, Nebraska May, 2014 FUNCTIONAL IMPLICATIONS OF THE BAF-B1 AXIS DURING THE VACCINIA VIRUS LIFE CYCLE Nouhou Ibrahim, MSc., Ph.D. University of Nebraska, 2014 Advisor: Matthew Wiebe Vaccinia virus is the prototypic member of the Poxviridae family, which includes variola virus, the agent of smallpox. Poxviruses encode their own transcriptional machinery and a set of proteins to evade the host defense system, and thus are able to replicate entirely in the cytoplasm of their host. -
Here, There, and Everywhere: the Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses
viruses Review Here, There, and Everywhere: The Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses Natalia Ingrid Oliveira Silva, Jaqueline Silva de Oliveira, Erna Geessien Kroon , Giliane de Souza Trindade and Betânia Paiva Drumond * Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais: Belo Horizonte, Minas Gerais 31270-901, Brazil; [email protected] (N.I.O.S.); [email protected] (J.S.d.O.); [email protected] (E.G.K.); [email protected] (G.d.S.T.) * Correspondence: [email protected] Abstract: The global emergence of zoonotic viruses, including poxviruses, poses one of the greatest threats to human and animal health. Forty years after the eradication of smallpox, emerging zoonotic orthopoxviruses, such as monkeypox, cowpox, and vaccinia viruses continue to infect humans as well as wild and domestic animals. Currently, the geographical distribution of poxviruses in a broad range of hosts worldwide raises concerns regarding the possibility of outbreaks or viral dissemination to new geographical regions. Here, we review the global host ranges and current epidemiological understanding of zoonotic orthopoxviruses while focusing on orthopoxviruses with epidemic potential, including monkeypox, cowpox, and vaccinia viruses. Keywords: Orthopoxvirus; Poxviridae; zoonosis; Monkeypox virus; Cowpox virus; Vaccinia virus; host range; wild and domestic animals; emergent viruses; outbreak Citation: Silva, N.I.O.; de Oliveira, J.S.; Kroon, E.G.; Trindade, G.d.S.; Drumond, B.P. Here, There, and Everywhere: The Wide Host Range 1. Poxvirus and Emerging Diseases and Geographic Distribution of Zoonotic diseases, defined as diseases or infections that are naturally transmissible Zoonotic Orthopoxviruses. Viruses from vertebrate animals to humans, represent a significant threat to global health [1]. -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person -
Pathogenesis of Bovine Alphaherpesvirus 2 in Calves Following Different Routes of Inoculation1 Bruna P
Pesq. Vet. Bras. 40(5):360-367, May 2020 DOI: 10.1590/1678-5150-PVB-6588 Original Article Livestock Diseases ISSN 0100-736X (Print) ISSN 1678-5150 (Online) PVB-6588 LD Pathogenesis of Bovine alphaherpesvirus 2 in calves following different routes of inoculation1 Bruna P. Amaral2,3, José C. Jardim4 , Juliana F. Cargnelutti3,5, Mathias Martins6,7 , Rudi Weiblen2,3 and Eduardo F. Flores2,3* ABSTRACT.-Amaral B.P., Jardim J.C., Cargnelutti J.F., Martins M., Weiblen R. & Flores E.F. 2020. Pathogenesis of Bovine alphaherpesvirus 2 in calves inoculated by different routes. Pesquisa Veterinária Brasileira 40(5):360-367. Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima 1000, Rua Z, Prédio 63A, Santa Maria, RS 97105-900, Brazil. E-mail: Título Original Bovine alphaherpesvirus 2 (BoHV-2) is the agent of herpetic mammilitis (BHM), a cutaneous and self-limiting disease affecting the udder [email protected] teats of cows. The pathogenesis of BoHV-2 is pourly understood, hampering the development of therapeutic drugs, vaccines [Título traduzido]. and other control measures. This study investigated the pathogenesis of BoHV-2 in calves after inoculation through different routes. Three- to four-months seronegative calves were 7 -1 inoculated with BoHV-2 (10 TCID50.mL ) intramuscular (IM, n=4), intravenous (IV, n=4) Autores and serological monitoring. Calves inoculated by the IV route presented as light increase orin bodytransdermal temperature (TD) afterbetween mild days scarification 6 to 9 post-inoculation (n=4) and submitted (pi). Virus to virological, inoculation clinical by the by hyperemia, small vesicles, mild exudation and scab formation, between days 2 and 8pi. -
Molecular Characterization of the First Saltwater Crocodilepox Virus
www.nature.com/scientificreports OPEN Molecular characterization of the frst saltwater crocodilepox virus genome sequences from the Received: 15 November 2017 Accepted: 20 March 2018 world’s largest living member of the Published: xx xx xxxx Crocodylia Subir Sarker1, Sally R. Isberg2,3, Natalie L. Milic3, Peter Lock4 & Karla J. Helbig1 Crocodilepox virus is a large dsDNA virus belonging to the genus Crocodylidpoxvirus, which infects a wide range of host species in the order Crocodylia worldwide. Here, we present genome sequences for a novel saltwater crocodilepox virus, with two subtypes (SwCRV-1 and -2), isolated from the Australian saltwater crocodile. Afected belly skins of juvenile saltwater crocodiles were used to sequence complete viral genomes, and perform electron microscopic analysis that visualized immature and mature virions. Analysis of the SwCRV genomes showed a high degree of sequence similarity to CRV (84.53% and 83.70%, respectively), with the novel SwCRV-1 and -2 complete genome sequences missing 5 and 6 genes respectively when compared to CRV, but containing 45 and 44 predicted unique genes. Similar to CRV, SwCRV also lacks the genes involved in virulence and host range, however, considering the presence of numerous hypothetical and or unique genes in the SwCRV genomes, it is completely reasonable that the genes encoding these functions are present but not recognized. Phylogenetic analysis suggested a monophyletic relationship between SwCRV and CRV, however, SwCRV is quite distinct from other chordopoxvirus genomes. These are the frst SwCRV complete genome sequences isolated from saltwater crocodile skin lesions. Te crocodilepox virus belongs to the genus Crocodylidpoxvirus, a member of the subfamily Chordopoxvirinae in the family Poxviridae. -
FAO. 2013. Emergence of Lumpy Skin Disease in the Eastern
empres watch VOL 29 November 2013 [email protected] | www.fao.org/ag/empres.html Emergence of lumpy skin disease in the Eastern Mediterranean Basin countries Contributors: Sherrylin Wainwright a, Ahmed El Idrissi a, Raffaele Mattioli a, Markos Tibbo b, Felix Njeumi a, Eran Raizman a a Food and Agriculture Organization of the United Nations (FAO); b FAO Regional Office for the Near East (FAO-RNE) Animal Health (OIE). considering the area’s substantial livestock Contents LSD was first reported in Africa, where it population. Turkey maintains over 11.3 million crippled the production potential of cattle and heads of cattle. Iraq, Lebanon and the Syrian 1. Introduction 1 compromised vulnerable livelihoods on the Arab Republic maintain 2.8 million heads, continent. LSD moved beyond Africa in 1989 and the Islamic Republic of Iran maintains 2. Risk assessment 3 when Israel confirmed its first LSD outbreak. for approximately 8.5 million heads. Armenia, In subsequent years Bahrain, Kuwait, Oman, Azerbaijan and Georgia combined maintain 3. Risk management Yemen and the West Bank also reported LSD 4million heads. options for at-risk incursion. Lebanon and Jordan joined LSD- At-risk countries include the Russian affected countries in 2012 and 2013, and Federation to the north and Bulgaria and countries 4 most recently Turkey reported the disease in Greece to the west. This is in line with the 4. Conclusions 5 October 2013 (see Table 1). spread of other significant transboundary There is an imminent risk that LSD will animal diseases (e.g. African swine fever, 5. References 5 (or has already) become endemic in some foot-and-mouth disease, sheep pox and goat countries in the Middle East.