Phylogeny and Classification of the Melastomataceae and Memecylaceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Histological and Cytological Characterization of Anther and Appendage Development in Asian Lotus (Nelumbo Nucifera Gaertn.)
International Journal of Molecular Sciences Article Histological and Cytological Characterization of Anther and Appendage Development in Asian Lotus (Nelumbo nucifera Gaertn.) Dasheng Zhang 1,2 , Qing Chen 3, Qingqing Liu 1,2, Fengluan Liu 1,2, Lijie Cui 4, Wen Shao 1,2, Shaohua Wu 3, Jie Xu 5,* and Daike Tian 1,2,* 1 Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; [email protected] (D.Z.); [email protected] (Q.L.); [email protected] (F.L.); [email protected] (W.S.) 2 Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai 201602, China 3 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (Q.C.); [email protected] (S.W.) 4 Development Center of Plant Germplasm Resources, College of Life Science, Shanghai Normal University, Shanghai 200234, China; [email protected] 5 School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China * Correspondence: [email protected] (J.X.); [email protected] (D.T.); Tel./Fax: +86-21-5776-2652 (D.T.) Received: 10 January 2019; Accepted: 22 February 2019; Published: 26 February 2019 Abstract: The lotus (Nelumbo Adans.) is a perennial aquatic plant with important value in horticulture, medicine, food, religion, and culture. It is rich in germplasm and more than 2000 cultivars have been cultivated through hybridization and natural selection. Microsporogenesis and male gametogenesis in the anther are important for hybridization in flowering plants. However, little is known about the cytological events, especially related to the stamen, during the reproduction of the lotus. -
The Genus Axinandra—Melastomataceae : a Missing Link in Myrtales ?*
CEYIONJ. SCI. (Bio. Sci.) Vol. 10, No. 1, April 1972 The Genus Axinandra—Melastomataceae : A Missing Link in Myrtales ?* by WIIXEM MEIJER Department oj Botany, University of Kentucky, Lexington, KY, 40506, U.S.A. (With two plates) The flora of Ceylon contains a number of genera and species which are of great impor tance for the study of the evolution of the families of Angiosperms. Orie example of this is the genus Axinandra Thwaites with A. zeylanica Thwaites in Hooker, Kew Journal 6: 67, 1854 as type species. Other species are known from Malaya and Borneo (see Bakhuizen van den Brink 1946). They are part of the wet lowland rain forests. Close study of this genus in Borneo and in the wet zone of Ceylon has given me the impression that Axinandra could be a very old genus wh;ch stands somewhere near the roots of the families Lythraceae, Myrtaceae, Melastomatacacac and Rhizophoraceae. The flowers are 5-merous with 10 (12) stamens. The petals drop off in a cap while the flowers open. This character occurs in Eugenia in Myrtaceae. The pollen sacs of the anther join or almost join at the apex of the stamen. The fruits are capsules opening with 5 valves; in each locule there are one or two seeds with wings. The calyx tube is no part of the opening fruit. Similar fruits occur in the Indo-Malesian genus Lagerstrocmia (Lythraceae), in genera of the subfamily Leptosper- moideae of Myrtaceae (see Leptospermum, Tristauia and Metrosideros), and in Macarisia (Rhizo phoraceae)—a genus known from Madagascar. If we look for possible links between Rosales and Myrtales among primitive Myrtales then we might also pay attention to the Indo-Malesian genus Crypteronia which has also capsular fruits and winged seeds and similar anthers; however, only 5 stamens and flowers without petals. -
Publications of Peter H. Raven
Peter H. Raven LIST OF PUBLICATIONS 1950 1. 1950 Base Camp botany. Pp. 1-19 in Base Camp 1950, (mimeographed Sierra Club report of trip). [Upper basin of Middle Fork of Bishop Creek, Inyo Co., CA]. 1951 2. The plant list interpreted for the botanical low-brow. Pp. 54-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). 3. Natural science. An integral part of Base Camp. Pp. 51-52 in Base Camp 1951, (mimeographed Sierra Club report of trip). 4. Ediza entomology. Pp. 52-54 in Base Camp 1951, (mimeographed Sierra Club report of trip). 5. 1951 Base Camp botany. Pp. 51-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). [Devils Postpile-Minaret Region, Madera and Mono Counties, CA]. 1952 6. Parsley for Marin County. Leafl. West. Bot. 6: 204. 7. Plant notes from San Francisco, California. Leafl. West. Bot. 6: 208-211. 8. 1952 Base Camp bird list. Pp. 46-48 in Base Camp 1952, (mimeographed Sierra Club report of trip). 9. Charybdis. Pp. 163-165 in Base Camp 1952, (mimeographed Sierra Club report of trip). 10. 1952 Base Camp botany. Pp. 1-30 in Base Camp 1952, (mimeographed Sierra Club report of trip). [Evolution Country - Blaney Meadows - Florence Lake, Fresno, CA]. 11. Natural science report. Pp. 38-39 in Base Camp 1952, (mimeographed Sierra Club report of trip). 1953 12. 1953 Base Camp botany. Pp. 1-26 in Base Camp 1953, (mimeographed Sierra Club report of trip). [Mono Recesses, Fresno Co., CA]. 13. Ecology of the Mono Recesses. Pp. 109-116 in Base Camp 1953, (illustrated by M. -
253T20120023.Pdf (5.252Mb)
UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE CIENCIAS FORESTALES Y MEDIO AMBIENTE CARRERA PROFESIONAL DE INGENIERÍA FORESTAL TÍTULO COMPOSICIÓN Y ESTRUCTURA DE LA FAMILIA APOCYNACEAE Y MELASTOMATACEA EN EL CENTRO DE CAPACITACIÓN SAN ANTONIO Y FUNDO PRIMAVERA FCFMA-UNSAAC . TESIS PARA OBTENER EL TÍTULO DE INGENIERO FORESTAL Presentado por : Bach. For. Julissa Rivera Balarezo Bach. For. Vivian Milusca Lara Escobar Asesor : M. Se. Blgo. Benedicto Baca Rosado "TESIS AUSPICIADA POR EL CONSEJO DE INVESTIGACIÓN - UNSAAC" PUERTO MALDONADO- MADRE DE DIOS 2012 PRESENTACIÓN. En la región Madre de Dios, es necesario seguir analizando los procesos de .cambios climáticos provenientes de la explotación de los recursos mineros, los recursos forestales, recurso castaña, etc.; Estos presentan un cambio a nivel socio - económico y ambiental en la región. Las perturbaciones naturales y los cambios climáticos se adicionan a los factores ambientales cambiantes provocando el dinamismo en la estructura y composición de los bosques; ésta es una razón para la realización del estudio de familia Apocynaceae y 'Melastomataceae en áreas pertenecientes a la Universidad Nacional de San Antonio Abad del Cusco. La ciencia y la investigación tienen un compromiso en cuestionar y buscar alternativas para una estabilidad ambiental, viabilidad económica y una respuesta social hacia las nuevas condiciones ambientales~ Por otro lado la composición florística en ambas áreas de estudio está determinada por los factores ambientales como posición geográfica, clima, suelos, topografía, dinámica del bosque y la ecología de sus especies. Una de las características más relevantes de los bosques tropicales húmedos en general es su alta diversidad de especies vegetales, tanto arbóreas, arbustivos y hierbas. -
Wood Anatomy of Lythraceae Assigned to The
Ada Bot. Neerl. 28 (2/3), May 1979, p.117-155. Wood anatomy of the Lythraceae P. Baas and R.C.V.J. Zweypfenning Rijksherbarium, Leiden, The Netherlands SUMMARY The wood anatomy of 18 genera belonging to the Lythraceae is described. The diversity in wood structure of extant Lythraceae is hypothesized to be derived from a prototype with scanty para- I tracheal parenchyma, heterogeneous uniseriate and multiseriate rays, (septate)libriform fibres with minutely bordered pits, and vessels with simple perforations. These characters still prevail in a number of has been limited in of Lythraceae. Specialization very most Lythraceae shrubby or herbaceous habit: these have juvenilistic rays composed mainly of erect rays and sometimes com- pletely lack axial parenchyma. Ray specialization towards predominantly uniseriate homogeneous concomitant with fibre abundant and with rays, dimorphism leading to parenchyma differentiation, the advent of chambered crystalliferous fibres has been traced in the “series” Ginoria , Pehria, Lawsonia , Physocalymma and Lagerstroemia. The latter genus has the most specialized wood anatomy in the family and has species with abundant parenchyma aswell as species with alternating fibres. with its bands of dimorphous septate Pemphis represents an independent specialization vasicentric parenchyma and thick-walled nonseptate fibres. The affinities of with other are discussed. Pun Psiloxylon, Lythraceae Myrtales ica, Rhynchocalyx , Oliniaceae,Alzatea, Sonneratiaceae, Onagraceae and Melastomataceae all resemble Lythraceae in former accommodated in the without their wood anatomy. The three genera could even be family its wood anatomical Alzatea and Sonneratia differ in minor details extending range. Oliniaceae, only from order facilitate identification of wood tentative the Lythraceae. In to samples, keys to genera or groups ofgenera of Lythraceae as well as to some species of Lagerstroemiaare presented. -
Systematics and Relationships of Tryssophyton (Melastomataceae
A peer-reviewed open-access journal PhytoKeys 136: 1–21 (2019)Systematics and relationships of Tryssophyton (Melastomataceae) 1 doi: 10.3897/phytokeys.136.38558 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana Kenneth J. Wurdack1, Fabián A. Michelangeli2 1 Department of Botany, MRC-166 National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA 2 The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458, USA Corresponding author: Kenneth J. Wurdack ([email protected]) Academic editor: Ricardo Kriebel | Received 25 July 2019 | Accepted 30 October 2019 | Published 10 December 2019 Citation: Wurdack KJ, Michelangeli FA (2019) Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana. PhytoKeys 136: 1–21. https://doi.org/10.3897/ phytokeys.136.38558 Abstract The systematics of Tryssophyton, herbs endemic to the Pakaraima Mountains of western Guyana, is re- viewed and Tryssophyton quadrifolius K.Wurdack & Michelang., sp. nov. from the summit of Kamakusa Mountain is described as the second species in the genus. The new species is distinguished from its closest relative, Tryssophyton merumense, by striking vegetative differences, including number of leaves per stem and leaf architecture. A phylogenetic analysis of sequence data from three plastid loci and Melastomata- ceae-wide taxon sampling is presented. The two species of Tryssophyton are recovered as monophyletic and associated with mostly Old World tribe Sonerileae. Fruit, seed and leaf morphology are described for the first time, biogeography is discussed and both species are illustrated. -
Epilist 1.0: a Global Checklist of Vascular Epiphytes
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong. -
PLANT SCIENCE Bulletin Fall 2013 Volume 59 Number 3
PLANT SCIENCE Bulletin Fall 2013 Volume 59 Number 3 Botany in Action - in New Orleans! In This Issue.............. More BSA awards announced at PlantingScience mentors Botany 2013!.....p. 146 Botany 2013.....p. 80 make a difference.....p. 90 From the Editor PLANT SCIENCE BULLETIN The good news these days is about resources. There is so much information readily available on the internet Editorial Committee that one hardly needs to leave the office to work on a Volume 59 literature review or gather information for a lecture. The first step—Google it! The bad news these days is Elizabeth Schussler about resources. There is so much information readily (2013) available on the internet that one could spend hours Department of Ecology & sorting through possible sites to find the information Evolutionary Biology you want. What we need is a resource that has done University of Tennessee the dirty work of searching what is available and evalu- Knoxville, TN 37996-1610 ating its usefulness. That resource has been provided [email protected] for botanical and lichenological systematic research by Morgan Gostel, Manuela Dal-Forno, and Andrea Weeks in this issue. This is also a great resource to use for teaching images. Christopher Martine (2014) In our other feature article, Melanie Link-Pérez and Department of Biology Elizabeth Schussler demonstrate that resources, by Bucknell University themselves, are not enough to support grade-school Lewisburg, PA 17837 teachers in their efforts to introduce plant science to [email protected] students. At this age the kids love plants and so do the teachers, and the teachers are anxious to find and use resources to help them incorporate plants into the curriculum. -
Conti Et Al. 2004
Evolution, 58(8), 2004, pp. 1874–1876 CALIBRATION OF MOLECULAR CLOCKS AND THE BIOGEOGRAPHIC HISTORY OF CRYPTERONIACEAE: A REPLY TO MOYLE ELENA CONTI,1,2 FRANK RUTSCHMANN,1 TORSTEN ERIKSSON,3 KENNETH J. SYTSMA,4 AND DAVID A. BAUM4 1Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland 2E-mail: [email protected] 3Bergius Foundation, Royal Swedish Academy of Sciences, SE-10405 Stockholm, Sweden 4Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin 53706-1381 Received April 28, 2004. Accepted June 2, 2004. To test the molecular dating results and biogeographic in- A second point of disagreement concerns the properties terpretations reported by Conti et al. (2002), R. G. Moyle and inferential value of the estimated age ranges. Moyle reanalyzed our published dataset of 13 rbcL sequences rep- (2004) states: ‘‘Because of the wide range of age estimates resenting Melastomataceae and five small taxa: the Southeast produced by the different calibration points and molecular Asian Crypteroniaceae (the C clade) and their western Gond- dating procedures, I re-examined the biogeographic history wanan sister clade, formed by the South American Alzatea of Crypteroniaceae with particular attention to calibration and the African Rhynchocalyx, Oliniaceae, and Penaeaceae procedure.’’ He then elaborates on results based on a single (the AROP clade). Using a single calibration point and non- dating method (NPRS) and a single calibration point (an age parametric rate smoothing (NPRS; Sanderson 2003), Moyle of 23 mya assigned to node E). This methodological approach (2004) estimated an age of 68 million years ago (mya; Ϯ will tend to provide a narrower range of estimated ages than 10.6 mya) for the split between Crypteroniaceae and the would be obtained by using a number of different methods, AROP clade, which contrasts with our published age of 116 but such a superficially precise result may not be indicative mya (Ϯ 24 mya), obtained with fossil calibration and pe- of increased accuracy. -
Additions to the Flora of Panama, with Comments on Plant Collections and Information Gaps
15 4 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 15 (4): 601–627 https://doi.org/10.15560/15.4.601 Additions to the flora of Panama, with comments on plant collections and information gaps Orlando O. Ortiz1, Rodolfo Flores2, Gordon McPherson3, Juan F. Carrión4, Ernesto Campos-Pineda5, Riccardo M. Baldini6 1 Herbario PMA, Universidad de Panamá, Vía Simón Bolívar, Panama City, Panama Province, Estafeta Universitaria, Panama. 2 Programa de Maestría en Biología Vegetal, Universidad Autónoma de Chiriquí, El Cabrero, David City, Chiriquí Province, Panama. 3 Herbarium, Missouri Botanical Garden, 4500 Shaw Boulevard, St. Louis, Missouri, MO 63166-0299, USA. 4 Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Avenida Transnordestina s/n, Novo Horizonte, 44036-900, Feira de Santana, Bahia, Brazil. 5 Smithsonian Tropical Research Institute, Luis Clement Avenue (Ancón, Tupper 401), Panama City, Panama Province, Panama. 6 Centro Studi Erbario Tropicale (FT herbarium) and Dipartimento di Biologia, Università di Firenze, Via La Pira 4, 50121, Firenze, Italy. Corresponding author: Orlando O. Ortiz, [email protected]. Abstract In the present study, we report 46 new records of vascular plants species from Panama. The species belong to the fol- lowing families: Anacardiaceae, Apocynaceae, Aquifoliaceae, Araceae, Bignoniaceae, Burseraceae, Caryocaraceae, Celastraceae, Chrysobalanaceae, Cucurbitaceae, Erythroxylaceae, Euphorbiaceae, Fabaceae, Gentianaceae, Laciste- mataceae, Lauraceae, Malpighiaceae, Malvaceae, Marattiaceae, Melastomataceae, Moraceae, Myrtaceae, Ochnaceae, Orchidaceae, Passifloraceae, Peraceae, Poaceae, Portulacaceae, Ranunculaceae, Salicaceae, Sapindaceae, Sapotaceae, Solanaceae, and Violaceae. Additionally, the status of plant collections in Panama is discussed; we focused on the areas where we identified significant information gaps regarding real assessments of plant biodiversity in the country. -
000Plagiat Format Thesis
MASTERARBEIT Floral Structure and Pollination Biology of Axinaea (Melastomataceae) verfasst von Agnes Dellinger, BSc angestrebter akademischer Grad Master of Science (MSc) Wien, 2013 Studienkennzahl lt. Studienblatt: A 066 833 Studienrichtung lt. Studienblatt: Masterstudium Ökologie Betreut von: Prof. Dr. Jürg Schönenberger Abstract Pollen as the only reward for pollinating bees is characteristic for most Neotropical Melastomataceae. For eight genera belonging to four different tribes, however, nectar secretion by stomatal openings, pseudo-tubular flowers and both vertebrate and invertebrate pollinators other than bees have been reported. The pseudo-tubular flowers of the mainly Andean genus Axinaea (tribe Merianieae) are characterized by distinctive bulbous connec- tive appendages. It has been hypothesized that these appendages may bear nectar secreting structures, may play a key role in the process of pollination, or may serve as food-bodies to attract pollinators other than bees. To test these hypotheses, I have investigated floral the structure of five Axinaea species in detail using MicroCT, Scanning Electron Microscopy and Light Microscopy. Field studies on the breeding system and pollinator monitoring of Axinaea confusa have been conducted in a montane rainforest in southern Ecuador. Like nectar producing Merianieae, Axinaea bears stomatal openings on the inner wall of the hypanthium, but the flowers are not nectariferous. The main finding of my investigations is that instead of a nectar reward, the pollination mechanism of Axinaea involves floral food- bodies in combination with bird pollination. Different species of tanagers and flower piercers (Thraupidae) are attracted by the brightly coloured bulbous connective appendages in the flowers. However, these appendages do not only function as attractant and food reward for the pollinating birds, but are also an integral part of a complex pollination mechanism which is best described as a “bellows-mechanism”. -
Molecular Phylogenetics of Melastomataceae and Memecylaceae: Implications for Character Evolution1
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Access LMU American Journal of Botany 88(3): 486±498. 2001. MOLECULAR PHYLOGENETICS OF MELASTOMATACEAE AND MEMECYLACEAE: IMPLICATIONS FOR CHARACTER EVOLUTION1 G. CLAUSING2,4 AND S. S. RENNER3,4 2Institut fuÈr Spezielle Botanik, UniversitaÈt Mainz, D-55099 Mainz, Germany; 3Department of Biology, University of Missouri-St. Louis, 8001 Natural Bridge Rd., St. Louis, Missouri 63121 USA; and The Missouri Botanical Garden, St. Louis, Missouri 63166 USA Melastomataceae are among the most abundant and diversi®ed groups of plants throughout the tropics, but their intrafamily rela- tionships and morphological evolution are poorly understood. Here we report the results of parsimony and maximum likelihood (ML) analyses of cpDNA sequences from the rbcL and ndhF genes and the rpl16 intron, generated for eight outgroups (Crypteroniaceae, Alzateaceae, Rhynchocalycaceae, Oliniaceae, Penaeaceae, Myrtaceae, and Onagraceae) and 54 species of melastomes. The sample represents 42 of the family's currently recognized ;150 genera, the 13 traditional tribes, and the three subfamilies, Astronioideae, Melastomatoideae, and Memecyloideae (5 Memecylaceae DC.). Parsimony and ML yield congruent topologies that place Memecy- laceae as sister to Melastomataceae. Pternandra, a Southeast Asian genus of 15 species of which ®ve were sampled, is the ®rst- branching Melastomataceae. This placement has low bootstrap support (72%), but agrees with morphological treatments that placed Pternandra in Melastomatacaeae because of its acrodromal leaf venation, usually ranked as a tribe or subfamily. The interxylary phloem islands found in Memecylaceae and Pternandra, but not most other Melastomataceae, likely evolved in parallel because Pternandra resembles Melastomataceae in its other wood characters.