China's Biodiversity Hotspots Revisited: a Treasure Chest for Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amorphophallus Paeoniifolius) Cultivated in Java
Yuzammi, Tri Handayani. 2019 P.11 Analysis of Nutrient and Anti-Nutrient Compositions of “Suweg” (Amorphophallus paeoniifolius) Cultivated in Java Yuzammi a1 and Tri Handayania a Research Center for Plant Conservation and Botanic Gardens – Indonesian Institute of Sciences Jl. Ir. H. Juanda no. 13 Bogor (16122), Indonesia Abstract Amorphophallus paeoniifolius (Dennts.) Nicolson belongs to the family Araceae. It is also known as elephant foot yam or suweg, notably for the Javanese. It is a common species in Java and is cultivated for its edible tubers. The suweg tubers used for this research were collected from Kuningan (West Java), Yogyakarta and Kediri (East Java). The study aimed to elucidate the nutrient and anti-nutrient compositions of suweg’s tuber, including carbohydrate, fat, proteins and minerals viz. Ca, Fe and P. The Kjeldhal method was used for protein determination, soxhlet extraction method for lipids, spectrophotometer method for carbohydrate, and Atomic Absorption Spectrophotometer method was used for mineral elements. Anti-nutrient contents determinated were Ca Oxalate and HCN using spectrophotometer method. Both fresh tuber and flour powder of suweg were analysed to indicate the highest percentage of Ca Oxalate content. The results showed that nutrient contents of suweg were carbohydrate 87.02 %, protein 7.08 % and fat 0.18%. These indicated that suweg has high carbohydrate and low fat contents; therefore it is suitable for dietary therapy. The concentration of anti-nutrient, such as Ca Oxalate was lower on the flour powder (0.01 %) rather than fresh tuber (0,21 %). This means the tuber of suweg was not harmful to consume after being processed. -
(Leguminosae): Nomenclatural Proposals and New Taxa
Great Basin Naturalist Volume 58 Number 1 Article 5 1-30-1998 Astragalus (Leguminosae): nomenclatural proposals and new taxa Stanley L. Welsh Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Welsh, Stanley L. (1998) "Astragalus (Leguminosae): nomenclatural proposals and new taxa," Great Basin Naturalist: Vol. 58 : No. 1 , Article 5. Available at: https://scholarsarchive.byu.edu/gbn/vol58/iss1/5 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 58(1), © 1998, pp. 45-53 ASTRAGALUS (LEGUMINOSAE): NOMENCLATURAL PROPOSALS AND NEW TAXA Stanley L. Welsh! ABSTRACT.-As part of an ongoing summary revision of Astragalus for the Flora North America project, several nomenclatural changes are indicated. Nomenclatural proposals include A. molybdenus val'. shultziorom (Barneby) Welsh, comb. nov.; A. australis var. aboriginorom (Richardson) Welsh, comb. nov.; A. australis var. cattoni (M.E. Jones) Welsh, comb. nov.; A. aU8tralis var. lepagei (Hulten) Welsh, comb. nov; A. australis var. muriei (Hulten) Welsh, comb. nov.; A. subcinereus var. sileranus (M.E. Jones) Welsh, comb. nov.; A. tegetariaides val'. anxius (Meinke & Kaye) Welsh, comb. nov.; A. ampullarioides (Welsh) Welsh, comb. nov.; A. cutlen (Barneby) Welsh, comb. nov.; and A. laccaliticus (M.E. Jones) Welsh, comb. nov. Proposals of new taxa include Astragalus sect. Scytocarpi subsect. Micl'ocymbi Welsh, subsed. nov., and A. sabulosus var. -
Flower Development and Its Implication for Seed Production on Amorphophallus Muelleri Blume (Araceae)
J. Hort. Indonesia 7(2): 65-74. Agustus 2016. Flower Development and Its Implication for Seed Production on Amorphophallus muelleri Blume (Araceae) Edi Santosa1,2*, Adolf Pieter Lontoh1, Ani Kurniawati1, Maryati Sari1 and Nobuo Sugiyama3 Diterima 18 Maret 2016/Disetujui 06 Juli 2016 ABSTRACT There are many studies on agronomic and economic advantages of iles-iles (Amorphophallus muelleri Blume), leading to high demand on seed to support the rapid production expansion in many Asian countries. By contrast, there are few studies on flowering phenology and flower morphology although they affect the seed production. Therefore, we evaluated flowering phenology and flower morphology of 80 plants of A. muelleri grown in a field under 65% artificial shading net at Leuwikopo Experimental Farm IPB Darmaga, Bogor, Indonesia from May 2015 to July 2016 in order to improve seed production. A. muelleri produced solitary spadix, with female flowers at the lower part and male flowers at the upper part. Spadix grew slowly for 56-71 days after bud break, and then grew rapidly thereafter for 30-35 days until anthesis. Seed was harvested 9.6 to 10.2 months after anthesis. We devided the development of spadix into seven phases, bud break as stage I and berry maturity as stage VII. Stage VI to VII determined seed production. Seed production was also affected by root formation and spadix size. There were strong positive correlations between length of the female zones with berry production. Some morphological characteristics of spadix were dependent on corm size, thus, it was likely that agronomic improvement to enhance female flower and corm sizes was important in seed production. -
Therapeutic Effects of Bossenbergia Rotunda
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Therapeutic Effects of Bossenbergia rotunda S. Aishwarya Bachelor of Dental Surgery, Saveetha Dental College and Hospitals Abstract: Boesenbergia rotunda (L.) (Fingerroot), formerly known as Boesenbergia or Kaempferiapandurata (Roxb). Schltr. (Zingiberaceae), is distributed in south-east Asian countries, such as Indonesia, Malaysia and Thailand. The rhizomes of this plant have been used for the treatment of peptic ulcer, as well as colic, oral diseases, urinary disorders, dysentery and inflammation. As people have started to focus more on natural plants species for their curative properties. B. rotunda is a native ingredient in many Asian countries and is used as a condiment in food. It is also used as traditional medicine to treat several illnesses, consumed as traditional tonic especially after childbirth, beauty aid for teenage girls, and as a leukorrhea preventive remedy for women. Its fresh rhizomes are also used to treat inflammatory diseases, in addition to being used as an antifungal, antiparasitic, and aphrodisiac among Thai folks. Moreover, AIDS patients self-medicate themselves with B. rotunda to cure the infection. With the advancement in technology, the ethnomedicinal usages of herbal plants can be explained through in vitro and in vivo studies to prove the activities of the plant extracts. The current state of research on B. rotunda clearly shows that the isolated bioactive compounds have high potential in treating many diseases. Keywords: Zingerberaceae, anti fungal, anti parasitic, Chalcones, flavonoids. 1. Introduction panduratin derivative are prenylated flavonoids from B. pandurata that showed broad range of biological activities, Boesenbergia rotunda is a ginger species that grows in such as strong antibacterial acitivity9-11, anti- inflammatory Southeast Asia, India, Sri Lanka, and Southern China. -
Environmental Weeds of Coastal Plains and Heathy Forests Bioregions of Victoria Heading in Band
Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band b Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Contents Introduction 1 Purpose of the list 1 Limitations 1 Relationship to statutory lists 1 Composition of the list and assessment of taxa 2 Categories of environmental weeds 5 Arrangement of the list 5 Column 1: Botanical Name 5 Column 2: Common Name 5 Column 3: Ranking Score 5 Column 4: Listed in the CALP Act 1994 5 Column 5: Victorian Alert Weed 5 Column 6: National Alert Weed 5 Column 7: Weed of National Significance 5 Statistics 5 Further information & feedback 6 Your involvement 6 Links 6 Weed identification texts 6 Citation 6 Acknowledgments 6 Bibliography 6 Census reference 6 Appendix 1 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed alphabetically within risk categories. 7 Appendix 2 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by botanical name. 19 Appendix 3 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by common name. 31 Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria i Published by the Victorian Government Department of Sustainability and Environment Melbourne, March2008 © The State of Victoria Department of Sustainability and Environment 2009 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. -
Genetic Characterization of Three Varieties of Astragalus Lentiginosus (Fabaceae)
Genetic characterization of three varieties of Astragalus lentiginosus (Fabaceae) BRIANJ. KNAus,' RICHC. CRONN,AND AARONLISTON I Knaus, B. J. (Oregon State University, Department of Botany and Plant Pa- thology, 2082 Cordley Hall, Corvallis, OR, 97331-2902, U.S.A.; e-mail: [email protected]), R. C. Cronn (USDA Forest Service Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, U.S .A.; e-mail: [email protected]) & A. Liston (Oregon State University, Depart- ment of Botany and Plant Pathology, 2082 Cordley Hall, Corvallis, OR, 97331- 2902, U.S.A.; e-mail: [email protected]).Genetic characterization of three varieties of Astragalus lentiginosus (Fabaceae). Brittonia 57: 334-344. 2005.-Astragalus lentiginosus is a polymorphic species that occurs in geologi- cally young habitats and whose varietal circumscription implies active morpho- logical and genetic differentiation. In this preliminary study, we evaluate the po- tential of amplified fragment length polymorphism (AFLP) markers to resolve infraspecific taxa in three varieties of Astragalus lentiginosus. Distance-based principle coordinate and neighbor-joining analyses result in clustering of individ- uals that is congruent with population origin and varietal circumscription. Anal- ysis of molecular variance of two Oregon varieties demonstrates that varietal categories account for 11% of the total variance; in contrast, geographic proximity does not contribute to the total variance. AFLPs demonstrate an ability to dis- criminate varieties of A. lentiginosus despite a potentially confounding geographic pattern, and may prove effective at inferring relationships throughout the group. Key words: AFLP, amplified fragment length polymorphism, Astragalus lenti- ginosus, genetic differentiation, infraspecific taxa. Astragalus lentiginosus Dougl. -
Phylogeny and Classification of the Melastomataceae and Memecylaceae
Nord. J. Bot. - Section of tropical taxonomy Phylogeny and classification of the Melastomataceae and Memecy laceae Susanne S. Renner Renner, S. S. 1993. Phylogeny and classification of the Melastomataceae and Memecy- laceae. - Nord. J. Bot. 13: 519-540. Copenhagen. ISSN 0107-055X. A systematic analysis of the Melastomataceae, a pantropical family of about 4200- 4500 species in c. 166 genera, and their traditional allies, the Memecylaceae, with c. 430 species in six genera, suggests a phylogeny in which there are two major lineages in the Melastomataceae and a clearly distinct Memecylaceae. Melastomataceae have close affinities with Crypteroniaceae and Lythraceae, while Memecylaceae seem closer to Myrtaceae, all of which were considered as possible outgroups, but sister group relationships in this plexus could not be resolved. Based on an analysis of all morph- ological and anatomical characters useful for higher level grouping in the Melastoma- taceae and Memecylaceae a cladistic analysis of the evolutionary relationships of the tribes of the Melastomataceae was performed, employing part of the ingroup as outgroup. Using 7 of the 21 characters scored for all genera, the maximum parsimony program PAUP in an exhaustive search found four 8-step trees with a consistency index of 0.86. Because of the limited number of characters used and the uncertain monophyly of some of the tribes, however, all presented phylogenetic hypotheses are weak. A synapomorphy of the Memecylaceae is the presence of a dorsal terpenoid-producing connective gland, a synapomorphy of the Melastomataceae is the perfectly acrodro- mous leaf venation. Within the Melastomataceae, a basal monophyletic group consists of the Kibessioideae (Prernandra) characterized by fiber tracheids, radially and axially included phloem, and median-parietal placentation (placentas along the mid-veins of the locule walls). -
Anaphalis Margaritacea (L) Benth
Growing and Using Native Plants in the Northern Interior of B.C. Anaphalis margaritacea (L) Benth. and Hook. F. ex C.B. Clarke pearly everlasting Family: Asteraceae Figure 79. Documented range of Anaphalis margaritacea in northern British Columbia. Figure 80. Growth habit of Anaphalis margaritacea in cultivation. Symbios Research & Restoration 2003 111 Growing and Using Native Plants in the Northern Interior of B.C. Anaphalis margaritacea pearly everlasting (continued) Background Information Anaphalis margaritacea can be found north to Alaska, the Yukon and Northwest Territories, east to Newfoundland and Nova Scotia, and south to North Carolina, Kentucky, Arizona, New Mexico and California. It is reported to be common throughout B.C. except in the northeast (Douglas et al. 1998). Growth Form: Rhizomatous perennial herb, with few basal leaves, alternate stem leaves light green above, woolly white underneath; flower heads in dense flat-topped clusters, yellowish disk flowers; involucral bracts dry pearly white; mature plant size is 20-90 cm tall (MacKinnon et al. 1992, Douglas 1998). Site Preferences: Moist to dry meadows, rocky slopes, open forest, landings, roadsides and other disturbed sites from low to subalpine elevations, throughout most of B.C. In coastal B.C., it is reported to be shade-intolerant and occupies exposed mineral soil on disturbed sites and water- shedding sites up to the alpine (Klinka et al. 1989). Seed Information Seed Size: Length: 0.97 mm (0.85 - 1.07 mm). Width : 0.32 mm (0.24 - 0.37 mm). Seeds per gram: 24,254 (range: 13,375 - 37,167). Volume to Weight Conversion: 374.0 g/L at 66.7.5% purity. -
Fairview Ecological Assessment Report Project: 225678
Prepared for: Santos Project: Fairview Ecological Assessment Report Project: 225678 16 November 2011 Proposed Quarries on Lots 4 WT217, 12 WT218 and 13 WT218. Document Control Record Document prepared by: Aurecon Australia Pty Ltd ABN 54 005 139 873 Level 1 Tennyson House 9 Tennyson Street Mackay QLD 4740 PO Box 1060 Mackay QLD 4740 Australia T +61 7 4977 5200 F +61 7 4977 5201 E [email protected] W aurecongroup.com A person using Aurecon documents or data accepts the risk of: a) Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version. b) Using the documents or data for any purpose not agreed to in writing by Aurecon. Report Title Proposed Quarries on Lots 4 WT217, 12 WT218 and 13 WT218. Document ID Project Number 225678 http://cwllrcmky01.conwag.com/livelink/livelink.exe?func=ll&objId=21769960 File Path &objAction=browse&viewType=1 Client Santos Client Contact Rev Date Revision Details/Status Prepared by Author Verifier Approver 0 9 November 2011 For internal review VJB VJB 1 16 November 2011 Final for Issue KH VJB JS JS Current Revision 1 Approval Author Signature Approver Signature Name Vanessa Boettcher Name Jane Stark Environmental Title Ecologist Title Scientist Project 225678 | File Quarry_Reports_Lots4_12_131 js edits.docx | 16 November 2011 | Revision 1 Contents 1 Background 1 1.1 Project Description 1 2 Methodology 2 2.1 Desktop Methodology 2 2.2 Field Methodology 2 3 Ecological assessment 3 3.1 Proposed Quarry on Lot 4 WT217 3 3.2 Proposed Quarry on Lot 12 WT218 5 3.3 Proposed Quarry on Lot 13 WT218 7 4 Conclusion 11 i 1 Background 1.1 Project Description Santos Ltd (Santos) have commissioned Aurecon Australia Pty Ltd (Aurecon) to undertake ecological investigations of proposed areas of development for the expansion of the Fairview Gas Fields. -
Vasorelaxant Effect of Boesenbergia Rotunda and Its Active Ingredients
plants Article Vasorelaxant Effect of Boesenbergia rotunda and Its Active Ingredients on an Isolated Coronary Artery 1, 1, 1 1 2 Deepak Adhikari y, Dal-Seong Gong y, Se Hee Oh , Eun Hee Sung , Seung On Lee , Dong-Wook Kim 2, Min-Ho Oak 1,* and Hyun Jung Kim 1,* 1 College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun 58554, Korea; [email protected] (D.A.); [email protected] (D.-S.G.); [email protected] (S.H.O.); [email protected] (E.H.S.) 2 Department of Oriental Medicine Resources, Mokpo National University, Muan-gun 58554, Korea; [email protected] (S.O.L.); [email protected] (D.-W.K.) * Correspondence: [email protected] (M.-H.O.); [email protected] (H.J.K.); Tel.: +82-61-450-2681 (M.-H.O.); +82-61-450-2686 (H.J.K.) The authors contributed to this work equally. y Received: 4 November 2020; Accepted: 27 November 2020; Published: 1 December 2020 Abstract: Cardiovascular diseases are a major cause of death in developed countries. The regulation of vascular tone is a major approach to prevent and ameliorate vascular diseases. As part of our ongoing screening for cardioprotective natural compounds, we investigated the vasorelaxant effect of rhizomes from Boesenbergia rotunda (L.) Mansf. [Boesenbergia pandurata (Roxb.) Schltr.] used as a spice and herbal medicine in Asian countries. The methanol extract of B. rotunda rhizomes (BRE) exhibited significant vasorelaxation effects ex vivo at EC values of 13.4 6.1 µg/mL and 40.9 7.9 µg/mL, 50 ± ± respectively, with and without endothelium in the porcine coronary artery ring. -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
Notes on Grasses (Poaceae) for the Flora of China, VI. New Combinations in Stipeae and Anthoxanthum Author(S): Sylvia M
Notes on Grasses (Poaceae) for the Flora of China, VI. New Combinations in Stipeae and Anthoxanthum Author(s): Sylvia M. Phillips and Wu Zhen-Lan Source: Novon, Vol. 15, No. 3 (Sep., 2005), pp. 474-476 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3393497 Accessed: 21-07-2016 02:11 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Missouri Botanical Garden Press is collaborating with JSTOR to digitize, preserve and extend access to Novon This content downloaded from 159.226.89.2 on Thu, 21 Jul 2016 02:11:29 UTC All use subject to http://about.jstor.org/terms Notes on Grasses (Poaceae) for the Flora of China, VI. New Combinations in Stipeae and Anthoxanthum S+-lvia;V. Phillips Herbarium, Royal Botanic Gardens, Keu. Surrey TB79 3ABt United Kingdom. [email protected] Wu Zhen-LvIrl Herbarium, Northwest Plateau Institute of Biolog!. \(aclemia Sinica, 78 Xiguan Street, Xining, Qinghai 810()01. China ABSTRACT. When Or^zopsis is e onfined to the tv^)e gelleIic reassessmellt for North America and w-ith species, Chinese species are placed in Achrlathe- ollal-)oIatoIs folloss-ed this uith a report on molec- rum and Piptatherum.