Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch

Year: 2006

The uses of molecular dating analyses in evolutionary studies, with examples from the angiosperms

Rutschmann, Frank Kaspar

Abstract: Die sechs Kapitel der vorliegenden Dissertation befassen sich alle mit verschiedenen Aspekten von molekularen Datierungsmethoden, englisch molecular dating methods genannt. Dabei reicht die Spannweite der behandelten Themen von experimentellen Untersuchungen der Methoden selbst bis hin zur praktischen Anwendung der molekularen Altersbestimmung für die Aufklärung von biologischen und evolutionsgeschichtlichen Fragen bei verschiedenen Gruppen von Blütenpflanzen (Angiospermen). The six chapters that compose this dissertation are all related to various aspects of molecular dating, ranging from more methodological and experimental work to the application of different methods in the context of biological and evolutionary questions and hypotheses related to different groups of flowering (Angiosperms).

Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-163459 Dissertation Published Version

Originally published at: Rutschmann, Frank Kaspar. The uses of molecular dating analyses in evolutionary studies, with examples from the angiosperms. 2006, University of Zurich, Faculty of Science. The Uses of Molecular Dating Analyses in Evolutionary Studies, with Examples from the Angiosperms

Dissertation

zur

Erlangung der naturwissenschaftlichen Doktorwürde

(Dr. sc. nat.)

vorgelegt der

Mathematisch-naturwissenschaftlichen Fakultät

der

Universität Zürich

von

Frank Kaspar Rutschmann

von

Zürich ZH

Promotionskomitee:

Prof. Dr. Elena Conti (Vorsitz) Prof. Dr. Peter Linder Dr. Torsten Eriksson

Zürich 2006 Acknowledgements

Firstofall,Iwouldliketoexpressmygratitudetowardsmysupervisor,ElenaConti. Thelastfouryearswouldnothavebeenasexcitingandfruitfulwithoutyourfullsupport.Ireally appreciateyourstyleofsupervisionwhichgavemethefreedomtoexplorethethingsIwas fascinatedabout.Iamveryimpressedbyyourenthusiasmandyourdedicationtoallsortsof biologicalquestions,butespeciallybyyoursocialempathy.Yourofficedoorwasalwaysopen forallkindsofquestionsevenbeyondbiology. IwouldalsoliketothankPeterLinderitwasagreatpleasuretocollaboratewithyou, andyoursenseofhumormadethestrugglewithstatisticsandmanuscriptsmuchmorefun. Agreatdealoflaughterwasalsoinitiatedbymyfantasticandverypatientoffice matesMerranMatthews,JosephineJackschandGabrieleSalvo,whooftensuppliedmewith mentalandphysicalcalories.ButalsoTimovanderNiet,SandroWagen,ZsófiaHockandPéter Szövényi,EvelinPfeifer,UrsLandergott,BrigitteMarazzi,ClaudiaWinteler,ChloéGalley,Rolf Rutishauser,NiklausMüller,AlexBernhard,JakobSchneller,BurgiLiebst,MelanieRanft, RosemarieSigrist,RetoNyffeler,DanielHeinzmann,JürgSchönenberger,MariavonBalthazar, andmanyothermembersoftheinstitutecontributedtoanenjoyableatmosphereandmany cheerfuldiscussions.Thestaffofthesecretariat,thelibrary,andthebotanicalgardenmadeevery journeyoutsidetheofficeapleasureandprovidedanefficientworkingenvironment,especially CorinneBurlet,ClaudioBrun,BarbaraSeitz,ElenaBenetti,NadineKofmehl,Elisabeth Schneeberger,andDanielSchlagenhauf. Finally,Iwouldliketothankmyfamilyandfriends,whosupportedmeinmany differentways.Thankyousomuch,CorinneFurrer,AnneandChristianRutschmann,Dieter Rutschmann,AnnetteandJochenWild,AndriSchläpferandLindaZehnder,Renataand HansjörgSchlaepfer,PhilipMolineandSaskiaLampert,NikolausAmrhein,Annemarieand NiklausKohlerPfister,FrancesAthanasiou,TorstenEriksson,StephanLange,KarenHilzinger, ChristophEichenberger,BeatSeiler,LiloMichel,LukasandThomasFurrer,DominiqueSirena, CorsinMüller,FlorianSteiner,andJonasWittwer. LastbutnotleastIowemuchtomyparentswhohavesupportedmeinallconceivable ways.Icansincerelysaythatwithoutyou,thisprojectwouldnothavebeenpossible.Itherefore wouldliketodedicatethisworktomymother,MargritRutschmann,andmylatefather,Peter Rutschmann.

Table of Contents

Publication list ...... 4

General introduction...... 5

Chapters:

I. Moleculardatingofphylogenetictrees: Abriefreviewofcurrentmethodsthatestimatedivergencetimes...... 13

II. DidreallydisperseoutofIndia? MoleculardatingevidencefromrbcL,ndhF,andrpl16intronsequences...... 47

III. Calibrationofmolecularclocksandthebiogeographichistory ofCrypteroniaceae:AreplytoMoyle...... 85

IV. TempoandmodeofdiversificationintheAfrican andrelatedtaxa...... 93

V. Assessingcalibrationuncertaintyinmoleculardating: Theassignmentoffossilstoalternativecalibrationpoints...... 137

VI. Taxonsamplingeffectsinmolecularclockdating: AnexamplefromtheAfricanRestionaceae...... 187

General summary...... 219

Zusammenfassung...... 221

Lebenslauf ...... 225

Publication list

ThefollowingpublicationsstemfrommyyearsasaPh.D.studentattheInstituteofSystematic Botany,UniversityofZurich,Switzerland(20022006).Theyrepresenttenarticles,ofwhichI havewrittenfiveasafirstorsingleauthor.Fourpapersarealreadypublished.Themostrecent workislistedfirst. Rutschmann,F.,J.Schönenberger,H.P.Linder,andE.Conti.Tempoandmodeofdiversification intheAfricanPenaeaceaeandrelatedtaxa.In preparation. BarkerN.P.,P.H.Weston,andF.Rutschmann.Moleculardatingoftheradiationofthe ProteaceaeisonlypartiallycongruentwiththebreakupofGondwana.In preparation. RutschmannF.,T.Eriksson,K.AbuSalim,andE.Conti.Assessingcalibrationuncertaintyin moleculardating:Theassignmentoffossilstoalternativecalibrationpoints.Submitted to Systematic Biology. SchlaepferH.andF.Rutschmann.Derivingspeciesresponsesfromvegetationrelevés:an iterativeapproach.Submitted to Botanica Helvetica. Schönenberger,J.,E.Conti,F.Rutschmann,andR.Dahlgren.PenaeaceaeinK.Kubitzki,ed. Thefamiliesandgeneraofvascularplants.Vol.9.Springer,Berlin.In press. RutschmannF.2006.Moleculardatingofphylogenetictrees:Abriefreviewofcurrentmethods thatestimatedivergencetimes.Diversity and Distributions12:3548. LinderH.P.,C.R.Hardy,andF.Rutschmann.2005.Taxonsamplingeffectsinmolecularclock dating:AnexamplefromtheAfricanRestionaceae.Molecular Phylogenetics and Evolution35: 569–582. ContiE.,F.Rutschmann,T.Eriksson,K.Sytsma,andD.Baum.2004.Calibrationofmolecular clocksandthebiogeographichistoryofCrypteroniaceae:AreplytoRobertG.Moyle.Evolution 58(8):18741876. RutschmannF.2005.BayesianmoleculardatingusingPAML/multidivtime.Astepbystep manual,version1.5(July2005).UniversityofZurich,Switzerland.Availableat http://www.plant.ch. RutschmannF.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?MoleculardatingevidencefromrbcL,ndhF,andrpl16intronsequences. International Journal of Sciences165(4Suppl.):6983.

4 General introduction

Inthequestofunderstandingevolutionarymechanismsandprocesses,accurate informationaboutthetimingofspecificeventsinthepastisneeded.Forexample,itisimportant toknowhowfastretroviruseslikethehumanimmunodeficiencyvirus(HIV)changetheir genotype,inordertodesignnewdrugsorvaccinesthatwillworkalsoforfuturestrains(Korber et al.,2000).Or,tomentionanotherfascinatingexample,itisofgeneralinterestevenbeyond thelifesciencestoknowwhenthefirsthumansstartedtodivergefromthechimpanzees (between6.3and5.4millionyearsago;Pattersonet al.,2006). Untilfortyyearsago,informationaboutthetimingofpastevolutionaryeventswasonly availableintheformoffossils.Fossilsareusuallydatedbasedonageestimatesofthe stratigraphiclayerinwhichtheyarefound,andtheycanbeassignedtomoderntaxaby comparingthemorphologicalcharacterspreservedinthefossilwiththetraitsofextantspecies (Hennig,1969;DoyleandDonoghue,1993).However,mostorganismsthatoncepopulatedour planethavenotbeenpreservedinthefossilrecord,ortheirfossilshavenotbeendetectedsofar (Darwin,1859).Thisimpliesthatformostorganisms,nodirectinformationabouttheir phylogeneticageisavailable. In1965,ZuckerkandlandPaulingpostulatedthattheamountofdifferencebetweenthe DNAmoleculesoftwospeciesisafunctionofthetimesincetheirevolutionaryseparation.This wasshownbycomparingproteinsequences(hemoglobins)fromdifferentspeciesandfurther comparingaminoacidsubstitutionrateswithagesestimatedfromfossils.Basedontheseearly findings,standardtechniquesweredevelopedtoinfertimeinformationfrommolecular(DNAor protein)distancesamongspecies,givingorigin,overtime,toarangeofdifferentmolecular datingmethods(Magallón,2004;WelchandBromham,2005;Penny,2005). Ingeneral,amoleculardatingstudybeginswiththereconstructionofthephylogenetic relationshipsamongselectedtaxa.Then,specializeddatingmethodsareusedtotransformthe phylogenetictreeintoanultrametrictree.Whereasbranchlengthsinthephylogramrepresentthe numberofabsolutemolecularsubstitutions,theyexpressrelativetimeoflineagepersistencein theultrametrictree.Thetransformationofrelativeintoabsolutetimerequiressometypeof calibration,forwhichexternaltimeinformation–eitherstemmingfromfossilsorfromdated paleogeologiceventsisassignedtoatleastonenodeofthephylogeny(Sanderson,1998).The resultsofsuchamoleculardatinganalysisareestimatesofdivergencetimesforeverylineage, summarizedinachronogram.

5 Undertheassumptionofastrictmolecularclock,allbranchesofaphylogenetictree evolveatthesame,globalsubstitutionrate,whichmakesthesecondstep,thereconstructionofan ultrametrictree,relativelyeasy(Felsenstein,1981).However,itisknownthatvariationinrates ofnucleotidesubstitution,bothalongalineageandbetweendifferentlineages,ispervasive (Britten,1986;Gillespie,1986),especiallyifsequencesofdistantlyrelatedspeciesareanalyzed. Therefore,new“relaxedclock”moleculardatingmethodshavebeendevelopedduringthelast tenyears,whichtrytomodelratevariationamonglineages(e.g.,PenalizedLikelihood, Sanderson2002;Bayesiandatingwithmultidivtime,ThorneandKishino,2002;relaxedclock modelinBEAST,Drummondetal.2006).Thisisamuchmoredifficulttask,because substitutionratesandtimehavetobedisentangledforeverylineage.Furthermore,suchmodern datingmethodsalsoallowtheincorporationofmultiplecalibrationpoints(ifavailable),and provideerrorestimatesforthecomputedtimesandrates.Inthefirstchapterofthepresentthesis (Rutschmann,2006),Ireviewthemostcommonmoleculardatingmethodsbyclassifyingthem intothreegroups:i)methodsthatuseamolecularclockandoneglobalrateofsubstitution,ii) methodsthatcorrectforrateheterogeneity,andiii)methodsthattrytoincorporaterate heterogeneity.StartingfromarecentreviewbyMagallón(2004),Iexpandtothemostrecent methods,emphasizingpracticalmethodologicaldetails,providingusefulcomparisontables,and addingnewlinkstothemostimportantliteratureonmoleculardating. Duringthelastfifteenyears,moleculardatinghasbecomeanimportantandincreasingly populartoolforevolutionarybiologists.Forexample,thetimingoftheeukaryoticevolution (Douzeryet al.,2004),theEarlyCambrianoriginofthemainphylaofanimals(Cambrian explosion;Wrayet al.,1996;Welchet al. 2005),andthereplacementofdinosaursbymodern birdsandmammalsinthelateTertiary(Madsen,2001)haveallbeeninvestigatedbyestimating divergencetimesbasedonmolecularsequencedata.Alsoinplants,ageestimateshavebeen inferredatalltaxonomiclevels,forexamplefortheplastidcontainingeukaryotes(Yoonet al., 2004),landplants(Sanderson,2003),tracheophytes(Soltiset al.,2002),angiosperms(Bellet al., 2005;MagallónandSanderson,2005),themonocotdicotdivergence(Chawet al.,2004), Asterids(Bremeret al.,2004),Dipsacales(BellandDonoghue,2005),Crypteroniaceae(Contiet al.,2002),and(Berryet al.,2004).However,inordertoinvestigateevolutionary processes,ageestimatesexhibittheirfullpotentialonlyincombinationwithotherhistorical evidence,suchasthetimingandsequenceofpaleotectonicevents,climatereconstructions,or knowledgeabouttheevolutionofmorphologicalandecologicaltraits. Forexample,moleculardatingestimatesprovideusefulinformationfortesting biogeographicalhypotheses.Ingeneral,thedispersaloforganismscanbeexplainedeitherby longdistancedispersalacrossexistingbarriers,orbydisjunctionsalongancientpaleotectonic

6 corridorsthatsubsequentlydisappeared(vicariance).Mostprobably,bothdispersaland vicariancehaveplayedmajorrolesinproducingdisjunctdistributionpatterns,andmodern conceptslikegeodispersal(Liebermann,2003;Reeet al.,2005)trytoconnectbothmodelsby focusingonthevariablestrengthofthedispersalbarrierovertime.Ifthetimeframeisknown whentwolineageswithadisjunctdistributiondiverged,itispossibletosearchforcompatible dispersalcorridorsformedbytemporallyreducedbarrierswhichallowedadispersalatthat specifictime.WesearchforsuchpatternsinchaptertwoofthisthesisbytestingtheoutofIndia hypothesisconnectedtothedispersalofCrypteroniaceae,tropicalrainforesttreescurrently occurringinSriLankaandSoutheastAsia(Rutschmannet al.,2004).Inanearlierstudy,Contiet al.(2002)usedmoleculardatingtotestwhetherCrypteroniaceaewereamongotherGondwanan taxathathavebeencarriedfromGondwanatoAsiabyraftingontheIndianplate.Accordingto thehypothesis,Crypteroniaceaelaterdispersed“outofIndia”intoSouthandSoutheastAsia, afterIndiacollidedwiththeAsiancontinentintheEarlyTertiary.Contiet al.(2002)concluded insupportingthishypothesisforCrypteroniaceae,becauseboththeirphylogenetic reconstructionsandtheirdatingestimatesofrelevantnodeswereconcordantwiththegeologic historyoftheIndianPlate.However,becausetheseconclusionswerebasedonevidencefrom onlyonegeneandlimitedtaxonsampling,werepeatedtheanalyses(seechaptertwo)by expandingboththetaxonandgenesamplingandcomparingtheresultsofthreedifferent moleculardatingmethods(clockdependentLangleyFitch,LangleyandFitch,1974;Non ParametricRateSmoothing,Sanderson,1997;andPenalizedLikelihood,Sanderson,2002). TheoutofIndiahypothesisisagainaddressedinthethirdthesischapter(Contiet al., 2004),whichrepresentstheanswertoanopinionexpressedbyRobertG.Moyleinthe InternationalJournalofOrganicEvolution(Moyle,2004).Moylereanalyzedthedatasetfrom Contiet al.(2002)byusingadifferenttaxonsamplingandanothercalibrationpoint,criticizing thebiogeographicinterpretationproposedinContietal.(2002).Inourreply,wehighlightsome weaknessesinMoyle’sanalyticalprocedure,atthesametimeofferingsomegeneralreflections onthecontroversialissueofcalibrationinmoleculardatinganalyses. Timeinformationfrommoleculardatingcanalsobeusedtocharacterizediversification patternsstemmingfromperiodsofextraordinarilyhighorlowspeciationand/orextinctionrates, suchasrapidradiations.Forexample,thetempoandmodeofaradiationcanbelinkedtothe simultaneousevolutionofbioticand/orabioticfactors,suchaskeyinnovationsorclimaticand edaphicshifts.Inchapterfourofthepresentthesis,weinvestigatesuchpatternsinarelatively smallgroupoftreesandwhichbelongtotheSouthandEastAfricanPenaeaceae, Oliniaceae,andRhynchocalycaceae,closelyrelatedtotheCrypteroniaceaestudiedinchapters twoandthree(Rutschmannet al.,in prep).Chronogramsinferredinpreviousstudies(Contiet

7 al.,2002;Rutschmannet al.,2004)revealedlongstembranchesforbothPenaeaceaeand Oliniaceae,indicatingalongtimeperiodbetweentheoriginanddiversificationoftheselineages. Thechronogramsalsosuggestedthatthislongphasewasfollowedbyarelativelyshortepisode withrapiddiversification,especiallywithinPenaeaceae.Basedonphylogeneticandmolecular datinganalyses,lineagesthroughtimeplots,andinferencesofancestralstatesbasedon maximumlikelihood,weaimedatreconstructingthetempo,mode,andpossiblereasonsof diversificationinPenaeaceaeandOliniaceae. Despitetheirpopularity,twomainproblemsstillplaguetheuseofmoleculardating methods.First,moleculardatingreliesentirelyonthequalityofcalibration.Amajorsourceof uncertaintypertainstotheassignmentoffossilstospecificnodesinaphylogeny,especiallywhen alternativepossibilitiesexistthatcanbeequallyjustifiedonmorphologicalgrounds(Contiet al., 2004;Magallón,2004;ReiszandMüller,2004).Whilewidespreadandchallenging,thisproblem isoftenignoredinpublishedpapers.Inthefifthchapterofthisthesis(Rutschmannet al., submitted),weusedthefossilcrossvalidationprocedureofNearandSanderson(2004)ina novelwaytoassessuncertaintyinfossilnodalassignment.Morespecifically,weusedthe phylogenyof,sixfossils,and72differentcombinationsofcalibrationpointstoidentify andcharacterizetheassignmentsthatproducethemostinternallyconsistentageestimates. Anadditionalmajorchallengeinmoleculardatingisrelatedtotaxonsamplingeffectson theestimatedages.Inthefinalchapterofthisthesis(Linderet al.,2005),wetestedthesensitivity ofthreecommonlyusedmoleculardatingmethodstotaxonsampling(NonParametricRate Smoothing,Sanderson,1997;PenalizedLikelihood,Sanderson,2002;Bayesiandatingwith multidivtime,ThorneandKishino,2002).ByusinganearlycompletesampleoftheRestioclade oftheAfricangrasslikeRestionaceae(300species,including26outgroupspecies),weformed nestedsubsetsof35,51,80,120,and150speciesandperformedmoleculardatinganalysesbased onthefulldatasetandallthesubsets.Wethencomparedtheimpactofthedifferentdatasetsizes anddatingmethodsontheageestimates. Thepresentthesiscomprisessixchapters,fourofthemalreadypublished,thatcover variousaspectsrelatedtomoleculardating,rangingfrommoremethodologicalandexperimental worktotheapplicationofdifferentmethodsinthecontextofbiologicalandevolutionary questions.Iwishthereaderaninspiringandpleasurablereadingexperience.

8 References

Bell,C.D.,andM.J.Donoghue.2005.Datingthedipsacales:Comparingmodels,genes,and evolutionaryimplications.American Journal of Botany92:284296.

Bell,C.D.,D.E.Soltis,andP.S.Soltis.2005.TheageoftheAngiosperms:Amolecular timescalewithoutaclock.Evolution59:12451258.

Berry,P.E.,W.J.Hahn,K.J.Sytsma,J.C.Hall,andA.Mast.2004.Phylogeneticrelationships andbiogeographyofFuchsia()basedonnoncodingnuclearandchloroplastDNA data.American Journal of Botany94:601614.

Bremer,K.,E.M.Friis,andB.Bremer.2004.Molecularphylogeneticdatingofasteridflowering plantsshowsearlyCretaceousdiversification.Systematic Biology53:496505.

Britten,R.J.1986.RatesofDNAsequenceevolutiondifferbetweentaxonomicgroups.Science 231:13931398.

Chaw,S.M.,C.C.Chang,H.L.Chen,andW.H.Li.2004.Datingthemonocotdicotdivergence andtheoriginofcoreusingwholechloroplastgenomes.Journal of Molecular Evolution 58:424441.

Conti,E.,T.Eriksson,J.Schönenberger,K.J.Sytsma,andD.A.Baum.2002.EarlyTertiaryout ofIndiadispersalofCrypteroniaceae:evidencefromphylogenyandmoleculardating.Evolution 56:19311942.

Conti,E.,F.Rutschmann,T.Eriksson,K.J.Sytsma,andD.A.Baum.2004.Calibrationof molecularclocksandthebiogeographichistoryofCrypteroniaceae:AreplytoMoyle.Evolution 58:18741876.

Darwin,C.1859.Ontheoriginofspeciesbymeansofnaturalselectionorthepreservationof favouredracesinthestruggleforlife.JohnMurray,London.

Douzery,E.J.P.,E.A.Snell,E.Bapteste,F.Delsuc,andH.Philippe.2004.Thetimingof eukaryoticevolution:Doesarelaxedmolecularclockreconcileproteinsandfossils?Proceedings of the National Academy of Sciences USA101:1538615391.

Doyle,J.A.,andM.J.Donoghue.1993.Phylogeniesandangiospermdiversification. Paleobiology19:141167.

Drummond,A.J.,S.Y.W.Ho,M.J.Phillips,andA.Rambaut.2006.Relaxedphylogeneticsand datingwithconfidence.PLoS Biology4:e88.

Felsenstein,J.1981.EvolutionarytreesfromDNAsequences:amaximumlikelihoodapproach. Journal of Molecular Evolution17:368376.

Gillespie,J.H.1986.Ratesofmolecularevolution.Annual Review of Ecology, Evolution and Systematics17:637665.

Hennig,W.1969.DieStammesgeschichtederInsekten.Kramer,Frankfurt,Germany.

9 Korber,B.,M.Muldoon,J.Theiler,F.Gao,R.Gupta,A.Lapedes,B.H.Hahn,S.Wolinsky,and T.Bhattacharya.2000.TimingtheancestoroftheHIV1pandemicstrains.Science288:1789 1796.

Langley,C.H.,andW.Fitch.1974.Anestimationoftheconstancyoftherateofmolecular evolution.Journal of Molecular Evolution3:161177.

Lieberman,B.S.2003.Unifyingtheoryandmethodologyinbiogeography.Evolutionary Biology 33

Linder,H.P.,C.R.Hardy,andF.Rutschmann.2005.Taxonsamplingeffectsinmolecularclock dating:anexamplefromtheAfricanRestionaceae.Molecular Phylogenetics and Evolution 35:569582.

Madsen,O.,M.Scally,C.J.Douady,D.J.Kao,R.W.Debry,R.Adkins,H.M.Amrine,M.J. Stanhope,W.W.DeJong,andM.S.Springer.2001.Paralleladaptiveradiationsintwomajor cladesofplacentalmammals.Nature409:610614.

Magallón,S.A.2004.Datinglineages:molecularandpaleontologicalapproachestothetemporal frameworkofclades.International Journal of Plant Sciences165:721.

Magallón,S.A.,andM.J.Sanderson.2005.Angiospermdivergencetimes:Theeffectofgenes, codonpositions,andtimeconstraints.Evolution59:16531670.

Moyle,R.G.2004.Calibrationofmolecularclocksandthebiogeographichistoryof Crypteroniaceae.Evolution58:18711873.

Near,T.J.,andM.J.Sanderson.2004.Assessingthequalityofmoleculardivergencetime estimatesbyfossilcalibrationsandfossilbasedmodelselection.Philosophical Transactions of the Royal Society of London B: Biological Sciences359:14771483.

Patterson,N.,D.J.Richter,S.Gnerre,E.S.Lander,andD.Reich.2006.Geneticevidencefor complexspeciationofhumansandchimpanzees.Nature Advance online publication: doi:10.1038/nature04789.

Penny,D.2005.Relativityformolecularclocks.Nature436:183184.

Ree,R.H.,B.R.Moore,C.O.Webb,andM.J.Donoghue.2005.Alikelihoodframeworkfor inferringtheevolutionofgeographicrangeonphylogenetictrees.Evolution59:22992311.

Reisz,R.R.,andJ.Müller.2004.Moleculartimescalesandthefossilrecord:apaleontological perspective.TRENDS in Genetics20:237241.

Rutschmann,F.2006.Moleculardatingofphylogenetictrees:Abriefreviewofcurrentmethods thatestimatedivergencetimes.Diversity and Distributions12:3548.

Rutschmann,F.,T.Eriksson,K.AbuSalim,andE.Conti.Assessingcalibrationuncertaintyin moleculardating:Theassignmentoffossilstoalternativecalibrationpoints.Submitted.

Rutschmann,F.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?MoleculardatingevidencefromrbcL,ndhF,andrpl16sequences. International Journal of Plant Sciences165:6983.

10 Rutschmann,F.,J.Schönenberger,H.P.Linder,andE.Conti.Tempoandmodeof diversificationintheAfricanPenaeaceaeandrelatedtaxa.In preparation.

Sanderson,M.J.1997.Anonparametericapproachtoestimatingdivergencetimesintheabsence ofrateconstancy.Molecular Biology and Evolution14:12181231.

Sanderson,M.J.1998.Estimatingrateandtimeinmolecularphylogenies:beyondthemolecular clock?Pp.242264inD.E.Soltis,P.S.SoltisandJ.J.Doyle,eds.Molecularsystematicsof plantsII;DNAsequencing.KluwerAcademicPublishers,Norwell,MA.

Sanderson,M.J.2002.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes:a PenalizedLikelihoodapproach.Molecular Biology and Evolution19:101109.

Sanderson,M.J.2003.Moleculardatafrom27proteinsdonotsupportaPrecambrianoriginof landplants.American Journal of Botany90:954956.

Soltis,P.S.,D.E.Soltis,V.Savolainen,P.R.Crane,andT.G.Barraclough.2002.Rate heterogeneityamonglineagesoftracheophytes:Integrationofmolecularandfossildataand evidenceformolecularlivingfossils.Proceedings of the National Academy of Sciences USA 99:44304435.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata.Systematic Biology51:689702.

Welch,J.J.,andL.Bromham.2005.Moleculardatingwhenratesvary.TRENDS in Ecology and Evolution20:320327.

Welch,J.J.,E.Fontanillas,andL.Bromham.2005.Moleculardatesforthe"Cambrian explosion":Theinfluenceofpriorassumptions.Systematic Biology54:672678.

Wray,G.A.,J.S.Levinton,andL.S.Shapiro.1996.Molecularevidencefordeepprecambrian divergencesamongmetazoanphyla.Science274:568573.

Yoon,H.S.,J.D.Hackett,C.Ciniglia,G.Pinto,andD.Bhattacharya.2004.Amolecular timelinefortheoriginofphotosyntheticEukaryotes.Molecular Biology and Evolution21:809 818.

Zuckerkandl,E.,andL.Pauling.1965.Evolutionarydivergenceandconvergenceinproteins.Pp. 97166inV.BrysonandH.Vogel,eds.EvolvingGenesandProteins.AcademicPress,New York.

11

12

Chapter I. Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times

FrankRutschmann Invitedpaperfollowingthemeeting“RecentFloristicRadiationsintheCapeFlora”inZurich, Switzerland,3–5July2004,organizedbyPeterLinder,ChloéGalley,CyrilGuibert,ChrisHardy, TimovanderNiet,andPhilipMoline,UniversityofZurich. Publishedin DiversityandDistributions12:3548.2006.

13 Abstract Thisarticlereviewsthemostcommonmethodsusedtodayforestimatingdivergence timesandratesofmolecularevolution.Themethodsaregroupedintothreemainclasses:a) methodsthatuseamolecularclockandoneglobalrateofsubstitution,b)methodsthatcorrectfor rateheterogeneity,andc)methodsthattrytoincorporaterateheterogeneity.Additionally,links tothemostimportantliteratureonmoleculardatingaregiven,includingarticlescomparingthe performanceofdifferentmethods,papersthatinvestigateproblemsrelatedtotaxon,gene,and partitionsampling,andliteraturediscussinghighlydebatedissueslikecalibrationstrategiesand uncertainties,datingprecisionandthecalculationoferrorestimates. Keywords:Divergencetimeestimation,moleculardatingmethods,rateheterogeneity, review.

14 Introduction TheuseofDNAsequencestoestimatethetimingofevolutionaryeventsisincreasingly popular.Theideaofdatingevolutionarydivergencesusingcalibratedsequencedifferenceswas firstproposedin1965byZuckerkandlandPauling(1965).Theauthorspostulatedthatthe amountofdifferencebetweentheDNAmoleculesoftwospeciesisafunctionofthetimesince theirevolutionaryseparation.Thiswasshownbycomparingproteinsequences(hemoglobins) fromdifferentspeciesandfurthercomparingaminoacidsubstitutionrateswithagesestimated fromfossils.Basedonthiscentralidea,moleculardatinghasbeenusedincountlessstudiesasa methodtoinvestigatemechanismsandprocessesofevolution.Forexample,thetimingofthe eukaryoticevolution(Douzeryet al.,2004),theEarlyCambrianoriginofthemainphylaof animals(Cambrianexplosion;Wrayet al.,1996;SmithandPeterson,2002;ArisBrosouand Yang,2003),thereplacementofdinosaursbymodernbirdsandmammalsinthelateTertiary (Madsen,2001),andtheageofthelastcommonancestorofthemainpandemicstrainofhuman immunodeficiencyvirus(HIV;Korberet al.,2000)haveallbeeninvestigatedusingmolecular dating.Alsoinplants,therearenumerousstudieswheremoleculardatingmethodshavebeen usedtoinvestigatethetimeframeofevolutionaryevents,e.g.fortestingbiogeographical hypothesesortoinvestigatethecausesofrecentradiations(foramorecompletereviewsee Sandersonet al.,2004).Forexample,datingtechniqueshavebeenappliedontaxafromvery differenttaxonomiclevels,e.g.toinfertheageofplastidcontainingeukaryotes(Yoonet al., 2004),landplants(Sanderson,2003a),tracheophytes(Soltiset al.,2002),angiosperms(Bellet al.,2005;Wikströmet al.,2001,2003;Magallón,2001;SandersonandDoyle,2001),monocot dicotdivergence(Chawet al.,2004),Asterids(Bremeret al.,2004),Myrtales(Sytsmaet al., 2004),Crypteroniaceae(Contiet al.,2002),andFuchsia(Berryet al.,2004). Thegoalofthisarticleistogiveashortoverviewonthemostcommonlyusedmoleculardating methods.Toallowforeasiercomparisons,thedifferentmethodsforestimatingdivergencetimes arealsosummarizedintables13.

15 The ideal case scenario: A molecular clock and one global rate of substitution

Inthespecialcaseofamolecularclock,allbranchesofaphylogenetictreeevolveatthe same,globalsubstitutionrate.Theclockliketreeisultrametric,whichmeansthatthetotal distancebetweentherootandeverytipisconstant.

Method1:Linearregression(Nei,1987;LiandGraur,1991;Hilliset al.,1996;Sanderson, 1998) Inanultrametrictree,nodaldepthscanbeconvertedeasilyintodivergencetimes,because themoleculardistancebetweeneachmemberofasisterpairandtheirmostrecentcommon ancestorisonehalfofthedistancebetweenthetwosequences.Ifthedivergencetimeforatleast onenodeisknown(calibrationpoint),theglobalrateofsubstitutioncanbeestimatedand,based onthat,divergencetimesforallnodescanbecalculatedbylinearregressionofthemolecular distances(LiandGraur,1991;Sanderson,1998). Inotherwords:theobservednumberofdifferencesDbetweentwogivensequencesisa functionoftheconstantrateofsubstitutionr[subst.*site1*millionyears1]andthetimet [millionyears]elapsedsincethelineageexists.Ifwehaveonecalibrationpoint(e.g.ifwecan assignafossilorgeologicaleventtoonespecificnodeinthetree),wecancalculatetheglobal substitutionrateasfollows:r=D/2t.Inasecondstep,wecanusetheglobalratertocalculate thedivergencetimebetweenanyothertwosequences:T=D/2r. Inthosecaseswherewehavemorethanonecalibrationpoint,wecanplotallcalibration nodesinanagegeneticdistancediagram,builda(weighted)regressionline,whoseslopeisa functionoftheglobalsubstitutionrate,andtheninterpolate(orextrapolate)thedivergencetimes fortheunknownnodes.Thescatterofdatapointsaroundtheregressionlineprovidesthena confidenceintervalaroundestimatedages. Althoughitispossibletoestimatetheglobalsubstitutionrateroveranentirephylogeny (seemethods3and4),pairwisesequencecomparisonshaveprovidedthemostwidelyused approachtomoleculardatinguntilapproximatelyfiveyearsago,probablybecausethe calculationscanbedoneeasilywithanystatisticalorspreadsheetsoftware.

16 Method2:Treebasedmeanpathlengthmethod(BremerandGustafsson,1997;Brittonet al.,2002) Themean path length methodestimatesratesanddivergencetimesbasedonthemean pathlength(MPL)betweenanodeandeachofitsterminals.BycalculatingtheMPLbetweena calibrationnodeandallitsterminals,anddividingitbytheknownageofthenode,theglobal substitutionrateisobtained.Tocalculatethedivergencetimeofanode,itsMPLisdividedbythe globalrate.Althoughthecalculationissimpleenoughtobedonebyhand,Brittonet al.(2002) provideaPascalprogram,namedPATH,fortheanalysisoflargertrees.

Method3:Treebasedmaximumlikelihoodclockoptimization(LangleyandFitch,1974; Sanderson,2003b) TheLangley-Fitch methodusesmaximumlikelihood(ML)tooptimizetheglobalrateof substitutions,startingwithaphylogenyforwhichbranchlengthsareknown.Usingthe optimized,constantrate,branchlengthsanddivergencetimesarethenestimated.Finally,the resultsplustheoutcomeofachisquaredtestofrateconstancyarereported.Themethodis implementedinr8s(Sanderson,2003b).

Method4:Characterbasedmaximumlikelihoodclockoptimization(Felsenstein,1981; Swoffordet al.,1996) Undertheassumptionofrateconstancy(andthereforeundertheconstraintsof ultrametricity),theglobalrateofsubstitutioncanalsobeoptimizedbyMLdirectlyfrom sequencedataduringthephylogeneticreconstruction.Thelikelihoodisthenamuchmore complexfunctionofthedatamatrix,andthecomputingtimeismuchhigherthanforthe phylogeneticreconstructionwithoutultrametricconstraints.Oncetheglobalrateofsubstitutionis known,branchlengthsanddivergencetimescanbecalculated. TheML clock optimization methodisimplemented,atleastpartially,inPAUP* (Swoffordet al.,2001),DNAMLK(partofthePHYLIPpackage);Felsenstein,1993),baseml (partofthepamlpackage;Yang,1997),andotherphylogeneticpackages.It’sperhapsthemost widespreadstrategycommonlyknownas“enforcingthemolecularclock”.Dependingonthe software,theadditionalconstrainofafixedtreetopologycanbeprovidedbytheuser,which reducesthecomplexityofthelikelihoodfunctionandthecomputingtimesignificantly.

17 The reality (in most cases): Rate heterogeneity, or the relaxed clock Assequencesfrommultiplespeciesbegantoaccumulateduringthe1970’s,itbecame apparentthataclockisnotalwaysagoodmodelfortheprocessofmolecularevolution(Langley andFitch,1974).Variationinratesofnucleotidesubstitution,bothalongalineageandbetween differentlineages,isknowntobepervasive(Britten,1986;Gillespie,1986;Li,1997).Several reasonsaregivenforthesedeviationsfromtheclocklikemodelofsequenceevolution(some peoplecallitrelaxedor“sloppy”clock):a)generationtime:alineagewithshortergeneration timeacceleratestheclockbecauseitshortensthetimetoaccumulateandfixnewmutations duringgeneticrecombination(Ohta,2002;butdisputedbyWhittleandJohnston,2003);b) metabolicrate:organismswithhighermetabolicrateshaveincreasedratesofDNAsynthesisand higherratesofnucleotidemutationsthanspecieswithlowermetabolicrates(Gilloolyet al.2005; MartinandPalumbi,1993);c)mutationrate:speciescharacteristicdifferencesinthefidelityof theDNAreplicationorDNArepairmachinery(OtaandPenny,2003);d)effectofeffective populationsizeontherateoffixationofmutations:thefixationofnearlyneutralallelesis expectedtobethegreatestinsmallpopulations(accordingtothenearlyneutraltheoryofDNA evolution;Ohta,2002).

Becauseitismucheasiertocalculatedivergencetimesundertheclockmodel(withone globalsubstitutionrate),itisworthtestingthedataforclocklikebehavior.Thiscanbedoneby comparinghowcloselytheultrametricandadditivetreesfitthedata.Forexample,thelikelihood scoreofthebestultrametrictreecanbecomparedwiththe(usuallyhigher)likelihoodscoreof thebestadditivetreeandthedifferencebetweenthetwovalues(multipliedbytwo)canbe checkedforsignificanceonachisquaretablewithn-2degreesoffreedom(wherenisthe numberofterminalsinthetree;Likelihoodratiotest;Felsenstein,1988,1993,2004;Museand Weir,1992).Otherteststhatcanbeappliedtoidentifypartsofthetreethatshowsignificantrate deviationsaretherelativeratestest(WuandLi,1985)andtheTajimatest(Tajima,1993). However,alltheseclocktestslackpowerforshortersequencesandwilldetectonlyarelatively lowproportionofcasesofratevariationforthetypesofsequencethataretypicallyusedin molecularclockstudies(Bromhamet al.,2000;BromhamandPenny,2003).Failuretodetect clockvariationcancausesystematicerrorinageestimates,becauseundetectedratevariationcan leadtosignificantlyoverorunderestimateddivergencetimes(Bromhamet al.,2000).Ifthenull hypothesisofaconstantrateisrejected,orifwehaveevidencesuggestingthattestresultsshould betreatedwithcaution,wemightconcludethatratesvaryacrossthetree;insuchcasestheuseof 18 methodsthattrytomodelratechangesoverthetreeisnecessary.Thisprocedureisalso supportedbythefactthatanincreasingnumberofdivergencetimeanalysesshowsignificant deviationsfromamolecularclock,especiallyifsequencesofdistantlyrelatedspeciesare analyzed(e.g.differentordersorfamilies;Hasegawaet al.,2003;Springer,2003;Yoderand Yang,2000).Atleasttwogroupsofmethodstrytohandlearelaxedclock:a)Methodsthat correctforrateheterogeneitybeforethedating;andb)methodsthatincorporaterate heterogeneityinthedatingprocess,onthebasisofspecificratechangemodels. 1. Methods that correct for rate heterogeneity Thefirstsetofmethodsdescribedbelowcorrectfortheobservedrateheterogeneityby pruningbranchesordividingtheglobalrateintoseveralrateclasses(localrates).Afterthisfirst step,whichmakesthetrees(atleastpartially)ultrametric,theyestimateratesanddivergence timesusingthemolecularclockasdescribedabove.

Method5:Linearizedtrees(LiandTanimura,1987;Takezakiet al.,1995;Hedgeset al., 1996) Thelinearized trees methodinvolvesthreesteps:first,identifyallbranchesina phylogenythatdepartsignificantlyfromrateconstancybyusingastatisticaltest(e.g.relative ratestests,LiandTanimura,1987;ortwoclusterandbranchlengthtests,Takezakietal,1995). Then,selectivelyeliminate(prune)thosebranches.Finally,constructatreewiththeremaining branches(thelinearizedtree)undertheassumptionofrateconstancy.Thisprocedurerelieson eliminatingdatathatdonotfittheexpectedglobalratebehavior,andinmanycases,this approachwouldleadtoamassiveeliminationofdata.Cutler(2000),describingtheprocedureas “taxonshopping”,stated:“Ifonebelievesthatrateoverdispersionisintrinsictotheprocessof evolution(Gillespie,1991)(...),thenrestrictingone’sanalysistotaxawhichhappentopass relativeratetestsisinappropriate”.

Method6:Localratesmethods(Hasegawaet al.,1989;Uyenoyama,1995;Rambautand Bromham,1998;YoderandYang,2000) Applytwoormorelocalmolecularclocksonthetreebyusingacommonmodelthat characterizestherateconstancyoneachpartofthetree.Onesubstantialdifficultyistoidentify correctlythebranchesorregionsofatreeinwhichsubstitutionratessignificantlydifferfromthe others;thisdifficultyexplainswhyseveralmethodsofthe“localratestype”exist.Usually,the

19 useofbiological(e.g.similarlifeform,generationtime,metabolicrate)orfunctional(e.g.gene function)informationisusedfortheirrecognition.Alsoconspicuouspatternsinthe transition/transversionrateofsomebranches(Hasegawaet al.,1989),theknowndifferential functionofalleles(Uyenoyama,1995),thebranchlengthsobtainedbyMLundertheabsenceofa molecularclock(YoderandYang,2000;YangandYoder,2003),ortherateconstancywithina quartetoftwopairsofsistergroups(RambautandBromham,1998)canbeusedforthedefinition oflocalclockregions. ProbablythebestknownexampleofalocalratesmethodistheML based local molecular clock approach (Hasegawa et al., 1989; Yoder and Yang, 2000; Yang and Yoder, 2003).This method preassignsevolutionaryratestosomelineageswhilealltheotherbranchesevolveatthe samerate.Thelocalmolecularclockmodelthereforeliesbetweenthetwoextremesofaglobal clock(assumingthesamerateforalllineages)andthemodelsthatassumeoneindependentrate foreachbranch(describedbelow).Themethodallowsforthedefinitionofratecategoriesbefore thedating,whichisacrucialandsensitivestepforthismethod.Twodifferentstrategiescanbe usedtopreassignindependentrates:a)definitionofrate categories:theuserpreassignsrate categoriestospecificbranchesbasedonthebranchlengthestimatesobtainedwithouttheclock assumption.Forexample,threedifferentratecategoriesaredefined,onefortheoutgrouplineage withlongbranchlengths,anotherforacrowngroupwithshortbranchlengths,andathirdforall otherbranches;b)definitionofrank categories:dividethetaxaintoseveralrategroupsaccording totaxonomicranks,e.g.order,suborder,family,and,basedontheassumptionthatclosely relatedevolutionarylineagestendtoevolveatsimilarrates(Kishinoet al.,2001;Thorneand Kishino,2002).Afterthedefinitionofratecategories,thedivergencetimesandratesforthe differentbranchgroupsareestimatedbyMLoptimization.Thelocalmolecularclockmodelis implementedinbaseml(partofthepamlpackage;Yang,1997)andtheprogramprovides standarderrorsforestimateddivergencetimes.Basemldoesnot(yet)allowforthespecification offossilcalibrationsaslowerorupperlimitsonnodeages,asinr8sormultidivtime(seebelow). Sofar,nodalconstraintsbasedonfossilshavetobespecifiedasfixedages.Thelocalmolecular clockmethodimplementedinbasemlisnowabletoanalyzemultiplegenesordatapartitions withdifferentevolutionarycharacteristicssimultaneouslyandallowsthebranchgroupratesto varyfreelyamongdatapartitions(sinceversion3.14).Forexample,themodelsallowsome branchestoevolvefasteratcodonposition1whiletheyevolvesloweratcodonposition2(Yang andYoder,2003). Thequartetmethod(RambautandBromham,1998)implementedinQDateisoneofthe simplestlocalclockmethods.Themethodsworkswithspeciesquartetsbuiltbycombiningtwo pairsofspecies,eachofwhichhasaknowndateofdivergence.Foreachpair,aratecanbe

20 estimated,andthisallowstoestimatethedateofthedivergencebetweenthepairs(ageofthe quartet).Becausegroupswithundisputedrelationshipscanbechosen,themethodsavoids problemsoftopologicaluncertainties.Ontheotherhand,itisdifficulttocombineestimatesfrom multiplequartetsinameaningfulway(Bromhamet al.,1998). Anotherprogramthatallowstheusertoassigndifferentratesandsubstitutionmodelsto differentpartsofatreeisRhinobyRambaut(2001).ThisMLlocalclockimplementationhas beenusedsofarmainlyforcomparingsubstitutionratesofdifferentlineagesbyusinglikelihood ratiotests(e.g.BromhamandWoolfit,2004). Afourthimplementationofthelocalmolecularclockapproachhasbeenrealizedinthe softwarer8s(Sanderson,2003b).ItfollowstheLangley-Fitch methoddescribedabove(Method 3;LangleyandFitch,1974),butinsteadofonlyusingoneconstantrateofsubstitution,the methodpermitstheusertospecifymultiplerateparametersandassignthemtotheappropriate branchesorbranchgroups.Aftersuchadefinitionofratecategories,thedivergencetimesand ratesforthedifferentbranchgroupsareestimatedbyMLoptimization. Afifthprogram,BEAST(DrummondandRambaut,2003),usesBayesianinferenceand theMarkovchainMonteCarlo(MCMC)proceduretoderivetheposteriordistributionoflocal ratesandtimes.Asthesoftwaredoesnotrequireastartingtreetopology,itisabletoaccountfor phylogeneticuncertainty.Additionally,itpermitsthedefinitionofcalibrationdistributions(such asnormal,lognormal,exponentialorgamma)insteadofsimplepointestimatesorageintervals. 2. Methods that estimate divergence times by incorporating rate heterogeneity Methodsthatrelaxrateconstancymustnecessarilybeguidedbyspecificationsabouthow ratesareexpectedtochangeamonglineages.Becauseratesanddivergencetimesareconfounded, itisnotpossibletoestimateonewithoutmakingassumptionsregardingtheother(ArisBrosou andYang,2002).Recently,ithasbeenquestionedthatdivergencetimeswithoutamolecular clockcanbeestimatedconsistentlyjustbyincreasingthesequencelengths(Britton,2005). However,availablemethodstrytointroducerateheterogeneityonthebasisofthreedifferent approaches:oneistheconceptoftemporal autocorrelation in rates(seebelow2a;Gillespie, 1991),anotheristhestationary processofratechange(seebelow2b;Cutler,2000),andathirdis thecompound Poissonprocessofratechange(seebelow2c;Huelsenbecket al.,2000).All methodsestimatebranchlengthswithoutassumingrateconstancy,andthenmodelthe distributionofdivergencetimesandratesbyminimizingthediscrepanciesbetweenbranch

21 lengthsandtheratechangesoverthebranches.Themethodsdiffernotonlyintheirmodels,but alsointheirstrategytoincorporateageconstraints(calibrationpoints)intotheanalysis. 2a. Methods that model rate change according to the standard Poisson process and the concept of rate autocorrelation Anautocorrelationlimitsthespeedwithwhicharatecanchangefromanancestral lineagetoadescendantlineage(Sanderson,1997).Astherateofsubstitutionevolvesalong lineages,daughterlineagesmightinherittheirinitialratefromtheirparentallineageandevolve newratesindependently(Gillespie,1991).Temporalautocorrelationisanexplicita priori criteriontoguideinferenceofamonglineageratechangeandisimplementedinseveralmethods (Magallón,2004).Readerswhowanttolearnmoreaboutthetheoryoftemporalautocorrelation arereferredtopublicationsbyTakahata(1987),Gillespie(1991),Sanderson(1997),andThorne et al.(1998).

Method7:Nonparametricratesmoothing(Sanderson,1997,2003) Byanalogytosmoothingmethodsinregressionanalysis,thenonparametric rate smoothing (NPRS) methodattemptstosimultaneouslyestimateunknowndivergencetimesand smooththerapidityofratechangealonglineages(Sanderson,1997,2003).Tosmoothrate changes,themethodcontainsanonparametricfunctionthatpenalizesratesthatchangetoo quicklyfrombranchtoneighboringbranch,whichreflectstheideaofautocorrelationofrates.In otherwords:thelocaltransformationsinratearesmoothedastherateitselfchangesoverthetree byminimizingtheancestraldescendantchangesofrate.Sincethepenaltyfunctionincludes unknowntimes,anoptimalitycriterionbasedonthispenalty(thesumofsquareddifferencesin localrateestimatescomparedfrombranchtoneighboringbranch;leastsquaresmethod)permits anestimationofthedivergencetimes.NPRSisimplementedinr8s(Sanderson,2003b)and TreeEdit(RambautandCharleston,2002).Withr8s,butnotwithTreeEdit,theuserisabletoadd oneormorecalibrationconstraintstopermitscalingofratesandtimestoabsolutetemporalunits. AseriouslimitationofNPRSisthatittendstooverfitthedata,leadingtorapidfluctuationsin rateinregionsofatreethathaveshortbranches(Sanderson,2003b).Inr8s,butnotinTreeEdit, twostrategiestoprovideconfidenceintervalsontheestimatedparametersareavailable:a)a builtinprocedurethatusesthecurvatureofthelikelihoodsurfacearoundtheparameterestimate (afterCutler,2000);andb)thecalculationofanagedistributionbasedonchronogramsgenerated fromalargenumberofbootstrappeddatasets.Thecentral95%oftheagedistributionprovidethe confidenceinterval(EfronandTibshirani,1993;BaldwinandSanderson,1998;Sanderson,

22 2003b).Thisrobust,buttimeconsumingprocedurecanbefacilitatedbyusingacollectionofPerl scriptswrittenbyEriksson(2002)calledther8s-bootstrap-kit.

Method8:PenalizedLikelihood(Sanderson,2002,2003) Penalized likelihood (PL)combineslikelihoodandthenonparametricpenaltyfunction usedinNPRS.Thissemiparametrictechniqueattemptstocombinethestatisticalpowerof parametricmethodswiththerobustnessofnonparametricmethods.Ineffect,itpermitsthe specificationoftherelativecontributionoftheratesmoothingandthedatafittingpartsofthe estimationprocedure:aroughnesspenaltycanbeassignedassmoothingparameterintheinput file.Thesmoothingparametercanbeestimatedbyrunningacrossvalidationprocedure,whichis adatadrivenmethodforfindingtheoptimallevelofsmoothing.Ifthesmoothingparameteris large,thefunctionisdominatedbytheroughnesspenalty,andthisleadstoaclocklikemodel.If itislow,thesmoothingwillbeeffectivelyunconstrained(similartoNPRS).Sofar,PLisonly implementedinr8s(Sanderson,2003b).AswithNPRSinr8s,theuserisabletoaddoneormore calibrationconstraintstopermitscalingofratesandtimestorealunits.Thesametwostrategies forprovidingconfidenceintervalsontheestimatedparametersasfortheNPRSmethodarealso availableforPL. Method9:Heuristicratesmoothing(AHRS)forMLestimationofdivergencetimes(Yang, 2004) Theheuristic rate-smoothing (AHRS)algorithmforMLestimationofdivergencetimes (Yang,2004)hasanumberofsimilaritieswithPLandthetwoBayesiandatingmethods describedabove.Itinvolvesthreesteps:a)estimationofbranchlengthsintheabsenceofa molecularclock;b)heuristicratesmoothingtoestimatesubstitutionratesforbranchestogether withdivergencetimes,andclassificationofbranchesintoseveralrateclasses;andc)ML estimationofdivergencetimesandratesofthedifferentbranchgroups.TheAHRSalgorithm differsslightlyfromPL:whereSanderson(2002)usesaPoissonapproximationtofitthebranch lengths,theAHRSalgorithmusesanormalapproximationoftheMLestimatesofbranchlengths. Furthermore,theratesmoothingalgorithminAHRSisusedonlytopartitionbranchesoneach genetreeintodifferentrategroups,andplaysthereforealesssignificantroleinthismethodthan inPL.IncontrasttotheBayesianapproachesdescribedabove,AHRSoptimizesrates,together withdivergencetimes,ratherthanaveragingovertheminanMCMCprocedure.Another differencetotheBayesiandatingmethodsisthattheAHRSalgorithmdoesnotneedanypriorfor divergencetimes,whichcanbeanadvantage.Ontheotherhand,itisnotpossibletospecify

23 fossilcalibrationsaslowerorupperboundsonnodeages,asinr8sormultidivtimesofar,nodal constraintsbasedonfossilshavetobespecifiedasfixedages.TheAHRSalgorithmis implementedinthebasemlandcodemlprograms,whicharepartsofthepamlpackage(since version3.14final;Yang,1997).Thoseprogramsprovidestandarderrorsforestimateddivergence times.Asmultidivtime, theAHRSalgorithmimplementedinbasemlisabletoanalyzemultiple genes/lociwithdifferentevolutionarycharacteristicssimultaneously.

Method10:Bayesianimplementationofrateautocorrelationinmultidivtime(Thorneet al., 1998;Kishinoet al.,2001;ThorneandKishino,2002) TheBayesian dating method implementedinmultidivtime(Thorneet al.,1998;Kishinoet al.,2001;ThorneandKishino,2002)usesafullyprobabilisticandhighparametricmodelto describethechangeinevolutionaryrateovertimeandusestheMarkovchainMonteCarlo (MCMC)proceduretoderivetheposteriordistributionofratesandtimes.Ineffect,thevariation ofratesisaddressedbylettingtheMCMCalgorithmassignratestodifferentpartsofthetree,and thensamplingfromthepatternsthatarepossible.Bythisway,theMCtechniquesaverageover variouspatternsofratesalongthetree.Theresultisaposteriordistributionofratesandtimes derivedfromapriordistribution.Fortheassignmentsofratestodifferentbranchesinthetree, ratesadrawnfromalognormaldistribution,andahyperparameterν(alsocalledBrownian motionconstant)describestheamountofautocorrelation.Theinternalnodeageproportionsare describedasadirichletdistribution,whichrepresentstheideatomodelevolutionarylineagesdue tospeciation,butisnotintendedasadetailedmodelofspeciationandextinctionprocesses.In practice,themostcommonlyusedprocedureisdividedintothreedifferentstepsandprograms, andisdescribedinmoredetailinastepbystepmanual(Rutschmann,2005).1)Inthefirststep, modelparametersfortheF84+Gmodel(KishinoandHasegawa,1989;Felsenstein,1993)are estimatedbyusingtheprogrambaseml,whichispartofthePAMLpackage(Yang,1997).2)By usingtheseparameters,theMLofthebranchlengthsisestimated,togetherwithavariance covariancematrixofthebranchlengthestimatesbyusingtheprogramestbranches (Thorneet al.,1998).3)Thethirdprogram,multidivtime(Kishinoet al.,2001;ThorneandKishino,2002), isthenabletoapproximatetheposteriordistributionsofsubstitutionratesanddivergencetimes byusingamultivariatenormaldistributionofestimatedbranchlengthsandrunninganMCMC procedure. Multidivtimeaskstheusertospecifyseveralpriors,suchasthemeanandthevarianceof thedistributionsfortheinitialsubstitutionrateattherootnodeortheprospectiveageoftheroot node.Additionally,constraintsonnodalagescanbespecifiedasageintervals.Theprogram

24 providesBayesiancredibilityintervalsforestimateddivergencetimesandsubstitutionrates.In contrasttoNPRSandPL(implementedinr8s),multidivtimeisabletoaccountformultiple genes/lociwithdifferentevolutionarycharacteristics.Suchasimultaneousanalysisofmultiple genesmayimprovetheestimatesofdivergencetimeswhicharesharedacrossgenes.

Method11:Phybayes(ArisBrosouandYang,2001,2002) ThePhybayesprogram(ArisBrosouandYang,2001,2002)issimilartothemultidivtime Bayesianapproachdescribedabove.Italsousesafullyprobabilisticandhighparametricmodel todescribethechangeinevolutionaryrateovertimeandusestheMCMCproceduretoderivethe posteriordistributionofratesandtimes.Butthemethodismoreversatileintermsofpossibilities ofdefiningthepriordistributions,asitallowsfortheusageofmodelsthatexplicitlydescribethe processesofspeciationandextinction.Fortheratesofevolution,itoffersachoiceofsixdifferent ratedistributionstomodeltheautocorrelatedratechangefromanancestortoadescendentbranch (lognormal,„stationarized“lognormal,truncatednormal,OrnsteinUhlenbeckprocess,gamma, andexponential,plusthedefinitionoftwomodelrelatedhyperparameters),whereasin multidivtime,ratesarealwaysdrawnfromalognormaldistribution.Thepriordistributionof divergencetimesisgeneratedbyaprocessofcladogenesis,thegeneralizedbirthanddeath processwithspeciessampling(YangandRannala,1997),amodelthatassumesaconstant speciationandextinctionrateperlineage(multidivtimeusesadirichletdistributionofallinternal nodeageproportionstogeneralizetherootedtreestructure;Kishinoet al.,2001).Incontrastto multidivtime,it’snotpossibletoanalyzemultiplegenessimultaneouslywithPhybayes,andthe programdoesnotallowforana priori integrationofnodalconstraints(calibrationpoints). 2b. Methods that model rate change with other concepts than rate autocorrelation

Method12:BayesianimplementationofratevariationinBEAST(Drummondet al.,2006) SimilartoPhybayes,thevariableratemethodsimplementedinBEASTuseBayesian inferenceandtheMarkovchainMonteCarlo(MCMC)procedurestoderivetheposterior distributionofratesandtimes.Incontrast,inadditiontotheautocorrelatedmodelsliketheone implementedinmultidivtime,arangeofdifferent,novelmodelshavebeenimplemented,where theratesaredrawnfromadistribution(withvariousdistributionsonoffer;Drummondet al., 2006).Thesemodelshaveacoupleofinterestingfeatures:a)theparametersofthedistributions canbeestimated(insteadofbeingspecified),andb)thecorrelationofratesbetweenadjacent branchescanbetested(if>0,thiswouldindicatesomeinherenceofrates).Anotherunique 25 featureofthesoftwareisthatitdoesnotrequireastartingtreetopology,whichallowsitto accountforphylogeneticuncertainty.Additionally,BEASTpermitsthedefinitionofcalibration distributions(suchasnormal,lognormal,exponentialorgamma)tomodelcalibration uncertaintyinsteadofsimplepointestimatesorageintervals.Fortheother,noncalibratednodes, thereisnospecificprocessthatdescribesthepriordistributionofdivergencetimes(theyare uniformoverarangefrom0toverylarge).BEASTallowstheusertosimultaneouslyanalyze multipledatasets/partitionswithdifferentsubstitutionmodels,andprovidesBayesiancredibility intervals.

Method13:Overdispersedclockmethod(Cutler,2000) Whileallmethodsdescribedsofarassumefundamentallythatthenumberofsubstitutions inalineageisPoissondistributed,theoverdispersed clock model (Cutler,2000)assumesthatthe numberofsubstitutionsinalineageisstationary.UnlikeaPoissonprocess,thevarianceinthe numberofsubstitutionswillnotnecessarilybeequaltothemean.Underthismodel,whichtreats ratechangesaccordingtoastationaryprocess,MLestimatesofdivergencetimescanbe calculated.Themethodisimplementedinacprogram,whichisavailabledirectlyfromthe author(Cutler,2000).Itispossibletoincorporatemultiplecalibrationpoints.

Method14:CompoundPoissonprocessmethod(Huelsenbecket al.,2000) Asallmethodsdescribedabove(withtheexceptionoftheoverdispersed clock model; Cutler,2000),thecompound Poisson process methodusesamodelthatassumesthatnucleotide substitutionsoccuralongbranchesofthetreeaccordingtoaPoissonprocess.Butinadditionto theothermodels,itassumesthatanother,independentPoissonprocessgenerateseventsof substitutionratechange.Therefore,thissecondPoissonprocessissuperimposedontheprimary Poissonprocessofmolecularsubstitution(hencethenamecompound Poissonprocess),and introduceschanges(informofdiscretejumps)intherateofsubstitutionindifferentbranchesof thephylogeny.Ratesonthetreearethendeterminedbythenumberofratechangeevents,the pointinthetreewheretheyoccur,andthemagnitudeofchangeateachevent(Huelsenbecket al., 2000;Magallón,2004).TheseparametersareestimatedbyusingBayesianinference(MCMC integration).Oneofthemainadvantagesoftreatingratevariationasacompound Poissonprocess isthatthemodelcanintroduceratevariationatanypointofthephylogenetictree;allother methodsassumethatsubstitutionrateschangeonlyatspeciationevents(nodes;Huelsenbecket al.,2000).Themethodisimplementedinacprogram,butit’snotmeantforbeingavailablefor thecommunitysofarasthereisnodocumentation(yet). 26 Conclusions Moleculardatingisarapidlydevelopingfield,andthemethodsgeneratedsofararestill farfrombeingperfect(Sandersonet al.,2004).Moleculardatingestimatesderivedfromdifferent inferencemethodscanbeinconflict,andsocantheresultsobtainedwithdifferenttaxon sampling,genesampling,andcalibrationstrategies(seebelow). Itshouldbeclearthatthereisnosingle“best”moleculardatingmethod;rather,all approacheshaveadvantagesanddisadvantages.Forexample,themethodsreviewedheredifferin thetypeofinputdatatheyuseandprocess:Thefirstgroupofmethods(NPRSandr8s)basetheir analysisoninputphylogramswithbranchlengths.Therefore,theyarenotabletoincorporate branchlengtherrorsorparametersofthesubstitutionmodelintothedatinganalysis(thishasto bedonepriortothedating).Ontheotherhand,thesemethodsarefastandversatile,becausethey canprocessphylogeniesgeneratedfromparsimony,likelihoodorBayesiananalyses.Thesecond groupofmethods(multidivtime,Phybayes,AHRS)useone“true”treetopologytoassessrates anddivergencetimesandestimatethebranchlengthsthemselves.Therefore,theyareableto accountforthebranchlengtherrorsdescribedabove,butstillbasetheiranalysesonafixed,user suppliedtreetopology.Thethirdgroupofmethods(ML with clockandBEAST)directlycalculate ultrametricphylogeniesbasedonlyonsequencedataandmodelparameters,aprocedurethatalso allowsthemtoincorporatetopologicaluncertainties.Computationally,thiscanbevery expensive,especiallyinthecaseofavariableratemodel,andwithahighnumberoftaxa. AsIhavenottestedallsoftwarepackagesandmethodsdescribedheremyself,thisreview isnotacomparisonbasedonpracticalexperiments.However,thepapersthatfirstdescribedthese approachesalwaysreportontheirperformanceonsimulatedandrealdata.Threepapersthat reallycomparesomeofthedescribedmethodsonoriginaldatasetsorsimulateddatahavebeen publishedrecently:YangandYoder(2003)comparedmethods3,5and8(seeTables13)by analyzingaMouseLemurdatasetusingmultiplegenelociandcalibrationpoints,PérezLosada et al.(2004)comparedmethods5,7,8,and9intheiranalysisofanuclearribosomal18Sdataset totesttheevolutionaryradiationoftheThoracianBarnaclesbycomparingdifferentcalibration pointsindependently,andHoet al.(2005b)comparedtheperformanceofmethods8,10,and11 byusingsimulateddata.Currently,softwaredevelopersarestartingtointegratedifferentmethods inthesamesoftware(e.g.baseml,Yang,1997;BEAST,Drummondet al.,2006;andfuture versionsofMrBayes>v3.1,HuelsenbeckandRonquist,2001).Thisrecenttrendisthusallowing userstotryoutdifferentmethodsbasedontheirowndatasets,andthencomparetheresults. Althoughthisreviewfocusesonthedatingmethodsthemselves,atleastafewlinkstokey articlesaboutmoregeneralorveryspecificissuesrelatedtomoleculardatingaregivenhere:1) 27 generalreviews:Magallón(2004)wroteacomprehensivereviewofthetheoryofmolecular dating,whichalsodiscussespaleontologicaldatingmethodsandtheuncertaintiesofthe paleontologicalrecord.Theclassificationofthemolecularmethodsdescribedhereisbasedon herpublication.AnotherrecentreviewhasbeenwrittenbySandersonet al.(2004),which discussestheadvantagesanddisadvantagesofBayesianvs.smoothingmoleculardatingmethods, summarizestheinferredagesofthemajorcladesofplants,andlistsmanypublisheddating applicationsthatinvestigatedrecentplantradiationsand/ortestedbiogeographicalhypotheses. Finally,WelchandBromham(2005),BromhamandPenny(2003),Arbogastet al.(2002),Wray (2001)wrotemoregeneralreviewsontheissueofestimatingdivergencetimes.2)Forspecific discussionsaboutthecrucialandcontroversialroleofcalibration,refertothefollowingpapers: Whereonthetreeandhowshouldweassignagesfromfossilsorgeologicevents?:Nearand Sanderson(2004),Contiet al.(2004)andRutschmannet al.(2004).Howcanwedealwiththe incompletenessofthefossilrecord?:Tavaréet al.(2002),Footeet al.(1999),andFooteand Sepkoski(1999).Howshouldweconstraintheageoftherootanddealwiththemethodological handicapofasymmetricrandomvariablesinmoleculardating?:RodríguezTrelleset al.(2002) andSandersonandDoyle(2001).3)Fortherecentdebateabouttheprecisionofdivergencetime estimates,refertothefollowingpapers:Shouldweextrapolatesubstitutionratesaccrossdifferent evolutionarytimescales?:Hoet al.(2005a).Howcanweaccountforthevariousuncertainties relatedtothecalibrationandthedatingprocedure,howshouldwereportandinterpreterror estimates,andshouldweusesecondarycalibrationpoints?:HedgesandKumar(2003),Graur andMartin(2004),ReiszandMüller(2004),andHedgesandKumar(2004).4)Forquestions relatedtotheinfluenceoftaxonsamplingonestimatingdivergencetimesundervariousdating methods,seeLinderet al.(2005)andSandersonandDoyle(2001).5)Fortheinfluenceofgene samplingreadHeckmanet al.(2001).6)Theoreticalproblemsandstrategiesconnectedtothe moleculardatingofsupertreesarediscussedinVosandMooers(2004)andBryantet al.(2004). 6)For“special”datingproblemslikeestimatingthesubstitutionratewhentheagesofdifferent terminalsareknown(e.g.fromvirussequencesthatwereisolatedatdifferentdates;implemented inthesoftwareTipDate andalsoinBEAST),refertoRambaut(2000). Finally,Iwouldliketoaddasuggestiontothoseamonguswhowritesoftware:although thedevelopmentofgraphicaluserinterfaces(GUI’s)iscertainlynotafirstpriority,GUI’swould simplifysignificantlymoleculardatinganalysesfortheaveragebiologist.Moderntools(likethe OpenSourceQt 4 C++classlibrarybyTrolltech;http://www.trolltech.com)makethe developmentoffast,native,andmultiplatformGUIapplicationseasierthaneverbefore.Idonot sharethewidespreadconcernsaboutstupid“analysebyclick”users.Onthecontrary:

28 comprehensiveuserinterfacesallowtheusertoexploreanddetectalltheimportantfeaturesa methodoffers.

29 References Arbogast,B.S.,S.V.Edwards,J.Wakeley,P.Beerli,andJ.B.Slwinski.2002.Estimating divergencetimesfrommoleculardataonphylogeneticandpopulationgenetictimescales.Annual Review of Ecology, Evolution and Systematics33:707740.

ArisBrosou,S.2001.Phybayes:aprogramforphylogeneticanalysesinaBayesianframework. DepartmentofBiology(GaltonLaboratory),UniversityCollegeLondon,London,UK.

ArisBrosou,S.,andZ.Yang.2002.Effectsofmodelsofrateevolutiononestimationof divergencedateswithspecialreferencetothemetazoan18SribosomalRNAPhylogeny. Systematic Biology51:703714.

ArisBrosou,S.,andZ.Yang.2003.BayesianmodelsofepisodicevolutionsupportaLate PrecambrianexplosivediversificationofMetazoa.Molecular Biology and Evolution20:1947 1954.

Baldwin,B.G.,andM.J.Sanderson.1998.Ageandrateofdiversificationofthehawaiian silverswordalliance(Compositae).Proceedings of the National Academy of Sciences USA 95:94029406.

Bell,C.D.,D.E.Soltis,andP.S.Soltis.2005.TheageoftheAngiosperms:Amolecular timescalewithoutaclock.Evolution59:12451258.

Berry,P.E.,W.J.Hahn,K.J.Sytsma,J.C.Hall,andA.Mast.2004.Phylogeneticrelationships andbiogeographyofFuchsia(Onagraceae)basedonnoncodingnuclearandchloroplastDNA data.American Journal of Botany94:601614.

Bremer,K.,E.M.Friis,andB.Bremer.2004.Molecularphylogeneticdatingofasteridflowering plantsshowsearlyCretaceousdiversification.Systematic Biology53:496505.

Bremer,K.,andM.H.G.Gustafsson.1997.EastGondwanaancestryofthesunflowerallianceof families.Proceedings of the National Academy of Sciences USA94:91889190.

Britten,R.J.1986.RatesofDNAsequenceevolutiondifferbetweentaxonomicgroups.Science 231:13931398.

Britton,T.2005.Estimatingdivergencetimesinphylogenetictreeswithoutamolecularclock. Systematic Biology54:500507.

Britton,T.,B.Oxelman,A.Vinnersten,andK.Bremer.2002.Phylogeneticdatingwith conficenceintervalsusingmeanpathlengths.Molecular Phylogenetics and Evolution24:5865.

Bromham,L.,andD.Penny.2003.Themodernmolecularclock.Nature Reviews Genetics 4:216224.

Bromham,L.,A.Rambaut,R.Fortey,A.Cooper,andD.Penny.1998.TestingtheCambrian explosionhypothesisbyusingamoleculardatingtechnique.Proceedings of the National Academy of Sciences USA95:1238612389.

Bromham,L.,andM.Woolfit.2004.Explosiveradiationsandthereliabilityofmolecularclocks: islandendemicradiationsasatestcase.Systematic Biology53:758766.

30 Bromham,L.D.,A.Rambaut,M.D.Hendy,andD.Penny.2000.Thepowerofrelativeratestest dependsonthedata.Journal of Molecular Evolution50:296301.

Bryant,D.,C.Semple,andM.Steel.2004.Supertreemethodsforancestraldivergencedatesand otherapplications.Pp.129150inO.R.P.BinindaEmonds,ed.Phylogeneticsupertrees: Combininginformationtorevealthetreeoflife.KluwerAcademic,Dordrecht,TheNetherlands.

Chaw,S.M.,C.C.Chang,H.L.Chen,andW.H.Li.2004.Datingthemonocotdicotdivergence andtheoriginofcoreeudicotsusingwholechloroplastgenomes.Journal of Molecular Evolution 58:424441.

Conti,E.,T.Eriksson,J.Schönenberger,K.J.Sytsma,andD.A.Baum.2002.EarlyTertiaryout ofIndiadispersalofCrypteroniaceae:evidencefromphylogenyandmoleculardating.Evolution 56:19311942.

Conti,E.,F.Rutschmann,T.Eriksson,K.J.Sytsma,andD.A.Baum.2004.Calibrationof molecularclocksandthebiogeographichistoryofCrypteroniaceae:AreplytoMoyle.Evolution 58:18741876.

Cutler,D.J.2000.Estimatingdivergencetimesinthepresenceofanoverdispersedmolecular clock.Molecular Biology and Evolution17:16471660.

Douzery,E.J.P.,E.A.Snell,E.Bapteste,F.Delsuc,andH.Philippe.2004.Thetimingof eukaryoticevolution:Doesarelaxedmolecularclockreconcileproteinsandfossils?Proceedings of the National Academy of Sciences USA101:1538615391.

Drummond,A.J.,S.Y.W.Ho,M.J.Phillips,andA.Rambaut.2006.Relaxedphylogeneticsand datingwithconfidence.PLoS Biology4:e88.

Drummond,A.J.,andA.Rambaut.2003.BEASTv1.0.Availableat http://evolve.zoo.ox.ac.uk/beast/.

Efron,B.,andR.J.Tibshirani.1993.Anintroductiontothebootstrap.ChapmanandHall,New York.

Eriksson,T.2002.Ther8sbootstrapkit.BergianskaUniversity,Stockholm,Sweden.

Felsenstein,J.1981.EvolutionarytreesfromDNAsequences:amaximumlikelihoodapproach. Journal of Molecular Evolution17:368376.

Felsenstein,J.1988.Phylogeniesfrommolecularsequences:inferenceandreliability.Annual Review of Genetics22:521265.

Felsenstein,J.1993.PhylogeneticInferencePackage(PHYLIP),version3.5.Universityof Washington,Seattle,WA.

Felsenstein,J.2004.Inferringphylogenies.SinauerAssociates,Inc.,Sunderland,MA.

Foote,M.,J.P.Hunter,C.M.Janis,andJ.J.SepkoskiJr.1999.Evolutionaryandpreservational constraintsonoriginsofbiologicgroups:divergencetimesofEutherianmammals.Science 283:13101314.

Foote,M.,andJ.J.SepkoskiJr.1999.Absolutemeasuresofthecompletenessofthefossil record.Nature398:415417.

31 Gillespie,J.H.1986.Ratesofmolecularevolution.Annual Review of Ecology, Evolution and Systematics17:637665.

Gillespie,J.H.1991.Thecausesofmolecularevolution.OxfordUniversityPress,Oxford,GB.

Gillooly,J.F.,A.P.Allen,G.B.West,andJ.H.Brown.2005.TherateofDNAevolution: Effectsofbodysizeandtemperatureonthemolecularclock.Proceedings of the National Academy of Sciences USA102:140145.

Graur,D.,andW.Martin.2004.Readingtheentrailsofchickens:moleculartimescalesof evolutionandtheillusionofprecision.TRENDS in Genetics20:8086.

Hasegawa,M.,H.Kishino,andT.Yano.1989.Estimationofbranchingdatesamongprimatesby molecularclocksofnuclearDNAwhichsloweddowninHominoidea.Journal of Human Evolution18:461476.

Hasegawa,M.,J.L.Thorne,andH.Kishino.2003.Timescaleofeutherianevolutionestimated withoutassumingaconstantrateofmolecularevolution.Genes & Genetic Systems78:267283.

Heckman,D.S.,D.M.Geiser,B.R.Eidell,R.L.Stauffer,N.L.Kardos,andS.B.Hedges.2001. MolecularEvidencefortheEarlyColonizationofLandbyFungiandPlants.Science293:1129 1133.

Hedges,S.B.,andS.Kumar.2003.Genomicclocksandevolutionarytimescales.TRENDS in Genetics19:200206.

Hedges,S.B.,andS.Kumar.2004.Precisionofmoleculartimeestimates.TRENDS in Genetics 20:242247.

Hedges,S.B.,P.H.Parker,C.G.Sibley,andS.Kumar.1996.Continentalbreakupandthe ordinaldiversificationofbirdsandmammals.Nature381:226229.

Hillis,D.M.,B.K.Mable,andC.Moritz.1996.Applicationsofmolecularsystematics:thestate ofthefieldanalooktothefuture.Pp.515543inD.M.Hillis,C.MoritzandB.K.Mable,eds. MolecularSystematics.Sinauer,Sunderland,MA.

Ho,S.Y.W.,M.J.Phillips,A.Cooper,andA.J.Drummond.2005a.Timedependencyof molecularrateestimatesandsystematicoverestimationofrecentdivergencetimes.Molecular Biology and Evolution22:15611568.

Ho,S.Y.W.,M.J.Phillips,A.J.Drummond,andA.Cooper.2005b.Accuracyofrateestimation usingrelaxedclockmodelswithacriticalfocusontheearlymetazoanradiation.Molecular Biology and Evolution22:13551363.

Huelsenbeck,J.P.,B.Larget,andD.Swofford.2000.AcompoundPoissonprocessforrelaxing themolecularclock.Genetics154:18791892.

Huelsenbeck,J.P.,andF.Ronquist.2001.MrBayes:Bayesianinferenceofphylogeny. Bioinformatics17:754.

Kishino,H.,andM.Hasegawa.1989.Evaluationofthemaximumlikelihoodestimateofthe evolutionarytreetopologiesfromDNAsequencedata,andthebranchingorderinHominoidea. Journal of Molecular Evolution170179:170179.

32 Kishino,H.,J.L.Thorne,andW.J.Bruno.2001.Performanceofadivergencetimeestimation methodunderaprobabilisticmodelofrateevolution.Molecular Biology and Evolution18:352 361.

Korber,B.,M.Muldoon,J.Theiler,F.Gao,R.Gupta,A.Lapedes,B.H.Hahn,S.Wolinsky,and T.Bhattacharya.2000.TimingtheancestoroftheHIV1pandemicstrains.Science288:1789 1796.

Langley,C.H.,andW.Fitch.1974.Anestimationoftheconstancyoftherateofmolecular evolution.Journal of Molecular Evolution3:161177.

Li,W.H.1997.MolecularEvolution.SinauerPress,SunderlandMA,USA.

Li,W.H.,andD.Graur.1991.Fundamentalsofmolecularevolution.SinauerAssociates, Sunderland,MA.

Li,W.H.,andM.Tanimura.1987.Themolecularclockrunsmoreslowlyinmanthaninapes andmonkeys.Nature326:9396.

Linder,H.P.,C.R.Hardy,andF.Rutschmann.2005.Taxonsamplingeffectsinmolecularclock dating:anexamplefromtheAfricanRestionaceae.Molecular Phylogenetics and Evolution 35:569582.

Madsen,O.,M.Scally,C.J.Douady,D.J.Kao,R.W.Debry,R.Adkins,H.M.Amrine,M.J. Stanhope,W.W.DeJong,andM.S.Springer.2001.Paralleladaptiveradiationsintwomajor cladesofplacentalmammals.Nature409:610614.

Magallón,S.A.2004.Datinglineages:molecularandpaleontologicalapproachestothetemporal frameworkofclades.International Journal of Plant Sciences165:721.

Magallón,S.A.,andM.J.Sanderson.2001.AbsolutediversificationratesinAngiospermclades. Evolution55:17621780.

Martin,A.P.,andS.R.Palumbi.1993.Bodysize,metabolicrate,generationtimeandthe molecularclock.Proceedings of the National Academy of Sciences USA90:40874091.

Muse,S.V.,andB.S.Weir.1992.Testingforequalityofevoltuionaryrates.Genetics132:269 276.

Near,T.J.,andM.J.Sanderson.2004.Assessingthequalityofmoleculardivergencetime estimatesbyfossilcalibrationsandfossilbasedmodelselection.Philosophical Transactions of the Royal Society B: Biological Sciences359:14771483.

Nei,M.1987.MolecularEvolutionaryGenetics.ColumbiaUniversityPress,NewYork.

Ohta,T.2002.Nearneutralityinevolutionofgenesandingeneregulation.Proceedings of the National Academy of Sciences USA99:1613416137.

Ota,R.,andD.Penny.2003.Estimatingchangesinmutationalmechanismsofevolution.Journal of Molecular Evolution57:S233–S240.

PérezLosada,M.,J.T.Høeg,andK.A.Crandall.2004.Unravelingtheevolutionaryradiationof theThoracianBarnaclesusingmolecularandmorphologicalevidence:acomparisonofseveral divergencetimeestimationapproaches.Systematic Biology53:244264.

33 Rambaut,A.2000.Estimatingtherateofmolecularevolution:incorporatingnon contemporaneoussequencesintomaximumlikelihoodphylogenies.Bioinformatics16:395399.

Rambaut,A.2001.Rhinov1.1.Availableathttp://evolve.zoo.ox.ac.uk/.

Rambaut,A.,andL.Bromham.1998.Estimatingdivergencedatesfrommolecularsequences. Molecular Biology and Evolution15:442448.

Rambaut,A.,andM.Charleston.2002.PhylogeneticTreeEditorandManipulatorv1.0alpha10. DepartmentofZoology,UniversityofOxford,Oxford,UK.

Reisz,R.R.,andJ.Müller.2004.Moleculartimescalesandthefossilrecord:apaleontological perspective.TRENDS in Genetics20:237241.

RodríguezTrelles,F.,R.Tarrío,andF.J.Ayala.2002.Amethodologicalbiastoward overestimationofmolecularevolutionarytimescales.Proceedings of the National Academy of Sciences USA99:81128115.

Rutschmann,F.2005.Bayesianmoleculardatingusingpaml/multidivtime.Astepbystep manual.Version1.5(July2005).InstituteofSystematicBotany,UniversityofZurich,Zurich, Switzerland.Availablefromhttp://www.plant.ch.

Rutschmann,F.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?MoleculardatingevidencefromrbcL,ndhF,andrpl16sequences. International Journal of Plant Sciences165:6983.

Sanderson,M.J.1997.Anonparametericapproachtoestimatingdivergencetimesintheabsence ofrateconstancy.Molecular Biology and Evolution14:12181231.

Sanderson,M.J.1998.Estimatingrateandtimeinmolecularphylogenies:beyondthemolecular clock?Pp.242264inD.E.Soltis,P.S.SoltisandJ.J.Doyle,eds.Molecularsystematicsof plantsII;DNAsequencing.KluwerAcademicPublishers,Norwell,MA.

Sanderson,M.J.2002.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes:a PenalizedLikelihoodapproach.Molecular Biology and Evolution19:101109.

Sanderson,M.J.2003a.Moleculardatafrom27proteinsdonotsupportaPrecambrianoriginof landplants.American Journal of Botany90:954956.

Sanderson,M.J.2003b.r8s:inferringabsoluteratesofmolecularevolutionanddivergencetimes intheabsenceofamolecularclock.Bioinformatics19:301302.

Sanderson,M.J.,andJ.A.Doyle.2001.Sourcesoferrorandconfidenceintervalsinestimating theageofAngiospermsfromrbcLand18SrDNAdata.American Journal of Botany88:1499 1516.

Sanderson,M.J.,J.L.Thorne,N.Wikström,andK.Bremer.2004.Molecularevidenceonplant divergencetimes.American Journal of Botany91:16561665.

Smith,A.B.,andJ.J.Peterson.2002.Datingthetimeoforiginofmajorclades:molecularclocks andthefossilrecord.Annual Review of Earth and Planetary Sciences30:6588.

Soltis,P.S.,D.E.Soltis,V.Savolainen,P.R.Crane,andT.G.Barraclough.2002.Rate heterogeneityamonglineagesoftracheophytes:Integrationofmolecularandfossildataand

34 evidenceformolecularlivingfossils.Proceedings of the National Academy of Sciences USA 99:44304435.

Springer,M.S.,W.J.Murphy,E.Eizirik,andS.J.O'Brien.2003.Placentalmammal diversificationandtheCretaceousTertiaryboundary.Proceedings of the National Academy of Sciences USA100:10561061.

Swofford,D.L.2001.PAUP*4.0b10:PhylogeneticAnalysisUsingParsimony(*andother methods).Sinauer,Sunderland,MA.

Swofford,D.L.,G.J.Olsen,P.J.Waddell,andD.M.Hillis.1996.Phylogeneticinference.Pp. 407514inD.M.Hillis,C.MoritzandB.K.Mable,eds.MolecularSystematics.Sinauer Associates,Sunderland,Massachusetts.

Sytsma,K.J.,A.Litt,M.L.Zjhra,J.C.Pires,M.Nepokroeff,E.Conti,J.Walker,andP.G. Wilson.2004.Clades,clocks,andcontinents:historicalandbiogeographicalanalysisof ,Vochysiaceae,andrelativesinthesouthernhemisphere.International Journal of Plant Sciences165:85105.

Tajima,F.1993.Simplemethodsfortestingthemolecularevolutionaryclockhypothesis. Genetics135:599607.

Takahata,N.1987.Ontheoverdispersedmolecularclock.Genetics116:169179.

Takezaki,N.,A.Rzhetsky,andM.Nei.1995.Phylogenetictestofthemolecularclockand linearizedtrees.Molecular Biology and Evolution12:823833.

Tavaré,S.,C.R.Marshall,O.Will,C.Soligo,andR.D.Martin.2002.Usingthefossilrecordto estimatetheageofthelastcommonancestorofextantprimates.Nature416:726729.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata.Systematic Biology51:689702.

Thorne,J.L.,H.Kishino,andI.S.Painter.1998.Estimatingtherateofevolutionoftherateof molecularevolution.Molecular Biology and Evolution15:16471657.

Uyenoyama,M.1995.Ageneralizedleastsquaresestimatefortheoriginofsporophyticself incompatibility.Genetics139:975992.

Vos,R.A.,andA.Ø.Mooers.2004.Reconstructingdivergencetimesforsupertrees.Pp.281299 inO.R.P.BinindaEmonds,ed.Phylogeneticsupertrees:Combininginformationtorevealthe treeoflife.KluwerAcademic,Dordrecht,TheNetherlands.

Welch,J.J.,andL.Bromham.2005.Moleculardatingwhenratesvary.TRENDS in Ecology and Evolution20:320327.

Whittle,C.A.,andM.O.Johnston.2003.Broadscaleanalysiscontradictsthetheorythat generationtimeaffectsmolecularevolutionaryratesinplants.Journal of Molecular Evolution 56:223233.

Wikström,N.,V.Savolainen,andM.W.Chase.2001.Evolutionoftheangiosperms:calibrating thefamilytree.Proceedings of the Royal Society B: Biological Sciences268:22112220.

35 Wikström,N.,V.Savolainen,andM.W.Chase.2003.Angiospermdivergencetimes: congruenceandincongruencebetweenfossilsandsequencedivergenceestimates.Pp.142165in P.C.J.DonoghueandM.P.Smith,eds.Tellingtheevolutionarytime:molecularclocksandthe fossilrecord.Taylor&Francis,London,UK.

Wray,G.A.2001.DatingbranchesontheTreeofLifeusingDNA.Genome Biology3:1.11.7.

Wray,G.A.,J.S.Levinton,andL.S.Shapiro.1996.Molecularevidencefordeepprecambrian divergencesamongmetazoanphyla.Science274:568573.

Wu,C.I.,andW.H.Li.1985.Evidenceforhigherratesofnucleotidesubstitutioninrodents thaninman.Proceedings of the National Academy of Sciences USA82:17411745.

Yang,Z.1997.PAML:aprogrampackageforphylogeneticanalysisbymaximumlikelihood. Computer Applications in the Biosciences CABIOS13:555556.

Yang,Z.2004.Aheuristicratesmoothingprocedureformaximumlikelihoodestimationof speciesdivergencetimes.Acta Zoologica Sinica50:645656.

Yang,Z.,andB.Rannala.1997.BayesianphylogeneticinferenceusingDNAsequences:A MarkovChainMonteCarlomethod.Molecular Biology and Evolution14:717724.

Yang,Z.,andA.D.Yoder.2003.ComparisonoflikelihoodandBayesianmethodsforestimating divergencetimesusingmultiplelociandcalibrationpoints,withapplicationtoaradiationof cutelookingmouselemurspecies.Systematic Biology52:705716.

Yoder,A.D.,andZ.H.Yang.2000.Estimationofprimatespeciationdatesusinglocalmolecular clocks.Molecular Biology and Evolution17:10811090.

Yoon,H.S.,J.D.Hackett,C.Ciniglia,G.Pinto,andD.Bhattacharya.2004.Amolecular timelinefortheoriginofphotosyntheticEukaryotes.Molecular Biology and Evolution21:809 818.

Zuckerkandl,E.,andL.Pauling.1965.Evolutionarydivergenceandconvergenceinproteins.Pp. 97166inV.BrysonandH.Vogel,eds.EvolvingGenesandProteins.AcademicPress,New York.

36 Tables

Table1.Moleculardatingmethodsthatuseamolecularclockandoneglobalrateofsubstitution.Thespecificationsabouteaseofuseand popularityrepresentonlytheauthor’spersonalviewandarethereforehighlysubjective.1)Exceptmodelparameters,priors,orcalibration constraints,2)SE:standarderror;CI:95%confidenceinterval;CrI:95%Bayesiancredibilityinterval,3)UnixsoftwarealsorunsunderMac OSX,asthisoperatingsystembasesonDarwin,anopensourceUNIXenvironment.4)PAUP*(Swoffordet al.,2001),DNAMLK(partofthe PHYLIPpackage;Felsenstein,1993),baseml(partofthepamlpackage;Yang,1997),MrBayes(HuelsenbeckandRonquist,2001),BEAST (DrummondandRambaut,2003)etc.5)Iftheuserprovidesatreetopologyinadditiontothesequences,theoptimizationrunsmuchfaster.

# 1 2 3 Method Linearregression Meanpathlength LangleyFitch Author(s) Nei(1987);LiandGraur BremerandGustafsson(1997) LangleyandFitch(1974) (1991) Softwarewhereit'simplemented PATH(Britton2002) r8s(Sanderson2003) Currentversion 1.7 Runsonoperatingsystem(s) Unix3)/LinuxwithGpc1999 Unix3)/Linux Optimizationstrategy Maximumlikelihood Inputdata1) distancematrix phylogram(withbl) phylogram(withbl) Allowsmultiplecalibrationpoints yes no yes Accountsformultiple no no no datasets/partitions Provideserrorestimates yes,CI yes,meanpathlengthCI yes,internalandbootstrapCI's (SE/CI/CrI)2) Easeofuse easy easy medium Popularityaccordingtoliterature verypopularuntilabout10 popular lesspopular yearsago 37 Table1,continued... # 4 Method MLwithclock Author(s) Felsenstein(1981) Softwarewhereit'simplemented manyphylogeneticpackages4) Currentversion Runsonoperatingsystem(s) dependsonprogram Optimizationstrategy Maximumlikelihood Inputdata1) sequencedata(+treetopology5)) Allowsmultiplecalibrationpoints dependsonprogram Accountsformultipledatasets/partitions no Provideserrorestimates(SE/CI/CrI)2) dependsonprogram Easeofuse dependsonprogram Popularityaccordingtoliterature verypopular

38 Table2.Moleculardatingmethodsthatthatcorrectforrateheterogeneity.Thespecificationsabouteaseofuseandpopularityrepresent onlytheauthor’spersonalviewandarethereforehighlysubjective.1)Exceptmodelparameters,priors,orcalibrationconstraints.2)SE: standarderror;CI:95%confidenceinterval;CrI:95%Bayesiancredibilityinterval.3)UnixsoftwarealsorunsunderMacOSX,asthis operatingsystembasesonDarwin,anopensourceUNIXenvironment. # 5 Method Linearizedtrees Author(s) LiandTanimura(1987) Softwarewhereit'simplemented Currentversion Runsonoperatingsystem(s) Optimizationstrategy dependsonclockmethod Inputdata1) phylogram(withbl) Allowsmultiplecalibrationpoints dependsonclockmethod Accountsformultipledatasets/partitions no Provideserrorestimates(SE/CI/CrI)2) dependsonclockmethod Easeofuse easy Popularityaccordingtoliterature lesspopular

39 Table2,continued... # 6 Method Localmolecularclock Author(s) Hasegawaet al.(1989);Uyenoyama(1995);RambautandBromham(1998);YoderandYang(2000) Softwarewhereit'simplemented baseml(paml;Yang,1997) QDate(RambautandBromham, Rhino(Rambaut,2001) 1998) Currentversion 3.14 1.1 1.2 Runsonoperatingsystem(s) Unix3)/Linux/Windows MacOS9.x/Unix3)/Linux/Windows MacOS 9.x/Unix3)/Linux/Windows Optimizationstrategy Maximumlikelihood Maximumlikelihood Maximumlikelihood Inputdata1) phylogram(withbl) sequencedata+quartetdefinition sequencedata+treetopology Allowsmultiplecalibrationpoints yes yes yes Accountsformultiple yes no onlycodonpositionpartitions datasets/partitions Provideserrorestimates yes,SE yes,CI yes,CI (SE/CI/CrI)2) Easeofuse medium easy medium Popularityaccordingtoliterature popular lesspopular popular,butmoreforrate comparisons

40 Table2,continued... # 6,continued... Method Localmolecularclock Author(s) Hasegawaet al.(1989);Uyenoyama(1995);RambautandBromham(1998);Yoderand Yang(2000) Softwarewhereit’simplemented r8s(Sanderson,2003b) BEAST(DrummondandRambaut,2003) Currentversion 1.7 1.3 Runsonoperatingsystem(s) Unix3)/Linux Unix3)/Linux/Windows,requiresJava1.4 Optimizationstrategy smoothing/minimizingoptimalityfunction BayesianMCMC Inputdata1) phylogram(withbl) sequencedata Allowsmultiplecalibrationpoints yes yes Accountsformultiple no yes datasets/partitions Provideserrorestimates yes,CI,butseparatebootstrappingisrequired yes,CrI (SE/CI/CrI)2) Easeofuse medium medium Popularityaccordingtoliterature popular,butmoreforNPRSandPLmethods becomingincreasinglypopular

41 Table3(seenextpage).Moleculardatingmethodsthatthatincorporaterateheterogeneity.Thespecificationsabouteaseofuseand popularityrepresentonlytheauthor’spersonalviewandarethereforehighlysubjective 1)Exceptmodelparameters,priors,orcalibrationconstraints. 2)SE:standarderror;CI:95%confidenceinterval;CrI:95%Bayesiancredibilityinterval. 3)UnixsoftwarealsorunsunderMacOSX,asthisoperatingsystembasesonDarwin,anopensourceUNIXenvironment. 4)Plusonehyperparameter(autocorrelationvalueν). 5)Plusseveralhyperparameters(describingspeciationandextinctionrate). 6)ImplementsarangeofrelaxedclockmodelsbyDrummondet al.(2006),butalsothemodelsbyThorneandKishino(2002)andAris BrosouandYang(2002). 7)Additionally,twographicaluserinterfacescalledBEAUtiandTRACERfacilitatedatasetupandoutputanalysis. 8)Themethodisimplementedinacprogram,butitisnotmeantforpublicaccess(asthereisnodocumentation). 9)Fordefiningtheageofcalibrationpoints,differentpriordistributionsareavailable,suchasnormal,lognormal,exponential,orgamma.

42 Table3,continued...

# 7 8 Method NPRS PL Author(s) Sanderson(1997) Sanderson(2002) Softwarewhereit’s r8s(Sanderson,2003b) TreeEdit(RambautandCharleston, r8s(Sanderson,2003b) implemented 2002) Currentversion 1.7 1.0a10 1.7 Runsonoperatingsystem(s) Unix3)/Linux MacOS8.6orlater,includingMac Unix3)/Linux OSX Optimizationstrategy smoothing/minimizingoptimality smoothing/minimizingoptimality smoothing/minimizingoptimality function function function Inputdata1) phylogram(withbl) phylogram(withbl) phylogram(withbl) Modelofrateevolution rateautocorrelation rateautocorrelation rateautocorrelation Allowsmultiplecalibration yes no yes points Accountsformultiple no no no datasets/partitions Provideserrorestimates yes,internalandbootstrapCI’s no yes,CI,butseparatebootstrapping (SE/CI/CrI)2) isrequired Accountsforphylogenetic no no no uncertainty Easeofuse medium easy(graphicaluserinterface) medium Popularityaccordingto popular popular becomingincreasinglypopular literature

43 Table3,continued... # 9 10 11 Method AHRS multidivtime Phybayes Author(s) Yang(2004) Thorneet al.(1998),Kishinoet al. ArisBrosouandYang(2002) (2001) Softwarewhereit's baseml(paml;Yang,1997) multidivtime(ThorneandKishino, Phybayes(ArisBrosouandYang, implemented 2002) 2001) Currentversion 3.14(since3.14beta5) 9/25/03 0.2e Runsonoperatingsystem(s) Unix3)/Linux/Windows Unix3)/Linux/Windows Unix3)/Linux/Windows Optimizationstrategy Maximumlikelihood BayesianMCMC BayesianMCMC Inputdata1) sequencedata+treetopology sequencedata+treetopology sequencedata+treetopology Modelofrateevolution rateautocorrelation rateautocorrelation rateautocorrelation Ratesaredrawnfrom lognormaldistribution sixdifferentdistributions Priordistributionof describedasdirichletdistribution4) describedasgeneralizedbirthdeath divergencetime process5) Allowsmultiplecalibration yes yes,asuserspecifiedintervals no points Accountsformultiple yes yes no datasets/partitions Provideserrorestimates yes,CI yes,CrI yes,CrI,butmustbecalculatedby (SE/CI/CrI)2) theuser Accountsforphylogenetic no no,butacceptspolytomiesininput no uncertainty tree Easeofuse medium medium(usestepbystepmanual; medium Rutschmann,2005) Popularityaccordingto notyetverypopular becomingincreasinglypopular notyetverypopular literature

44 Table3,continued... # 12 13 14 Method variableratemodelsinBEAST overdispersedclock compoundpoisson Author(s) Drummondet al.(2006) Cutler(2000) Huelsenbecket al.(2000) Softwarewhereit's BEAST(Drummondet al.,2006) cprogram(Cutler,2000) cprogram(Huelsenbecket al., implemented 2000) Currentversion 1.3 dating5.c 8) Runsonoperatingsystem(s) Unix3)/Linux/Windows,requiresJava Unix3)/Linux/Windows 8) 1.4 Optimizationstrategy BayesianMCMC Maximumlikelihood BayesianMCMC Inputdata1) sequencedata phylogram(withbl) 8) Modelofrateevolution variousmodelsimplemented6) doublystochasticpoissonprocess compoundpoissonprocess Ratesaredrawnfrom differentdistributions,suchaslogor 8) lognormal Priordistributionof nospecificdescription,priorsare 8) divergencetime uniform9) Allowsmultiplecalibration yes yes 8) points Accountsformultiple yes no 8) datasets/partitions Provideserrorestimates yes,CrI yes,CI 8) (SE/CI/CrI)2) Accountsforphylogenetic yes no 8) uncertainty Easeofuse medium,arangeoftutorialsis medium 8) available7) Popularityaccordingto becomingincreasinglypopular notyetverypopular 8) literature 45 46

Chapter II. Did Crypteroniaceae really disperse out-of-India? Molecular dating evidence from rbcL, ndhF, and rpl16 intron sequences

FrankRutschmann,TorstenEriksson1,JürgSchönenberger2,andElenaConti3 1Bergius Foundation, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden 2Department of Botany, Stockholm University, Lilla Frescativägen 5, SE-106 91 Stockholm, Sweden 3Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland Publishedin InternationalJournalofPlantSciences165(4Suppl.):S69S83.2004.

47 Abstract BiogeographicalandpaleontologicalstudiessuggestedthatsomeancientGondwanantaxa havebeencarriedbytheraftingIndianplatefromGondwanatoAsia.Duringthisjourney,the Indianislandexperienceddramaticlatitudinalandclimaticchangesthatcausedmassive extinctionsinitsbiota.However,sometaxasurvivedtheseconditionsanddispersed"outof India"intoSouthandSouthEastAsia,afterIndiacollidedwiththeAsiancontinentintheEarly Tertiary.Totestthishypothesis,independentestimatesforlineageagesareneeded.Apublished rbcLtreesupportedthesistergrouprelationshipbetweentheSouthandSouthEastAsian Crypteroniaceae(comprisingCrypteronia,AxinandraandDactylocladus)andacladeformedby theAfricanOliniaceae,Penaeaceae,andRhynchocalycaceaeandtheCentralandSouthAmerican Alzateaceae.MoleculardatingestimatessuggestedthatCrypteroniaceaesplitfromtheirWest GondwanansistercladeintheEarlytoMiddleCretaceous,andreachedAsiaraftingontheIndian plate.HerewepresentmolecularevidencefromadditionalchloroplastDNAregionsandmore taxatotestthevalidityoftheoutofIndiahypothesisforCrypteroniaceae.Bothclockbased (LangleyFitch)andclockindependentageestimates(NPRSandPenalizedLikelihood),basedon maximumlikelihoodanalysesofthreechloroplastDNAregions(rbcL,ndhF,andrpl16intron), wereusedtoinfertheageofCrypteroniaceae.OurdatingresultssuggestanancientGondwanan originofCrypteroniaceaeintheEarlytoMiddleCretaceous,followedbydiversificationonthe IndianplateintheEarlyTertiaryandsubsequentdispersaltoSouthEastAsia.Thesefindingsare congruentwithrecentmolecular,paleontological,andbiogeographicresultsinvertebrates. Withinthebiogeographiccontextofthisstudy,weexplorethecriticalassignmentofpaleobotanic andgeologicalconstraintstocalibrateultrametrictrees. Keywords:Moleculardating,molecularclock,r8s,ratesofsubstitution,penalized likelihood,nprs,clockcalibration,biogeography,Gondwana,vicariance,Crypteroniaceae, Myrtales.

48 Introduction Crypteroniaceaesensustricto(Myrtales;Candolle1857)areasmallgroupofevergreen tropicalshrubsandtreescomprisingthreegenera:CrypteroniaBl.,withsevenspecies,isthe genuswiththebroadestdistributioninSouthEastAsia,includingtheMalayPeninsula,Sumatra, Java,Borneo,Philippines,Thailand,Vietnam,Myanmar,andNewGuinea;DactylocladusOliv. hasonlyonespecies,Dactylocladus stenostachys,endemictoBorneo;Axinandra Thw.includes onespecies,Axinandra zeylanica,endemictoSriLanka,andthreeotherspecieswithrestricted distributionintheMalaypeninsulaandthenorthernpartofBorneo(vanBeusekomOsingaand vanBeusekom,1975;JohnsonandBriggs,1984;PereiraandWong,1995;Contiet al.,2002; Figure1). SouthEastAsiaandSriLankaareamongthetaxonomicallymostdiverseregionson earth.Inaddition,theyharbourhighproportionsofendemicspecies.Forthesereasons,bothareas havebeenincludedamongthe25hotspotsofbiologicaldiversityidentifiedinarecentworldwide survey(Myerset al.,2000).Thisremarkablespeciesrichnesscanbepartiallyexplainedbythe geologicalhistoryofSriLankaandSouthEastAsia.TheupliftoftheHimalayanchaincausedby thecollisionoftheDeccanplate(comprisingIndia,SriLanka,andtheSeychelles)withLaurasia duringtheEocene(between55and40millionyears[mys]ago)andthegeneralizedLateTertiary aridification(Partridge,1997;WillisandMcElwain,2002,pp.197198)ledtoan impoverishmentofthetropicalbiomeinAsia.Pocketsofthisbiome,however,survivedin refugialareascharacterizedbyconstant,tropicalconditions,forexample,inSriLankaandSouth EastAsia.Onlyintheserefugialareas,didtropicalplantshaveachancetosurvivethe detrimentaleffectsofQuaternaryclimateoscillationsontheIndiansubcontinent(Ravenand Axelrod,1974).TherelictualnatureoftheSouthEastAsianfloraisalsoreflectedinthegreat concentrationofearlydivergingangiospermcladesinthefossilrecordsofthesubtropicalforests ofAsiaAustralasia(Morley,2001). Crypteroniaceaehadbeenproposedasbeinganancientandrelictualgrouponthebasisof theirdistributionandmorphology(vanVlietandBaas,1975;vanBeusekomOsinga,1977,p. 189).Theyrepresentaninterestingcasestudytoinvestigatetherelativecontributionsof LaurasianandGondwananelementstotheSouthAsianflora,becausetheirmembershadbeen alternativelysuggestedasbeingofLaurasianorGondwananorigin.Forexample,Meijer(1972) postulatedaGondwananoriginforAxinandra,agenusthatheinterpretedasbeing morphologicallysimilartotheancestoroftheentireorderMyrtales.Furthermore,Ashtonand Gunatilleke(1987,p.263),referringtothebiogeographichistoryofAxinandra,stated:"The disjunctdistributionandgeneralizedmorphologyofthislowlandrainforestgenussuggest 49 considerableantiquityandpossiblespreadintoAsiabywayoftheDeccanPlate".Thesame authorssuggestedthatAxinandra andothertaxawerecarriedbytheraftingIndianplatefrom GondwanatoLaurasia.AfterIndiacollidedwiththeAsiancontinentintheEarlyTertiary,afew survivingGondwananelementsdispersed"outofIndia"intoSouthandSouthEastAsia,which atthetimelayinthesamelatitudinalandclimaticzone(Morley,2000).TheoutofIndiaorigin ofCrypteroniaceaewasalsosupportedinrecentbiogeographicstudiesbasedonmoleculardating estimates(Contiet al.,2002;MorleyandDick,2003). Theideathatsplittingplatesmaycarrybioticelementsfromonecontinenttotheother hadalreadybeenproposedbyAxelrod(1971)andMcKenna(1973).However,Ravenand Axelrod(1974)notedthatitisdifficulttofindevidenceforoutofIndiadispersal,becauseofthe dramaticlatitudinalandclimaticchangesthataffectedtheDeccanplateduringitsjourneyfrom GondwanatoLaurasiaandtheensuingmassiveextinctionsinitsbiota.Thesameauthors suggestedaLaurasianoriginforCrypteroniaceae(RavenandAxelrod,1974).Recentmolecular phylogeneticanalysesofrbcLsequencesinMyrtales(Contiet al.,2002)supportedthat CrypteroniaceaeformamonophyleticgroupcomprisingAxinandra,Dactylocladusand Crypteroniaandidentifiedasistercladecomprising:1)Penaeaceae,asmallgroupof23species in7generaendemictotheCapeProvinceofSouth;2)Oliniaceae,comprisingasingle genuswith8speciesrestrictedtoEasternandSouthernAfrica;3)Rhynchocalycaceae,withthe singlespeciesRhynchocalyx lawsonioides,arare,evergreentreeendemictoEasternCapeand KwaZuluNatalinSouthAfrica(JohnsonandBriggs,1984);and4)Alzateaceae,withthesingle speciesAlzatea verticillata,atreerestrictedtothesubmontanetropicalforestsofBolivia,Peru, Panama,andCostaRica(Graham,1984). ToinvestigatethebiogeographichistoryofCrypteroniaceae,Contiet al.(2002)inferred theageofCrypteroniaceaebyusingthreedifferentmoleculardatingapproachesappliedtorbcL sequences.Becausebothphylogeneticrelationshipsanddatingestimatesofrelevantnodeswere concordantwiththegeologicalhistoryoftheDeccanPlateinrelationtoWestGondwanan continents,theauthorssuggestedaWestGondwananoriginforCrypteroniaceaeandrelated families,withsubsequentdispersalofCrypteroniaceaetotheAsiancontinentviaIndia.However, theseconclusionswerebasedonevidencefromonlyonegene(rbcL)andlimitedtaxonsampling fromCrypteroniaceaeandrelatedfamilies. Inthispaper,wetestthevalidityofpreviousconclusionsontheoutofIndiaoriginof Crypteroniaceaebyexpandingthetaxonsamplingtoincludefouroutof12describedspeciesof Crypteroniaceaeand13outof33describedspeciesoftheirsisterclade.Furthermore,weperform ouranalysesonDNAsequencesofthreechloroplastregions(rbcL,ndhF,rpl16intron)anda combineddataset,comparetheresultsofclockdependent(LangleyFitch,LF:LangleyandFitch,

50 1974)andclockindependentmoleculardatingmethods(nonparametricratesmoothing,NPRS: Sanderson,1997;andPenalizedLikelihood,PL:Sanderson,2002),andevaluatetheleveloferror inourdivergencetimeestimatesbyimplementingabootstrapapproach(BaldwinandSanderson, 1998;SandersonandDoyle,2001).Wealsodiscusshowproblemsofcalibrationinmolecular datinganalysesaffectdifferentconclusionsonpossiblebiogeographicscenariosforourstudy system.

51 Materials and Methods Plant material and DNA extractions ForCrypteronia paniculata,Crypteronia griffithii,Axinandra zeylanica,Dactylocladus stenostachys,and emarginataweextractedtotalgenomicDNAfromsilicadried material.LeaftissuewashomogenizedusingglassbeadsandaMM2000shaker(RetschGmbH,

Haan, Germany).TheDNAfromthesespecieswasextractedwithamethoddescribedinprotocol DofSmithet al.(1991),whichemploysa2%hexadecyltrimethylammoniumbromide(CTAB) extraction/lysisbuffer.Forallothertaxa,themethodofDNAextractionisgivenin SchönenbergerandConti(2003).Taxonnames,voucherinformation,andGenBankaccession numbersarelistedintable1.

PCR and DNA sequencing AmplificationandsequencingprimersfromZurawskiet al.(1981),OlmsteadandSweere (1994),andBaumet al. (1998)wereusedtogenerateDNAsequencesofrbcL,ndhFandrpl16 intron,respectively.PCRamplificationswereperformedinaBiometraTGradientthermocycler, applyingathermalcyclingprogramthatconsistedof34cyclesof0.5minat95°C,1minat49 °Cto52°C,and1.7minat72°C,followedbyaterminalextensionof10minat72°C.Inorder tosuccessfullydetectamplifiedDNAtargetregionsandpossiblecontamination,PCRproducts wereseparatedon1%agarosegels,stainedwithethidiumbromide,andvisualizedunderUV light.SuccessfullyamplifiedPCRproductswerepurifiedwiththeQIAquickPCRPurification Kit(QIAGEN,Basel,Switzerland).CyclesequencingreactionswereperformedusingtheABI PRISMDyeTerminatorCycleSequencingReadyReactionKit(AppliedBiosystems,Applera B.V.,Rotkreuz,Switzerland).Forafewtaxa,wewereunabletoamplifytheentirerpl16 intron;inthesecasestwoadditionalinternalprimers,MFandMR,wereused(Schönenbergerand Conti,2003).CyclesequencingreactionswereperformedinaGeneAmpPCRSystem9700 (AppliedBiosystems)byusingatemperaturecycleof10sat96°C,5sat50°C,and4minat60 °C(25cycles).ThesequencingfragmentswerecleanedwithMicroSpinG50columns (AmershamPharmaciaBiotechEuropeGMBH,Dübendorf,Switzerland)toremoveexcessdye terminatorsbeforeloadingthemonanABIPrism3100GeneticAnalyzer(AppliedBiosystems). ThesoftwareSequencher3.1.1(GeneCodes,AnnArbor,MI,USA)wasusedtoeditand assemblecomplementarystrands.Basepositionswereindividuallydoublecheckedforagreement betweenthecomplementarystrands.RbcLsequenceswerereadilyalignedbyeye,whilendhF andrpl16intronsequenceswerefirstalignedusingClustalX1.81(Thompsonet al.,1997)prior

52 toadjustingthealignmentsbyeyeinthesoftwareMacClade4.0(MaddisonandMaddison, 2000).Fortherpl16introndataset,thevariableregionbetweennucleotides810and1031was deleted,becausewewereunabletoproduceareasonablealignmentwithinthatregion.The datasetsusedforfurtherphylogeneticanalysescontained24taxaand1280(rbcL),981(ndhF), 1010(rpl16intron),and3271(allthreedatasetscombined)alignedpositions.

Phylogenetic analyses MaximumLikelihood(ML)optimizationwasusedtofindthebesttreeforeachofthe threeseparatedatapartitionsandforthecombineddatamatrix,includingallcharacters.A NeighborjoiningtreecalculatedundertheJC69substitutionmodel(JukesandCantor,1969)was usedasthestartingtreetoestimatetheoptimalMLparametersunder56differentmodelsof evolutioninModeltest3.06(PosadaandCrandall,1998).Thebestsubstitutionmodelwas selectedbyperforminghierarchicallikelihoodratiotests(Felsenstein,1981;Huelsenbeckand Rannala,1997).Theselectedoptimalmodelswereallsubmodelsofthegeneraltimereversible (GTR)model(Rodríguezet al.,1990).FortherbcLdataset,theK81uf+G+Imodelwasselected (Kimura,1981):unequalbasefrequencies(A=0.2673,C=0.1941,G=0.2488,T=0.2898),one transitionrate(AG/CT:1.4245),twotransversionrates(AC/GT:1,AT/CG:0.3281),gamma distributionofratesamongsiteswithalphashapeparameter0.7280(Yang,1993),proportionof invariablesites0.7098.ForthendhFdataset,theTVM+Gmodelwasselected:unequalbase frequencies(A=0.3085,C=0.1481,G=0.1529,T=0.3905),onetransitionrate(AG/CT:1.5243), fourtransversionrates(AC:1.2165,AT:0.1544,CG:1.4160,GT:1),gammadistributionofrates amongsiteswithalphashapeparameter0.3887,noproportionofinvariablesites.Fortherpl16 introndataset,theK81uf+Gmodel(Kimura,1981)wasselected:unequalbasefrequencies (A=0.3716,C=0.1651,G=0.1685,T=0.2948),onetransitionrate(AG/CT:1.3446),two transversionrates(AC/GT:1,AT/CG:0.4837),gammadistributionofratesamongsiteswith alphashapeparameter0.8358,noproportionofinvariablesites.Forthecombineddataset,the TVM+G+Imodelwasselected:unequalbasefrequencies(A=0.314,C=0.1692,G=0.1912, T=0.3256),onetransitionrate(AG/CT:1.5),fourtransversionrates(AC:1.1651,GT:1,AT: 0.3469,CG:0.7904),gammadistributionofratesamongsiteswithalphashapeparameter 0.8288,proportionofinvariablesites0.4007. TheestimatedparameterswerethenusedinaMLheuristicsearchusing100random additionsequences,treebisectionreconnection(TBR)branchswapping,andsteepestdescent activated,implementedinPAUP4.0b10(Swofford,2001).Thetreeswererootedonthebranch leadingtoMouriri helleri(Memecylaceae)andfourrepresentativesof,which wereconstrainedtobemonophyletic.Thesechoiceswerejustifiedbytheresultsofmore 53 inclusivephylogeneticanalysesofMyrtales(Contiet al.,1996and2002).Statisticalsupportfor eachcladewasestimatedbygenerating1000bootstrappseudoreplicatesusingtheMLfast heuristicsearchoptioninPAUP.Allphylogeneticanalyseswereperformedona2GhzPentium IVmachineunderRedHatLinux8.0.

Molecular Dating Whenperformingmoleculardatinganalyses,severalcrucialchoicesneedtobemadethat mightaffecttheestimatedages,includingselectionofmoleculardatingmethod,genesampling, andcalibrationmethod.Thefirstchoiceistodecidewhethertheanalysesshouldbebasedonthe assumptionofrateconstancy(molecularclock)orwhethertheyshouldallowratestovaryacross branchesofatree.Toevaluatewhetherthesequencesofeachdatapartitionevolvedinaclock likefashion,alikelihoodratio(LR)testwasperformedbycomparingthescoresofMLtreeswith andwithoutamolecularclockenforced(Felsenstein,1981;Sanderson,1998,NeiandKumar, 2000).Togainsomeinsightintotherelativeperformanceofdifferentmoleculardatingmethods, wecomparedtheresultsoftheclockdependentLangleyFitch(LF;LangleyandFitch,1974)and theclockindependentnonparametricratesmoothing(NPRS;Sanderson,1997)andPenalized Likelihood(PL;Sanderson,2002)analyses,asimplementedinr8s1.6(Sanderson,2003).Both lattermethodsrelaxtheassumptionofrateconstancybysmoothingchangesofsubstitutionrates acrossthetree.NPRSisanentirelynonparametricmethodthatestimatesratesandtimesviaa leastsquaressmoothingcriterion,whereasPLisasemiparametrictechniquethatattemptsto combinethestatisticalpowerofparametricmethodswiththerobustnessofnonparametric methods.Briefly,PLreliesonadatadrivencrossvalidationprocedurethatsequentiallyprunes taxafromthetree,estimatesparametersfromthesubmatrixforagivensmoothingvalue,predicts thedatathatwereremovedbyusingtheestimatedparameters,andcalculatestheχ2error associatedwiththedifferencebetweenpredictedandobserveddataoftheremovedsubmatrix. Theoptimalsmoothinglevelcorrespondstothelowestχ2error(Sanderson,2002). TheoptimalMLtreesestimatedinPAUP4.0b10foreachdatapartitionandforthe combineddatasetweresavedwithbranchlengths(Figures25a)andthenusedasinputtreesin r8s.ToestablishthepositionoftherootinthebasalbranchoftheMLtrees,Myrtus communis and uniflora(Myrtaceae)wereusedasdatingoutgroups(seeContiet al.,1996;1997). Toevaluatetheoverallbranchlengthfromtheroottoatipofatree,itisnecessarytoknowthe lengthsofthebasalbranches.Inanadditivetree,onlythesumoftheselengthsisknown,andthe placewheretherootattachestothebasalbranchesisundefined(Figure6a).Datingoutgroup choiceinfluencesthepositionoftherootattachmentpoint,hencethelengthsofthebasal branches(Figure6b)andtherelativecontributionofindividualbranchestothetotalpathsfrom 54 theroottothetips(SandersonandDoyle,2001;Sanderson,2002).Therefore,rootposition affectsthecalculationofabsolutesubstitutionratesandthesmoothingofdifferentialsubstitution ratesacrossthetree. Afterrootpositionwasestablished,thedatingoutgroupwasremovedinr8spriorto moleculardating.ForthePLanalyses,theoptimalsmoothingparameter,rangingbetween0.001 to1000,wasselectedpriortothedatingbyperformingacrossvalidationprocedure.Tocalculate theabsolutesubstitutionratesacrossthetree,optimizationviaTruncatedNewton(TN)algorithm waschosenfortheLangleyFitchandPLmethods,andthePOWELLalgorithmfortheNPRS dating. Allageestimationsinr8swerestartedfivetimestoprovidedifferentstartingconditions (arandomsetofinitialdivergencetimes),apracticeaimedatpreventingtheoptimization algorithmsfromconvergingtoalocalplateau.AgeestimationswereperformedonlyfornodesA, B,andC,becausethesenodesarecrucialtotestingtheoutofIndiaoriginofCrypteroniaceae. NodeArepresentsthediversificationoftheCrypteroniaceaecrowngroup;nodeBtheoriginof theCrypteroniaceaestemlineage(equivalenttothetimeatwhichCrypteroniaceaesplitofffrom theirWestGondwanansistergroup);andnodeCrepresentsthesplitbetweentheSouthAmerican AlzateaanditsAfricansisterclade(seeFigures25). Toevaluatestatisticalsupportfortheestimatedages,weperformedabootstrap resamplingprocedure(EfronandTibshirani,1993).Forallmoleculardatinganalysesperformed onthecombineddataset,100bootstrappseudoreplicatesweregeneratedusingtheprogram SEQBOOTfromthePhylippackage,version3.6a3(Felsenstein,2002).Whilethetopologyof theoptimalMLtreeswaskeptfixed,branchlengthsforeachpseudoreplicatewereestimatedby MLwiththeselectedsubstitutionmodelinPAUP(Sanderson,1997).Withthisapproach,100 bootstraptreeswiththesametopology,butdifferentbranchlengthsweregeneratedand individuallyanalyzedin100moleculardatingproceduresasdescribedabove.ForthePL analysis,theoptimalsmoothingparameterforeachbootstrapreplicatewascalculatedpriortothe datingprocedures.Usingther8sbootstrapkit(Eriksson,2002),relativebranchlengthsfromthe 100bootstrappedtreesweretransformedintoadistributionof100absoluteagesforeachof nodesA,B,andC,respectively.Aftercheckingfornormality,theobtainedagedistributionswere usedtocalculatethemean,standarddeviation,and95%confidenceintervalofeachageestimate (tables24).

Calibration TotransformtheresultingrelativebranchlengthsintoabsoluteagesfornodesA,B,and C(Figure5b)itisnecessarytofixorconstrainanodetoanabsoluteage.Thecalibration 55 procedurerepresentsoneofthemostsensitivechoicesinmoleculardatinganalyses(Yangand Yoder,2003;ThorneandKishino,2002;Wikströmet al.,2001;Sanderson,1998).Calibration canbeperformedbyreferenceeithertothefossilrecord(paleobotanicdating)ortoknown vicarianceevents(geologicaldating;Sanderson,1998;Hilliset al.,1996).Eitherapproachcan establishonlytheminimumageatthecalibrationpoint,mostlikelyresultinginan underestimationofdivergencetimes(Tavaréet al.,2002).Inthefollowingsectionweconsider theproblemsassociatedwitheachofthethreecalibrationpointsthatweselectedforouranalyses. Fromananalyticalpointofview,theidealcalibrationpointwouldbeascloseaspossible tothenodetobeestimated,inordertoreducepotentialsourcesoferrorinageestimation (Wikströmet al.,2001).Inourtree,thiswaspossibleonlywithgeologicalcalibration(see below),becausethefossilrecordofCrypteroniaceaeistoouncertain.Heterocolpatepollen tentativelyassignedtoCrypteroniaceaefromtheMiddleMiocene(Muller,1975)isdifficultto distinguishfromheterocolpatepollenofMelastomataceae,Memecylaceae,Oliniaceae, Penaeaceae,andRhynchocalycaceae(MorleyandDick,2003).Therefore,wewereforcedtolook forpaleobotaniccalibrationpointsoutsideofCrypteroniaceae. ThephylogeneticallyclosestfossilswereinMelastomataceae.Renneret al.(2001)and RennerandMeyer(2001)usedfossilseedsfromtheMioceneofcentralEurope(Collinsonand Pingen,1992)toconstraintheoriginofMelastomeae.However,theassignmentoftheseseedsto Melastomeaeisnotstraightforward.CollinsonandPingen(1992,p.134)stated:“[Thesefossil seeds]aremostsimilartoseedsofmembersofthetribesOsbeckieae[Melastomeae]and Rhexieae,butdifferinseveralsignificantfeatures,especiallythepresenceofmulticellular tubercles”.Therefore,itisdifficulttoknowwhetherthesefossilsshouldbeassignedtothebase oftheMelastomeaecrowngrouportomorerecentnodesinthetribe.Withthesecaveatsinmind, weassignedaprobablyveryconservativeageof26mys(assuggestedbyRenneret al.,2001)to nodeD,representingthecrowngroupofMelastomeaeinourcurrenttaxonsampling(Figures2 5). FossilfromtheEarlyEoceneofNorthDakota(53mys;Hickey,1977)canalsobe usedtoconstrainanodeinMelastomataceae.However,theassignmentofthesemacrofossilstoa specificnodeisproblematic.Inhisdescriptionofthesefossilleaves,Hickey(1977)statedthat theyresemblemostcloselytheleavesofextantMiconieaeandMerianieae,butcautioned:“They alldiffer,however,innotbeingdeeplycordateandinhavingtertiarieswhichdonotformagood Vpattern”(Hickey,1977,p.144).Renneret al.(2001)conservativelyassignedtheseleaves, characterizedbytheacrodromousleafvenationtypicalofextantMelastomataceae,tothenode thatsubtendsthecrowngroupoftheentireMelastomataceae,includingthebasalKibessieae. However,thesefossilleavescanalsobeassignedtothecrowngroupthatincludesMiconieaeand

56 Micronieae,asthecommentsbyHickey(1977)mightimply(seealsoRenneret al.,2001).Our currentsamplingofMelastomataceaedoesnotincluderepresentativesofthebasalKibessieae. However,alsoinlightofthebiasesinthemacrofossilrecorddiscussedbyMorleyandDick (2003)itdoesnotseemunreasonabletoassignanageof53mystothenodethatcomprisesour currentsamplingofMelastomataceae(nodeE,seeFigures25;seealsoRenner,2004). Severalrecentstudieshaveusedgeologicalcalibrationpointsformoleculardating estimates,forexample,in Phylica(Richardsonet al.,2001),Laurales(Renneret al.,2000),ranid frogs(BossuytandMilinkovitch,2001),andratitebirds(Cooperet al.,2001).Inouranalyses,all MLtreesfromeitherseparateorcombineddatasetssupportedthesistergrouprelationship betweentheSouthAmericanAlzateaceaeandtheAfricanclade(seeResults).Thispattern, supportedbyabootstrapvalueof86%inthecombinedMLtree(seeFigure5a),representsa rathercleargeologicalsignature,andcanbeusedasacalibrationpoint,despitecaveatsof potentialcircularity.Therefore,weassignedanageof90mys,representingthefinalsplit betweenSouthAmericaandAfrica,tonodeC(seeFigure5b).

57 Results Phylogenetic analyses OnesingleoptimalMLtreewasfoundforeachdatasetwithaloglikelihoodscoreof– lnL=3408.68(rbcL),4119.76(ndhF),4603.61(rpl16intron),and12460.2(combineddataset; Figures25a). Alloptimaltreesfromthethreeindividualandthecombineddatasetsshowedcommon results:1)Crypteronia,Axinandra,andDactylocladus(allCrypteroniaceae)formeda monophyleticgroup,withbootstrapsupportvalues(BS)between98%and100%(Figures25a); 2)Alzatea(Alzateaceae),Rhynchocalyx(Rhynchocalycaceae),andallPenaeaceaeandOliniaceae includedinthisanalysisformedanothercladewithBSbetween51%and86%;3)Thesetwo cladesweresistertoeachotherwithBSbetween67%and99%;and4)Alzateawassistertothe cladeformedbyRhynchocalyx,Oliniaceae,andPenaeaceaewithBSbetween79and97%.Inall theseclades,thehighestbootstrapsupportvalueswereobtainedinthecombinedanalysis.

Molecular dating ByenforcingthemolecularclockinPaup4.0b10weobtainedanoptimalMLtreefor eachdatasetwithloglikelihoodscoresof–lnL=3429.36(rbcL),4169.04(ndhF),4648.36(rpl16 intron),and12531.27(combineddataset).Comparisonsbetweenclockandnonclocktreesby applyinglikelihoodratio(LR)testsrejectedclocklikeevolutionforalldatasets(LR=41.35, rbcL;98.56,ndhF;89.52,rpl16intron;142.12,combineddataset;degreesoffreedom=22, confidenceinterval=95%).Theresultsofmoleculardatinganalysesusingbothclockdependent andclockindependentapproachesforthethreeseparateandforthecombineddatasetsare summarizedintables24,andthePLchronogramforthecombineddatasetisshowninFigure 5b.Smoothingparametervaluesof0.1(rbcL),0.01(ndhF),0.001(rpl16intron),and0.00316 (combineddataset),selectedviaacrossvalidationprocedureinr8s,wereusedforPenalized Likelihoodageestimations.

58 Discussion ThetopologiesofalloptimalMLtreesfromthethreeindividualandthecombined datasetswerecongruentwithphylogeniespublishedbyClausingandRenner(2001),Contiet al. (2002),SchönenbergerandConti(2003),andSytsmaet al.(thisissue).However,thetrees differedslightlyinthedetailedtopologicalresolutionwithinthecladesmentionedintheResults sectionandinthebranchlengths.

Comparisons among dating methods Comparisonsamongthenodalagesestimatedbythethreedatingmethodsshowed remarkabledifferences(table24),dependingonthemethodsthemselves,butalsoontheposition ofthecalibrationnodewithinthetree.Adiscrepancybetweenclockbasedandclock independentageestimateswasexpected,becauselikelihoodratiotestsstronglyrejectedthe assumptionofrateconstancyforalldatasets.Differencesintheratesofnucleotidesubstitution betweenbranchesinatreearealsoknownaslineageeffects(Britten,1986;Gillespie,1991). Ingeneral,thenonparametricratesmoothingmethod(NPRS;Sanderson,1997),which relaxestheassumptionofrateconstancybysmoothingchangesofsubstitutionratesacrossthe tree,consistentlyproducedthehighestratedifferencesbetweenthebranches(asvisualizedinthe ratogramsproducedbyr8s;datanotshown),thustheagesestimatedusingNPRSwereeither muchyoungerorolderthanthoseobtainedbyusingLangleyFitch(LF:LangleyandFitch,1974) –dependingonthepositionofthecalibrationnodeanddatapartition.ThisisbecauseNPRS tendstooverfitthedata,thuscausingrapidratefluctuationsincertainregionsofatree (Sanderson,2002).ThesemiparametricPenalizedLikelihoodmethod(PL;Sanderson,2002) triestoalleviatethisproblembyselectingtheoptimalsmoothingparameterviaadatadriven crossvalidationprocedure(GreenandSilverman,1994).TheapplicationofPLresultedinrates ofnucleotidesubstitutionaswellasageestimateswhichwereformostbranchesbetweenthose calculatedwithLFandNPRS. BycalibratingthetreesatnodesEorD(tables2and3),theagesestimatedfornodesA, B,andCusingNPRSwereconsistentlyolderthanthoseproducedusingPL,whereastheages obtainedusingLFwereyoungerthanthePLresults.Thelikelyexplanationforthiseffectliesin thetwolongbranchesbelownodeE(Figures25a).Dependingonthedatingmethod,different ratesofnucleotidesubstitutionareassignedtothesebranches(ratogramsnotshown),producing considerablydifferentabsoluteagesatnodeslocatedontheothersideoftherootofthetree.

59 Comparisons among DNA regions BycalibratingthetreesatnodesEorD(tables2and3),theagesfornodesA,B,andC estimatedusingthendhFdatasetweregenerallymucholderthanthosebasedontheothertwo datasets.Reciprocally,whenwecalibratedthetreesatnodeC(table4),theagesfornodesEand DweremuchyoungerinthendhFbasedanalysisthanbyusingtherbcLorrpl16introndatasets. NodalagesestimatedfromrbcLandrpl16intronsequencesweresimilartoeachother. ComparisonsofthethreeMLphylogramsshowthatthebranchesbelownodeEaresignificantly longerinthendhFphylogram(Figure3)thanthesamebranchesintherbcLandrpl16intron phylograms(Figures2and4). Thephenomenonofstrikingdifferencesinthetempoandmodeofevolutionbetween differentgenesiswellknown,butitseffectsondivergencetimeestimationarepoorlyunderstood (Goremykinet al.,1996;SandersonandDoyle,2001).Inthepresentpaper,wecanonly speculateonpossibleexplanationsfortheanomalousresultsobtainedfromndhFsequencesand suggestresearchdirectionsthatmightprovefruitfultoinvestigatetheroleofgenespecificeffects onmoleculardatingestimates. Forexample,thebiasofnucleotidesubstitutionsinbothcodingandnoncoding sequencesoftheplantchloroplastgenomeisstronglydependentonthecompositionofthetwo flankingbases(Morton,1997a,1997b).Onepossibleexplanationfortheolderagesobtained fromndhFsequencesmightlieinthedifferentialinfluencethatthetwoneighboringbasescould haveonthesubstitutiontypeofacertainnucleotideinourndhFsequencesascomparedtorbcL andrpl16intronsequences.ItisalsoreasonabletoaskwhethertheoccurrenceofanndhF pseudogenemightexplaingenespecificeffectsonageestimates,asndhFpseudogeneshavebeen reported,forexample,inorchids(NeylandandUrbatsch,1996).However,translationofndhF sequencesintothecorrespondingaminoacidsdidnotrevealthepresenceofanystopcodons,and multiplealignmentofndhFsequencesrequiredonlygapsinmultiplesofthree,suggestingthat ourndhFsequenceslikelyrepresentfunctionalgenecopies.Furthermore,PCRamplifications usinganndhFspecificprimerpair(OlmsteadandSweere,1994)didnotrevealanyPCR productsofdifferentlengths,anddirectsequencingofdoublestrandedPCRproductsproduced unequivocalelectropherograms,characterizedbysinglepeaksatallpositions.Finally,the topologyoftheoptimalMLtreebasedndhFwascongruenttotheothertreesbasedontherbcL andrpl16intronsequences.Nevertheless,wecannotexcludethepossibilitythatan ndhF pseudogenemightexistinsomeorallofthestudiedtaxa,perhapsinfluencingthemolecular evolutionarybehaviorofthefunctional ndhFgenecopiesthatwelikelysequencedforthisstudy (BromhamandPenny,2003).Anotherpotentialexplanationforthedifferentdatingresults obtainedfrom ndhFsequencesmightbesoughtinalignmenteffects.However,experimentsusing 60 amodified ndhFdatasetfromwhichallgappedregionswereremovedpriortoanalysisproduced ageestimatessimilartothoseobtainedwiththegappeddataset(datanotshown).Additional theoreticalandexperimentalstudiesofgenespecificeffectsonmoleculardatingestimatesare clearlyneeded(BromhamandPenny,2003). Althoughnestedlikelihoodratiotestsofthethreeseparatedatasetsindicatedthatthethree chloroplastregionsusedinourdatinganalysesevolvedaccordingtodifferentmodelsand parametersofnucleotidesubstitutions,weproceededtoestimatenodalagesfromthecombined datamatrix,becausewewishedtocompareresultsfromthelatterwiththosefromthethree separatesequencematrices.TheexceedinglyolderoryoungernodalagesestimatedfromndhF sequences,dependingonthepositionofthecalibrationpoint,seemedtofurtherjustifydataset combination,forithasbeensuggestedthatthecombinationofsequenceswithdifferent evolutionarypatternsmightcompensateforunusualpatternsinanysingleDNAregion (Wikströmet al.,2001;Qiuet al.,1999).

Congruence between geological and biological history Oneofthemajorgoalsofbiogeographicstudiesistoelucidatethehistoricalgenesisof currentplantdistributions.Inanevolutionaryframework,itisassumedthatgeologicaleventsof thepast,forexampletheemergenceand/ortheeliminationofmajorgeographicbarrierstorange expansion,likelyleftamarkonthephylogeneticandbiogeographichistoryofbioticelements (Lieberman,2000).Therefore,tosupportthehypothesisthatgeologicaleventsshapedthecurrent distributionofanytaxa,onewouldneedtodemonstratecongruencebetweengeologicaland biologicalhistorybothintermsofpatternandtime(table5).Atthelevelofpattern,onewould expectcorrespondencebetweenthesequenceofgeologicaleventsandthesequenceof cladogeneticevents.Paleogeologicalreconstructionsandthetopologyofphylogenetictrees providethenecessaryevidenceforpatterncongruence.Attheleveloftime,thespecifictimingof geologicaleventsmustbecompatiblewiththetimingofcladogeneticevents(nodalages)inferred frommolecularorotherdatingmethods.Bothlinesofevidence(patternandtime)arenecessary, butindependentlynotsufficient,tosupportakeyroleofgeologyinshapingcurrenttaxic distributions.Ifevidenceforcongruencebetweengeologyandbiologycanbeproducedatthe levelsofbothpatternandtime,thereisnoneedtoinvokeothertypesofexplanatoryprocessesfor currentbioticdistributions(table5;seealsoSober,1988;HunnandUpchurch,2001). Geologicaleventsthatinfluencebiologicaldistributionsincludeplatefragmentation,asin theclassicinterpretationofvicariance,ortheexpansionofalineageduetothetemporary eliminationorreductionofageographicbarrier,followedbytheemergenceofanewbarrier producingvicariantsistergroups,asintherecentlyproposedconceptofgeodispersal(Lieberman, 61 1997;Lieberman,2000).Inthenextsectionwewilldiscusswhetherthephylogenetic relationshipsandmoleculardatingestimatesofCrypteroniaceaewarrantakeyroleforgeological eventsinexplainingthecurrentdistributionofthisgroupanditssisterclade.

Congruence between geology and biology for the out-of-India hypothesis of Crypteroniaceae Aftercomparingtheresultsofdifferentdatingmethodsanddatasets(seeabove),it seemedmostreasonabletousetheMLtreetopology(Figure5a)andthePLages(Figure5b) calculatedfromthecombineddatamatrixtoreconstructthebiogeographichistoryof Crypteroniaceae.ApreviousphylogeneticandmoleculardatingstudybasedexclusivelyonrbcL sequencesproposedanancientGondwananoriginforCrypteroniaceaeintheEarlytoMiddle Cretaceous,followedbydispersaltotheDeccanplate(comprisingMadagascar,India,SriLanka, andtheSeychelles)asitwasraftingalongtheAfricancoast,andsubsequentdispersalfromIndia toSouthEastAsiaaftercollisionoftheIndianplatewithAsiaintheMiddleEocene(Contiet al., 2002).Isthisbiogeographicreconstructioncongruentwithbothpatternandtimingof cladogeneticevents(table5),asestimatedfromthephylogeneticandmoleculardatinganalyses oftheexpandeddatasetsusedinthepresentstudy? ThecombinedMLtree(Figure5a)stronglysupports(BS=99%)thesistergroup relationshipbetweentheSouthEastAsianCrypteroniaceaeandtheWestGondwanancladeand thesplitbetweentheSouthAmericanAlzateaceaeandtheAfricanclade(BS=86%).Therefore, atthelevelofpattern,thesequenceofcladogeneticeventsiscongruentwiththesequenceof geologicalevents,ifweconsiderthattheDeccanPlateraftedalongtheAfricancoastbetweenthe LowerandMiddleCretaceous(Scoteseet al.,1988;Morley,2000),withlikelyislandchain connectionsbetweenthetwoplatesuptotheEarlyMaastrichtian(Morley,2000),andthat separationbetweenAfricaandSouthAmericawascompletedbyapproximately90mys (McLoughlin,2001),althoughtransoceanicdispersalroutesbetweenAfricaandSouthAmerica likelyexistedbetween84and65mys(McDougalandDouglas,1988;Hallam,1994;Morley, 2000). Attheleveloftime,resultsaremorecontroversial.Thedeviationsinageestimatesdueto theuseofdifferentcalibrations(tables24)indicatethatcalibrationisoneofthemostcritical issuesinmolecularphylogeneticdating.TheagesfortheoriginofCrypteroniaceae(nodeB), obtainedfromPLoptimizationonthecombinedMLtree,rangedfromaminimumvalueof62 mys,estimatedbyfixingnodeDto26mys,toahighervalueof101mys,estimatedbyfixing nodeEto53mys,andamaximumvalueof109mys,estimatedbyfixingnodeCto90mys(see tables24andFigure5b).AsexplainedinMethods,theassignmentsoffossilseedsfromthe 62 MioceneofcentralEurope(CollinsonandPingen,1992)tonodeD(Melastomeaecrowngroup) andfossilleavesfromtheEoceneofNorthDakota(Hickey,1977)tonodeE(Melastomataceae crowngroup)mostlikelyrepresentlargeunderestimationsofnodalages.Furthermore,Morley andDick(2003)extensivelyreviewedthefossilrecordforMelastomataceaeandarguedthatits abruptappearanceatnortherntemperatelatitudesduringtheEoceneandMiocenemaysimply reflectcolonizationfromancientGondwananlineages.Giventheseconsiderations,itseemsmore plausibletosuggestanoriginoftheCrypteroniaceaestemlineagethatisclosertotheolder ages(101106mys)obtainedwithourthreecalibrationpoints.Whichbiogeographicscenariois congruentwiththisinterpretationfortheageofCrypteroniaceae? Accordingtopaleogeographicreconstructions,EastGondwanaincludingIndiasplit fromWestGondwanabetween165and150mysago(Krutzsch,1989;McLoughlin,2001; Briggs,2003).Therefore,atraditionalvicariantexplanationfortheoriginofCrypteroniaceae withoverlanddispersalfromWesttoEastGondwana,followedbytectonicsplitisincompatible withourdatingestimatesfornodeBandindeedwithmolecularestimatesfortheageof angiosperms(190140mys;SandersonandDoyle,2001;Wikströmet al.,2001).Itismore probablethatthebiogeographichistoryofCrypteroniaceaemightreflectatemporaryreductionor eveneliminationoftheoceanicbarrierbetweenAfricaandtheDeccanPlate(atthattime comprisingMadagascar,India,SriLanka,andtheSeychellesPlateau),astheplatedrifted northwardalongtheAfricancoastforaratherextendedperiodoftime(over40mys)betweenthe EarlyandLateCretaceous(Morley,2000;Scoteseet al.,1988;Briggs,2003).Ithasalsobeen suggestedthatsmallislandsorlandbridgesbetweenWestGondwanaandtheDeccanPlate facilitatedshorttomediumdistancedispersalovertheMozambiqueChannelofotherbiotic elements,includingsomegroupsofdinosaurs,crocodiles,mammals(Krauseet al.,1999;Krause andMaas,1990),frogs(BijuandBossuyt,2003;BossuytandMilinkovitch,2001),lizards, snakes,turtles,andcaecilians(Briggs,2003).AshtonandGunatilleke(1987)suggestedthatthe totaldistancebetweenWestGondwanaandtheDeccanplate(stillconnectedtoMadagascar) remainedmoreorlessconstant(about420km)untilapproximately84mysago,whentheplate separatedfromMadagascarandstartedtodriftnorthwards(Storeyet al.,1995;Plummerand Belle,1995;McLoughlin,2001).PollenrecordssuggestedthatplantdispersalfromAfricato MadagascarandtheIndianplatecontinuedonaregularbasis,presumablyuntilthemiddle Maastrichtian(6571mysago;MorleyandDick,2003).Therefore,India’sroleinthe biogeographichistoryofCrypteroniaceaemostlikelydidnotconformtoapurelyvicariant pattern,involvingdirectdispersalpriortobarrierformation(Wiley,1988;MorroneandCrisci, 1995),butrathertothedynamicsofrangeexpansionfollowingbarrierreduction(geodispersal; Lieberman,2000;seealsoStace,1989).

63 ExtinctionplayedaprominentroleinthehistoryoftheancientGondwananelementsof India’sbiotas,asIndiatraveledrapidlyacrosslatitudesduringtheMiddletoLateCretaceous (McLoughlin,2001;Morley,2000).Itsbiotaswereaffectedbymassivevolcanismatthe CretaceousTertiaryboundary(approximately65mysago;Officeret al.,1987),extensive aridificationduringtheLateTertiary(followingtheupliftoftheHimalayanchaincausedby India’scollisionwithSouthernAsiabetween55and49mysago;Becket al.,1995),andfurther cyclesofaridityassociatedwithglaciationsduringtheQuaternary(RavenandAxelrod,1974; BandeandPrakash,1986;AshtonandGunatilleke,1987;Morley,2000).Axinandra zeylanicais endemicinSriLankawhichwasprobablyconnectedtoIndiauntil6000yearsago(McLoughlin, 2001).SouthwesternIndiatogetherwithSriLankaservedasrefugialareas,wheresomeancient Gondwanantaxaescapedextinction(RavenandAxelrod,1974;Guleria,1992;Morley,2000). SomeoftheserelictualtaxadispersedtoSouthEastAsia,whereCrypteronia sp.,Dactylocladus stenostachys andtheotherthreespeciesofAxinandraoccurtothisday. SouthEastAsiahasalso longbeenrecognizedasarefugiumwheretheequableoceanicconditionsallowedtropical lineagestosurvive(BandeandPrakash,1986;Morley,2000;Takhtajan,1987). Tosummarize,ourcurrentphylogeneticandmoleculardatingresultsfromexpandedtaxic andgeneticsamplingsuggestapossiblecongruencebetweenbiologicalandgeologicalhistory thatiscompatiblewithacentralroleplayedbytheDeccanPlateintransportingthestemlineage ofCrypteroniaceaefromWestGondwanatoAsia,mostlikelyinatimeframecomprisedbetween theMiddletoLateCretaceous.However,ourresultsremainopentodebate,especiallyinlightof thedifficultassignmentofpaleobotanicandgeologicalconstraintstospecificnodesinthe phylogeny.Itisourhopethattheadditionofmorefossilcalibrationpoints,furthertaxonomic samplingfromCrypteroniaceaeandadditionalgroups,andtheuseofdatingmethodsthatallow formultiple,contemporaryconstraintsonthephylogenywillallowustorefineourinterpretations ofthebiogeographichistoryofCrypteroniaceaeandrelatedclades.

64 References Arbogast,B.S.,S.V.Edwards,J.Wakeley,P.Beerli,andJ.B.Slwinski.2002.Estimating divergencetimesfrommoleculardataonphylogeneticandpopulationgenetictimescales.Annual Review of Ecology, Evolution and Systematics33:707740.

ArisBrosou,S.2001.Phybayes:aprogramforphylogeneticanalysesinaBayesianframework. DepartmentofBiology(GaltonLaboratory),UniversityCollegeLondon,London,UK.

ArisBrosou,S.,andZ.Yang.2002.Effectsofmodelsofrateevolutiononestimationof divergencedateswithspecialreferencetothemetazoan18SribosomalRNAPhylogeny. Systematic Biology51:703714.

ArisBrosou,S.,andZ.Yang.2003.BayesianmodelsofepisodicevolutionsupportaLate PrecambrianexplosivediversificationofMetazoa.Molecular Biology and Evolution20:1947 1954.

Baldwin,B.G.,andM.J.Sanderson.1998.Ageandrateofdiversificationofthehawaiian silverswordalliance(Compositae).Proceedings of the National Academy of Sciences USA 95:94029406.

Bell,C.D.,D.E.Soltis,andP.S.Soltis.2005.TheageoftheAngiosperms:Amolecular timescalewithoutaclock.Evolution59:12451258.

Berry,P.E.,W.J.Hahn,K.J.Sytsma,J.C.Hall,andA.Mast.2004.Phylogeneticrelationships andbiogeographyofFuchsia(Onagraceae)basedonnoncodingnuclearandchloroplastDNA data.American Journal of Botany94:601614.

Bremer,K.,E.M.Friis,andB.Bremer.2004.Molecularphylogeneticdatingofasteridflowering plantsshowsearlyCretaceousdiversification.Systematic Biology53:496505.

Bremer,K.,andM.H.G.Gustafsson.1997.EastGondwanaancestryofthesunflowerallianceof families.Proceedings of the National Academy of Sciences USA94:91889190.

Britten,R.J.1986.RatesofDNAsequenceevolutiondifferbetweentaxonomicgroups.Science 231:13931398.

Britton,T.2005.Estimatingdivergencetimesinphylogenetictreeswithoutamolecularclock. Systematic Biology54:500507.

Britton,T.,B.Oxelman,A.Vinnersten,andK.Bremer.2002.Phylogeneticdatingwith conficenceintervalsusingmeanpathlengths.Molecular Phylogenetics and Evolution24:5865.

Bromham,L.,andD.Penny.2003.Themodernmolecularclock.Nature Reviews Genetics4:216 224.

Bromham,L.,A.Rambaut,R.Fortey,A.Cooper,andD.Penny.1998.TestingtheCambrian explosionhypothesisbyusingamoleculardatingtechnique.Proceedings of the National Academy of Sciences USA95:1238612389.

Bromham,L.,andM.Woolfit.2004.Explosiveradiationsandthereliabilityofmolecularclocks: islandendemicradiationsasatestcase.Systematic Biology53:758766.

65 Bromham,L.D.,A.Rambaut,M.D.Hendy,andD.Penny.2000.Thepowerofrelativeratestest dependsonthedata.Journal of Molecular Evolution50:296301.

Bryant,D.,C.Semple,andM.Steel.2004.Supertreemethodsforancestraldivergencedatesand otherapplications.Pp.129150inO.R.P.BinindaEmonds,ed.Phylogeneticsupertrees: Combininginformationtorevealthetreeoflife.KluwerAcademic,Dordrecht,TheNetherlands.

Chaw,S.M.,C.C.Chang,H.L.Chen,andW.H.Li.2004.Datingthemonocotdicotdivergence andtheoriginofcoreeudicotsusingwholechloroplastgenomes.Journal of Molecular Evolution 58:424441.

Conti,E.,T.Eriksson,J.Schönenberger,K.J.Sytsma,andD.A.Baum.2002.EarlyTertiaryout ofIndiadispersalofCrypteroniaceae:evidencefromphylogenyandmoleculardating.Evolution 56:19311942.

Conti,E.,F.Rutschmann,T.Eriksson,K.J.Sytsma,andD.A.Baum.2004.Calibrationof molecularclocksandthebiogeographichistoryofCrypteroniaceae:AreplytoMoyle.Evolution 58:18741876.

Cutler,D.J.2000.Estimatingdivergencetimesinthepresenceofanoverdispersedmolecular clock.Molecular Biology and Evolution17:16471660.

Douzery,E.J.P.,E.A.Snell,E.Bapteste,F.Delsuc,andH.Philippe.2004.Thetimingof eukaryoticevolution:Doesarelaxedmolecularclockreconcileproteinsandfossils?Proceedings of the National Academy of Sciences USA101:1538615391.

Drummond,A.J.,S.Y.W.Ho,M.J.Phillips,andA.Rambaut.2006.Relaxedphylogeneticsand datingwithconfidence.PLoS Biology4:e88.

Drummond,A.J.,andA.Rambaut.2003.BEASTv1.0.Availableat http://evolve.zoo.ox.ac.uk/beast/.

Efron,B.,andR.J.Tibshirani.1993.Anintroductiontothebootstrap.ChapmanandHall,New York.

Eriksson,T.2002.Ther8sbootstrapkit.BergianskaUniversity,Stockholm,Sweden.

Felsenstein,J.1981.EvolutionarytreesfromDNAsequences:amaximumlikelihoodapproach. Journal of Molecular Evolution17:368376.

Felsenstein,J.1988.Phylogeniesfrommolecularsequences:inferenceandreliability.Annual Review of Genetics22:521265.

Felsenstein,J.1993.PhylogeneticInferencePackage(PHYLIP),version3.5.Universityof Washington,Seattle,WA.

Felsenstein,J.2004.Inferringphylogenies.SinauerAssociates,Inc.,Sunderland,MA.

Foote,M.,J.P.Hunter,C.M.Janis,andJ.J.SepkoskiJr.1999.Evolutionaryandpreservational constraintsonoriginsofbiologicgroups:divergencetimesofEutherianmammals.Science 283:13101314.

Foote,M.,andJ.J.SepkoskiJr.1999.Absolutemeasuresofthecompletenessofthefossil record.Nature398:415417.

66 Gillespie,J.H.1986.Ratesofmolecularevolution.Annual Review of Ecology, Evolution and Systematics17:637665.

Gillespie,J.H.1991.Thecausesofmolecularevolution.OxfordUniversityPress,Oxford,GB.

Gillooly,J.F.,A.P.Allen,G.B.West,andJ.H.Brown.2005.TherateofDNAevolution: Effectsofbodysizeandtemperatureonthemolecularclock.Proceedings of the National Academy of Sciences USA102:140145.

Graur,D.,andW.Martin.2004.Readingtheentrailsofchickens:moleculartimescalesof evolutionandtheillusionofprecision.TRENDS in Genetics20:8086.

Hasegawa,M.,H.Kishino,andT.Yano.1989.Estimationofbranchingdatesamongprimatesby molecularclocksofnuclearDNAwhichsloweddowninHominoidea.Journal of Human Evolution18:461476.

Hasegawa,M.,J.L.Thorne,andH.Kishino.2003.Timescaleofeutherianevolutionestimated withoutassumingaconstantrateofmolecularevolution.Genes & Genetic Systems78:267283.

Heckman,D.S.,D.M.Geiser,B.R.Eidell,R.L.Stauffer,N.L.Kardos,andS.B.Hedges.2001. MolecularEvidencefortheEarlyColonizationofLandbyFungiandPlants.Science293:1129 1133.

Hedges,S.B.,andS.Kumar.2003.Genomicclocksandevolutionarytimescales.TRENDS in Genetics19:200206.

Hedges,S.B.,andS.Kumar.2004.Precisionofmoleculartimeestimates.TRENDS in Genetics 20:242247.

Hedges,S.B.,P.H.Parker,C.G.Sibley,andS.Kumar.1996.Continentalbreakupandthe ordinaldiversificationofbirdsandmammals.Nature381:226229.

Hillis,D.M.,B.K.Mable,andC.Moritz.1996.Applicationsofmolecularsystematics:thestate ofthefieldanalooktothefuture.Pp.515543inD.M.Hillis,C.MoritzandB.K.Mable,eds. MolecularSystematics.Sinauer,Sunderland,MA.

Ho,S.Y.W.,M.J.Phillips,A.Cooper,andA.J.Drummond.2005a.Timedependencyof molecularrateestimatesandsystematicoverestimationofrecentdivergencetimes.Molecular Biology and Evolution22:15611568.

Ho,S.Y.W.,M.J.Phillips,A.J.Drummond,andA.Cooper.2005b.Accuracyofrateestimation usingrelaxedclockmodelswithacriticalfocusontheearlymetazoanradiation.Molecular Biology and Evolution22:13551363.

Huelsenbeck,J.P.,B.Larget,andD.Swofford.2000.AcompoundPoissonprocessforrelaxing themolecularclock.Genetics154:18791892.

Huelsenbeck,J.P.,andF.Ronquist.2001.MrBayes:Bayesianinferenceofphylogeny. Bioinformatics17:754.

Kishino,H.,andM.Hasegawa.1989.Evaluationofthemaximumlikelihoodestimateofthe evolutionarytreetopologiesfromDNAsequencedata,andthebranchingorderinHominoidea. Journal of Molecular Evolution170179:170179.

67 Kishino,H.,J.L.Thorne,andW.J.Bruno.2001.Performanceofadivergencetimeestimation methodunderaprobabilisticmodelofrateevolution.Molecular Biology and Evolution18:352 361.

Korber,B.,M.Muldoon,J.Theiler,F.Gao,R.Gupta,A.Lapedes,B.H.Hahn,S.Wolinsky,and T.Bhattacharya.2000.TimingtheancestoroftheHIV1pandemicstrains.Science288:1789 1796.

Langley,C.H.,andW.Fitch.1974.Anestimationoftheconstancyoftherateofmolecular evolution.Journal of Molecular Evolution3:161177.

Li,W.H.1997.MolecularEvolution.SinauerPress,SunderlandMA,USA.

Li,W.H.,andD.Graur.1991.Fundamentalsofmolecularevolution.SinauerAssociates, Sunderland,MA.

Li,W.H.,andM.Tanimura.1987.Themolecularclockrunsmoreslowlyinmanthaninapes andmonkeys.Nature326:9396.

Linder,H.P.,C.R.Hardy,andF.Rutschmann.2005.Taxonsamplingeffectsinmolecularclock dating:anexamplefromtheAfricanRestionaceae.Molecular Phylogenetics and Evolution 35:569582.

Madsen,O.,M.Scally,C.J.Douady,D.J.Kao,R.W.Debry,R.Adkins,H.M.Amrine,M.J. Stanhope,W.W.DeJong,andM.S.Springer.2001.Paralleladaptiveradiationsintwomajor cladesofplacentalmammals.Nature409:610614.

Magallón,S.A.2004.Datinglineages:molecularandpaleontologicalapproachestothetemporal frameworkofclades.International Journal of Plant Sciences165:721.

Magallón,S.A.,andM.J.Sanderson.2001.AbsolutediversificationratesinAngiospermclades. Evolution55:17621780.

Martin,A.P.,andS.R.Palumbi.1993.Bodysize,metabolicrate,generationtimeandthe molecularclock.Proceedings of the National Academy of Sciences USA90:40874091.

Muse,S.V.,andB.S.Weir.1992.Testingforequalityofevoltuionaryrates.Genetics132:269 276.

Near,T.J.,andM.J.Sanderson.2004.Assessingthequalityofmoleculardivergencetime estimatesbyfossilcalibrationsandfossilbasedmodelselection.Philosophical Transactions of the Royal Society B: Biological Sciences359:14771483.

Nei,M.1987.MolecularEvolutionaryGenetics.ColumbiaUniversityPress,NewYork.

Ohta,T.2002.Nearneutralityinevolutionofgenesandingeneregulation.Proceedings of the National Academy of Sciences USA99:1613416137.

Ota,R.,andD.Penny.2003.Estimatingchangesinmutationalmechanismsofevolution.Journal of Molecular Evolution57:S233–S240.

PérezLosada,M.,J.T.Høeg,andK.A.Crandall.2004.Unravelingtheevolutionaryradiationof theThoracianBarnaclesusingmolecularandmorphologicalevidence:acomparisonofseveral divergencetimeestimationapproaches.Systematic Biology53:244264.

68 Rambaut,A.2000.Estimatingtherateofmolecularevolution:incorporatingnon contemporaneoussequencesintomaximumlikelihoodphylogenies.Bioinformatics16:395399.

Rambaut,A.2001.Rhinov1.1.Availableathttp://evolve.zoo.ox.ac.uk/.

Rambaut,A.,andL.Bromham.1998.Estimatingdivergencedatesfrommolecularsequences. Molecular Biology and Evolution15:442448.

Rambaut,A.,andM.Charleston.2002.PhylogeneticTreeEditorandManipulatorv1.0alpha10. DepartmentofZoology,UniversityofOxford,Oxford,UK.

Reisz,R.R.,andJ.Müller.2004.Moleculartimescalesandthefossilrecord:apaleontological perspective.TRENDS in Genetics20:237241.

RodríguezTrelles,F.,R.Tarrío,andF.J.Ayala.2002.Amethodologicalbiastoward overestimationofmolecularevolutionarytimescales.Proceedings of the National Academy of Sciences USA99:81128115.

Rutschmann,F.2005.Bayesianmoleculardatingusingpaml/multidivtime.Astepbystep manual.Version1.5(July2005).InstituteofSystematicBotany,UniversityofZurich,Zurich, Switzerland.Availablefromhttp://www.plant.ch.

Rutschmann,F.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?MoleculardatingevidencefromrbcL,ndhF,andrpl16sequences. International Journal of Plant Sciences165:6983.

Sanderson,M.J.1997.Anonparametericapproachtoestimatingdivergencetimesintheabsence ofrateconstancy.Molecular Biology and Evolution14:12181231.

Sanderson,M.J.1998.Estimatingrateandtimeinmolecularphylogenies:beyondthemolecular clock?Pp.242264inD.E.Soltis,P.S.SoltisandJ.J.Doyle,eds.Molecularsystematicsof plantsII;DNAsequencing.KluwerAcademicPublishers,Norwell,MA.

Sanderson,M.J.2002.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes:a PenalizedLikelihoodapproach.Molecular Biology and Evolution19:101109.

Sanderson,M.J.2003a.Moleculardatafrom27proteinsdonotsupportaPrecambrianoriginof landplants.American Journal of Botany90:954956.

Sanderson,M.J.2003b.r8s:inferringabsoluteratesofmolecularevolutionanddivergencetimes intheabsenceofamolecularclock.Bioinformatics19:301302.

Sanderson,M.J.,andJ.A.Doyle.2001.Sourcesoferrorandconfidenceintervalsinestimating theageofAngiospermsfromrbcLand18SrDNAdata.American Journal of Botany88:1499 1516.

Sanderson,M.J.,J.L.Thorne,N.Wikström,andK.Bremer.2004.Molecularevidenceonplant divergencetimes.American Journal of Botany91:16561665.

Smith,A.B.,andJ.J.Peterson.2002.Datingthetimeoforiginofmajorclades:molecularclocks andthefossilrecord.Annual Review of Earth and Planetary Sciences30:6588.

Soltis,P.S.,D.E.Soltis,V.Savolainen,P.R.Crane,andT.G.Barraclough.2002.Rate heterogeneityamonglineagesoftracheophytes:Integrationofmolecularandfossildataand

69 evidenceformolecularlivingfossils.Proceedings of the National Academy of Sciences USA 99:44304435.

Springer,M.S.,W.J.Murphy,E.Eizirik,andS.J.O'Brien.2003.Placentalmammal diversificationandtheCretaceousTertiaryboundary.Proceedings of the National Academy of Sciences USA100:10561061.

Swofford,D.L.2001.PAUP*4.0b10:PhylogeneticAnalysisUsingParsimony(*andother methods).Sinauer,Sunderland,MA.

Swofford,D.L.,G.J.Olsen,P.J.Waddell,andD.M.Hillis.1996.Phylogeneticinference.Pp. 407514inD.M.Hillis,C.MoritzandB.K.Mable,eds.MolecularSystematics.Sinauer Associates,Sunderland,Massachusetts.

Sytsma,K.J.,A.Litt,M.L.Zjhra,J.C.Pires,M.Nepokroeff,E.Conti,J.Walker,andP.G. Wilson.2004.Clades,clocks,andcontinents:historicalandbiogeographicalanalysisof Myrtaceae,Vochysiaceae,andrelativesinthesouthernhemisphere.International Journal of Plant Sciences165:85105.

Tajima,F.1993.Simplemethodsfortestingthemolecularevolutionaryclockhypothesis. Genetics135:599607.

Takahata,N.1987.Ontheoverdispersedmolecularclock.Genetics116:169179.

Takezaki,N.,A.Rzhetsky,andM.Nei.1995.Phylogenetictestofthemolecularclockand linearizedtrees.Molecular Biology and Evolution12:823833.

Tavaré,S.,C.R.Marshall,O.Will,C.Soligo,andR.D.Martin.2002.Usingthefossilrecordto estimatetheageofthelastcommonancestorofextantprimates.Nature416:726729.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata.Systematic Biology51:689702.

Thorne,J.L.,H.Kishino,andI.S.Painter.1998.Estimatingtherateofevolutionoftherateof molecularevolution.Molecular Biology and Evolution15:16471657.

Uyenoyama,M.1995.Ageneralizedleastsquaresestimatefortheoriginofsporophyticself incompatibility.Genetics139:975992.

Vos,R.A.,andA.Ø.Mooers.2004.Reconstructingdivergencetimesforsupertrees.Pp.281299 inO.R.P.BinindaEmonds,ed.Phylogeneticsupertrees:Combininginformationtorevealthe treeoflife.KluwerAcademic,Dordrecht,TheNetherlands.

Welch,J.J.,andL.Bromham.2005.Moleculardatingwhenratesvary.TRENDS in Ecology and Evolution20:320327.

Whittle,C.A.,andM.O.Johnston.2003.Broadscaleanalysiscontradictsthetheorythat generationtimeaffectsmolecularevolutionaryratesinplants.Journal of Molecular Evolution 56:223233.

Wikström,N.,V.Savolainen,andM.W.Chase.2001.Evolutionoftheangiosperms:calibrating thefamilytree.Proceedings of the Royal Society B: Biological Sciences268:22112220.

70 Wikström,N.,V.Savolainen,andM.W.Chase.2003.Angiospermdivergencetimes: congruenceandincongruencebetweenfossilsandsequencedivergenceestimates.Pp.142165in P.C.J.DonoghueandM.P.Smith,eds.Tellingtheevolutionarytime:molecularclocksandthe fossilrecord.Taylor&Francis,London,UK.

Wray,G.A.2001.DatingbranchesontheTreeofLifeusingDNA.Genome Biology3:1.11.7.

Wray,G.A.,J.S.Levinton,andL.S.Shapiro.1996.Molecularevidencefordeepprecambrian divergencesamongmetazoanphyla.Science274:568573.

Wu,C.I.,andW.H.Li.1985.Evidenceforhigherratesofnucleotidesubstitutioninrodents thaninman.Proceedings of the National Academy of Sciences USA82:17411745.

Yang,Z.1997.PAML:aprogrampackageforphylogeneticanalysisbymaximumlikelihood. Computer Applications in the Biosciences CABIOS13:555556.

Yang,Z.2004.Aheuristicratesmoothingprocedureformaximumlikelihoodestimationof speciesdivergencetimes.Acta Zoologica Sinica50:645656.

Yang,Z.,andB.Rannala.1997.BayesianphylogeneticinferenceusingDNAsequences:A MarkovChainMonteCarlomethod.Molecular Biology and Evolution14:717724.

Yang,Z.,andA.D.Yoder.2003.ComparisonoflikelihoodandBayesianmethodsforestimating divergencetimesusingmultiplelociandcalibrationpoints,withapplicationtoaradiationof cutelookingmouselemurspecies.Systematic Biology52:705716.

Yoder,A.D.,andZ.H.Yang.2000.Estimationofprimatespeciationdatesusinglocalmolecular clocks.Molecular Biology and Evolution17:10811090.

Yoon,H.S.,J.D.Hackett,C.Ciniglia,G.Pinto,andD.Bhattacharya.2004.Amolecular timelinefortheoriginofphotosyntheticEukaryotes.Molecular Biology and Evolution21:809 818.

Zuckerkandl,E.,andL.Pauling.1965.Evolutionarydivergenceandconvergenceinproteins.Pp. 97166inV.BrysonandH.Vogel,eds.EvolvingGenesandProteins.AcademicPress,New York.

71 Tables Table1.Speciesnames,sources,andGenBankaccessionnumbersoftheDNAsequencesusedintheanalyses.Herbariaacronyms:Z=Zurich, BOL=Bolus(UniversityofCapeTown).Superscriptnumbersrefertosourcesinpublishedarticles.References:1)SchönenbergerandConti, 2003;2)Contiet al.,1996;3)Contiet al.,2002;4)ClausingandRenner,2001;5)Renneret al.,2001;6)RennerandMeyer,2001.

Taxon Voucherorsource GenBankaccessionnumbers rbcL ndhF rpl16intron Alzatea verticillata Ruiz&Pavon 1)2)4) U263162) AF2155914) AY1515981) Axinandra zeylanica Thwaites PeterAshton,s.n.,SriLanka AY0781573) AJ605094 AJ605107 J.Schönenberger365(Z), Brachysiphon acutus (Thunb.)A.Juss. AJ605084 AJ605095 AY1516051) (BOL) Brachysiphon fucatus (L.)Gilg J.Schönenberger357(Z),(BOL AJ605085 AJ605096 AY1516061) J.Schönenberger386(Z), Brachysiphon microphyllus Rourke AJ605086 AJ605097 AY1516081) (BOL) Crypteronia griffithii C.B.Clarke ShawnLums.n.,Singapore AJ605087 AJ605098 AJ605108 Crypteronia paniculata Blume PeterAshtons.n.,Brunei AY0781533) AJ605099 AY1515971) Dactylocladus stenostachys Oliver PeterBecker,s.n.,Brunei AY0781563) AJ605100 AJ605109 J.Schönenberger370(Z), Endonema retzioides A.Juss AJ605088 AJ605101 AY1516111) (BOL) Eugenia uniflora L. 4) AF2942554) AF2155924) AF2156274) Medinilla humbertiana Gaudich. 4) AF2155174) AF2155574) AF2156024) Mouriri helleri Aublet 4)5) AF2707524) AF3222305) AF2156114) Myrtus communis L. 4) AF2942544) AF2155934) AF2156284) J.Schönenberger579, Olinia emarginata Davy cultivated,Kirstenbosch AJ605089 AJ605102 AY1516011) BotanicalGarden,(Z)

72 Table1,continued... Olinia ventosa (L.)Cuf. 1)4) AF2155464) AF2155944) AY1516041) chinensis L. 4) AF2155254) AF2155704) AF2103784) Penaea mucronata L. 1)3)4) AJ605090 AF2707564) AY1516201) Rhexia virginica L. 2)4) U263342) AF2155874) AF2156234) Rhynchocalyx lawsonioides Oliver 1)2)4) U263362) AF2707574) AY1515991) Saltera sarcorolla (L.)Bullock J.Schönenberger360(Z), AJ605091 AJ605103 AY1516211) (BOL) Sonderothamnus petraeus (Barkerf.)R. J.Schönenberger362(Z), AY0781543) AJ605104 AY1516221) Dahlgren (BOL) Stylapterus ericoides A.Juss.ssp.pallidus J.Schönenberger355(Z), AJ605092 AJ605105 AY1516251) R.Dahlgren (BOL) Stylapterus micranthusR.Dahlgren M.Johnss.n.(Z) AJ605093 AJ605106 AY1516271) Tibouchina urvilleana (DC.)Cogn. 2)6) U263392) AF2728206) AF3222346)

73 Table2.Agesinmillionyears(mys)estimatedfornodesA,B,andCbasedonrbcL,ndhF,andrpl16intronsequencesandthreedifferent methodsimplementedinther8ssoftware(Sanderson,2002).AlltreeswerecalibratedatnodeEwithanageof53mys.:mean,σ:standard deviation,CI:95%confidenceinterval,nnd.:bootstrappedagesnotnormallydistributed,n.a.:datanotavailablebecausenodeDisnotpresent intherbcLdatasetduetodifferenttreetopology. rbcL ndhF rpl16intron combineddataset LangleyFitch(LF) A 31.51 41.64 23.85 29.44,=29.91,σ=3.21,CI:29.2830.55 B 80.22 71.93 49.03 58.89,=58.16,σ=5.16,CI:57.1359.18 C 64.46 49.21 37.1 53.00,=43.63,σ=4.35,CI:42.7644.49 D n.a. 45.43 42.4 42.69,=42.31,σ=2.08,CI:41.942.72 NPRS A 57.08 153.7 56.21 82.68,=85.24,σ=11.93,CI:82.8787.61 B 111.44 217.3 106 152.64,=149.12,σ=16.51,CI:145.84152.39 C 100.56 196.1 94.76 135.68,=133.75,σ=15.84,CI:130.6136.89 D n.a. 42.4 40.15 38.16,=38.35,nnd. PL optimalsmoothing α=0.1 α=0.01 α=0.001 α=0.00316 parameter A 39.37 92.75 43.06 53.00,=54.26,σ=7.58,CI:52.7655.76 B 96.91 154.58 91.09 100.7,=103.28,σ=12.32,CI:100.84105.73 C 80.26 128.08 76.19 83.03,=85.91,σ=12.45,CI:83.4488.38 D n.a. 44.17 39.75 42.4,=40.93,σ=2.18,CI:40.541.36

74 Table3.Agesinmillionyears(mys)estimatedfornodesA,B,andCbasedonndhFandrpl16intronsequencesandthreedifferentmethods implementedinther8ssoftware(Sanderson,2002).AlltreeswerecalibratedatnodeDwithanageof26mys.:mean,σ:standarddeviation, CI:95%confidenceinterval,nnd.:bootstrappedagesnotnormallydistributed.AgesfortherbcLdatasetarenotavailablebecausenodeDis notpresentinthisdatasetduetodifferenttreetopology.

ndhF rpl16intron combineddataset LangleyFitch(LF) A 23.85 14.63 17.93,=18.44,nnd. B 41.17 30.06 35.86,=35.82,σ=3.59,CI:35.1136.53 C 28.17 22.75 26,=26.87,σ=2.92,CI:26.2927.44 D 30.33 32.5 32.28,=32.65,σ=1.64,CI:32.3232.98 NPRS A 94.25 36.4 56.33,=58.11,σ=9.39,CI:56.2559.98 B 133.25 68.64 104,=101.53,σ=12.96,CI:98.56104.1 C 120.25 61.36 92.44,=91.07,σ=12.27,CI:88.6393.5 D 32.5 34.32 36.11,=31.78,nnd. PL optimalsmoothing α=0.01 α=0.001 α=0.00316 parameter A 54.6 28.17 32.5,=34.6,σ=5.37,CI:33.5435.67 B 91 59.58 61.75,=65.79,σ=8.54,CI:64.167.49 C 75.4 49.83 50.92,=54.73,σ=8.35,CI:53.0756.38 D 31.2 34.67 32.5,=33.77,σ=1.82,CI:33.4134.13

75 Table4.Agesinmillionyears(mys)estimatedfornodesA,B,andCbasedonrbcL,ndhF,andrpl16intronsequencesandthreedifferent methodsimplementedinther8ssoftware(Sanderson,2002).AlltreeswerecalibratedatnodeCwithanageof90mys.:mean,σ:standard deviation,CI:95%confidenceinterval,nnd.:bootstrappedagesnotnormallydistributed,n.a.:datanotavailablebecausenodeDisnotpresent intherbcLdatasetduetodifferenttreetopology.

rbcL ndhF rpl16intron combineddataset LangleyFitch(LF) A 44 76.15 57.86 62.07,=62.08,σ=7.35,CI:60.6363.54 B 112 131.54 118.93 124.14,=120.52,σ=10.25,CI:118.49125.60 C n.a. 83.08 102.86 90,=88.12,nnd. D 74 96.92 128.57 111.72,=110.42,σ=11.09,CI:108.22112.63 NPRS A 51.08 70.54 53.39 54.84,=57.6,σ=6.97,CI:56.2158.98 B 99.73 99.73 100.68 101.25,=100.5,σ=4.23,CI:99.66101.34 C n.a. 19.46 38.14 25.31,=26.15,σ=3.45,CI:25.4626.83 D 47.43 24.32 50.34 35.16,=36.15,σ=4.19,CI:35.3236.98 PL optimalsmoothing α=0.1 α=0.01 α=0.001 α=0.00316 parameter A 44.15 65.17 50.87 57.45,=57.31,σ=7.2,CI:55.8858.74 B 108.68 108.62 107.61 109.15,=108.89,σ=8.52,CI:107.2110.58 C n.a. 31.03 46.96 46.96,=43.79,σ=7.02,CI:42.445.18 D 59.43 37.24 62.61 57.45,=56.71,σ=8.39,CI:55.0458.37

76

Table5.Relationshipsbetweengeologyandbiologyatthelevelsofpatternandtime. Correspondenceatbothlevelsisnecessarytosupportageodispersalistorigin(sensuLieberman, 2000)ofcurrentbioticdistributions.SeeDiscussionforfurtherexplanations.

Geology Biology

Sequenceof Sequenceof Pattern geologicevents cladogeneticevents

Timingof Timingof Time geologicevents cladogeneticevents

77

Figures

Figure1.CurrentdistributionofCrypteroniaceaeandrelatedtaxa.Cry:Crypteroniaceae,Alz: Alzateaceae,Pen:Penaeaceae,Olin:Oliniaceae,Rhyn:Rhynchocalycaceae.

78

Figure2.MaximumLikelihood(ML)tree,basedontherbcLdataset(1280characters).Boot strapsupportvaluesarereportedbelowthebranches.Nodesofinterest:A(diversificationof Crypteroniaceaecrowngroup),B(originofCrypteroniaceaestemlineage),C(diversificationof theWestGondwanancrowngroup),D(crowngroupofMelastomeae),andE(diversificationof Melastomataceaecrowngroup).

79

Figure3.MaximumLikelihood(ML)tree,basedonthendhFdataset(981characters).Bootstrap supportvaluesanddescriptionofnodesasinlegendofFigure2.

Figure4.MaximumLikelihood(ML)tree,basedontherpl16introndataset(1010characters). BootstrapsupportvaluesanddescriptionofnodesasinlegendofFigure2. 80

Figure5a.MaximumLikelihood(ML)tree,basedonthecombineddataset(3271characters). BootstrapsupportvaluesanddescriptionofnodesasinlegendofFigure2.

81

Figure5b.ChronogrambasedonaPenalizedLikelihoodmoleculardatinganalysisofthe combineddataset.Theindependentuseofthreedifferentcalibrationpointsresultedinthree differenttimebars.

82

Figure6.Useofadatingoutgrouptaxontoevaluatewheretherootattachestothebasal branches.

83

84

Chapter III. Calibration of molecular clocks and the biogeographic history of Crypteroniaceae: A reply to Moyle

ElenaConti1,FrankRutschmann,TorstenEriksson2,KennethJ.Sytsma3,andDavidA.Baum3 1Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland 2Bergius Foundation, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden 3Department of Botany, 430 Lincoln Drive,University of Wisconsin, Madison, WI 53706-1381, USA

Publishedin Evolution(58):18741876.2004.

85

Reply to Robert G. Moyle TotestthemoleculardatingresultsandbiogeographicinterpretationsreportedbyContiet al.(2002),Moylereanalyzedourpublisheddatasetof13rbcLsequencesrepresentingfivesmall taxa(theSEAsianCrypteroniaceae:theCclade;theirWGondwanansisterclade,formedbythe SAmericanAlzateaandtheAfricanRhynchocalyx,Oliniaceae,andPenaeaceae:theAROP clade)andMelastomataceae.Usingasinglecalibrationpointandnonparametricratesmoothing (NPRS;Sanderson,2003),Moyleestimatedanageof68mya(±10.6mys)forthesplitbetween CrypteroniaceaeandtheAROPclade,whichcontrastswithourpublishedageof116mya(±24 mys),obtainedwithfossilcalibrationandpenalizedlikelihood(PL;Sanderson,2003),andanage rangeof50to151mya,obtainedbyusingthreedifferentcalibrationpointsandthreedifferent datingmethods.MoyleconcludesthathisestimatedagefortheoriginoftheCrypteroniaceae stemlineageis“notcongruentwithastrictvicariancehypothesisforthedistributionof Crypteroniaceaeandnearestrelatives”andthatthedifferencesincalibration“explainmostofthe differencesinresults”. WhileMoley'scommentistimelybyfocusingononeofthemostproblematicissuesin moleculardatinganalysesnamely,calibration,wewouldliketohighlightsomeweaknessesin hischosenanalyticalprocedure,alongwithfactualinaccuraciesandmisrepresentationsofour originalarticle.Furthermore,wereportrecentevidencefromanexpandeddatasetthatincludes rbcL,ndhFandrpl16intronsequencesfrom22species(henceforth,"expandedCAROPdata set";Rutschmannet al.,2004)andoffersomegeneralreflectionsonthecontroversialissueof calibrationinmoleculardatinganalyses. ThecriticismposedbyMoylethatismostreadilyaddressedconcernsthephylogenetic placementoftheSouthAmericanAlzatea.Moyle’smaximumlikelihood(ML)analyses supportedtheplacementoftheSAmericanAlzateawithintheAfricanclade,ratherthanassister totheAfricancladeasreportedinContiet al.(2002).Heproposedthatthisdiscrepancymaybe explainedbytheuseofdifferentmodelsofnucleotidesubstitutioninthetwoanalyses,adding thatlowstatisticalsupportforthepositionofAlzateasuggeststhatitsrelationshipsremain unresolved.However,wewouldliketonotethatMoyleusedoutgroups(Hauya,Onagraceaeand Quisqualis,Combretaceae)thatarephylogeneticallymoredistantfromthe CAROP/Melastomataceaecladethantheoutgroupweused(Heteropyxis,representingthesister cladeoftheCAROP/Melastomataceaeclade;seeContiet al.,1996).AfterrerunningML analyseswithdifferentcombinationsofoutgroupsandsubstitutionmodels,wehaveconcluded thatinstabilityinthepositionofAlzateaiscausedprimarilybydifferentoutgroupchoices.In

86 supportofouroriginalresult,recentMLanalysesoftheexpandedCAROPdatasetcorroborated thepositionofAlzateaassistertotheAfricancladewithabootstrap(BS)valueof86% (Rutschmannet al.,2004).Furthermore,preliminaryresultsbasedoncombinednuclear18Sand 26Ssequencesof9taxaalsoconfirmedthesisterrelationshipofAlzateatotheAfricanclade (RutschmannandConti,unpublishedresults). Asecondpointofdisagreementconcernsthepropertiesandinferentialvalueofthe estimatedageranges.Moylestates:“Becauseofthewiderangeofageestimatesproducedbythe differentcalibrationpointsandmoleculardatingprocedures,Ireexaminedthebiogeographic historyofCrypteroniaceaewithparticularattentiontocalibrationprocedure”.Hethenelaborates onresultsbasedonasingledatingmethod(NPRS)andasinglecalibrationpoint(anageof23 myaassignedtonodeE).Thismethodologicalapproachwilltendtoprovideanarrowerrangeof estimatedagesthanwouldbeobtainedbyusingarangeofmethods,butsuchasuperficially preciseresultmaynotbyindicativeofincreasedaccuracy.Indeed,fromastrictlyanalytical perspective,thechoiceofNPRSasthesingledatingmethodisquestionable,sinceNPRStendsto overfitthedata,especiallywhenratesofmolecularevolutionchangeabruptly(Sanderson,2002). Amorecriticalissueis,however,thewayinwhichfossilsareusedtocalibratetrees. Moyleusedasinglecalibrationpointbasedonseedsthataredatedat2326myaand characterizedbythelargetestatuberclesarrangedinrows.Theseseedshavebeenassigned confidentlytothecrowngroupofMelastomeae,whichweremonophyleticinrecentanalyses (RennerandMeyer,2001;Renneret al.,2001;seealsoCollinsonandPingen,1992).Yet,most likelyduetoscarcesampling,thethreerepresentativesofMelastomeae(Tibouchina, Osbeckia, andRhexia)includedinourrbcLanalysisdidnotformamonophyleticgroup,butweremembers ofacladethatalsoincludedMedinillafromtheDissochaeteae/Sonerileae(Contiet al.,2002, Figure3).Itwasforthisreasonthatwerefrainedfromusingthisfossilasacalibrationpoint. Moyle(seehisFigure1),incontrast,usedtheageof23matoconstrainnodeE,whichsubtendsa cladeformedbymembersofMelastomeaeandDissochaeteae/Sonerileae.Sincethisnode necessarilypredatestheoriginoftheMelastomeaestemgroup,towhichthefossilseedsmaybe assigned(seealsoRennerandMeyer,2001,Figure3;Renneret al.,2001,Figure1),this impropercalibrationprocedureautomaticallyproducesanunderestimationofallnodalages. AfurthersourceofdisagreementbetweenMoyle’sandouranalysesconcernsthenodal assignmentoffossilleaves(datedat53mya)thatarecharacterizedbyacrodromousvenation,a synapomorphyexclusiveforMelastomataceaeamongthesampledtaxa(Renneret al.,2001). Moylecriticizesourdecisiontousethesefossilleavestoconstrainthebaseofthe Melastomataceaecrowngroup(correspondingtonodeEinhisFigure1),insteadofthebaseof itsstemlineage(correspondingtonodeDinhisFigure1).AlthoughweagreewithMoylethat 87 theinclusionofbasallineages(e.g.,Pternandra)wouldhavebeendesirable(henceweare includingtheminongoinganalyses),wedisagreewithhisconclusionthatthesefossilleaves shouldbeassignedtothebaseoftheMelastomataceaestemlineage.Thefossilleavesmost closelyresembletheleavesofextantMiconieaeandMerianeae(Hickey,1977),suggestingthat theymightbebetterassignedtoshallowernodeswithinMelastomataceae(seealsoRutschmann et al.,2004.Thisobservation,coupledwiththefactthatacrodromousvenationissharedbyall Melastomataceae,whiletheirMemecylaceaesistergroupischaracterizedbybrochidodromous venation,ledustoconcludethat,intheabsenceofadditionalinformation,thefossilleavesare morereasonablyusedtoprovideaminimalageforthecrownratherthanstemnodeof Melastomataceae(asdonealsobyRenner,2001andRenner,2004). Someofthetemporaluncertaintiesinherenttonodalassignmentoffossilsinamolecular phylogenystemfromthefactthatthetimeoffirstappearanceofdistinctivesynapomorphiesin thefossilrecordpostdatestheoriginofthegrouptowhichthefossilsareassigned.Thus,when thosefossilsareusedtoprovideminimalagesofthesubtendingstemlineages,andifthose minimalagesareinterpretedasestimatesofactualages,thenoneinevitablyobtainsasystematic underestimationofdivergencetimes.Theextentofthetemporalgapbetweentimeoffirst appearanceinthefossilrecordandoriginofagroupdependsonseveralfactors,includingthe fossil’sprobabilityofpreservation,whichinturnisinfluencedbypropertiesinherenttothe fossilizedstructures,thechangingabundancethroughtimeofthestructuresbeingpreservedin thefossilrecord,taphonomicidiosyncrasies(MorleyandDick,2003),andthegeologic characteristicsofthestratigraphiclayerwherethefossilisretrieved(foracomprehensiveand detailedreviewofcalibrationproblemsinmoleculardatingwereferthereadertoMagallón, 2004;seealsoGraurandMartin,2004).Ideally,itwouldbepossibletoestimatethedifference betweentheobservedageofthefossilandthe“real”ageofthegroup.Recentlydeveloped methodsthatattempttoachievethisgoalmakeuseofmultiplelinesofevidence,includingthe densityanddistributionofgapsinthefossilrecord,thenumberofextantspecies,themean specieslifetime,andcladediversificationmodels.Toourknowledge,thesemethodshavebeen appliedprimarilytomammals(Tavaréet al.,2002,Footeet al.,1999). Inouroriginalpaperwealsoexploredtheresultsofassumingacorrespondencebetween certainnodesandwelldatedgeologicalevents,specificallyequatingthephylogeneticsplit betweentheSAmericanAlzateaanditsAfricansistercladewiththeformationoftheSouth Atlantic.Moylecriticizesouruseofgeologiccalibrationasanexampleofcircularreasoning.Itis truethatwedidusegeologiccalibrationtoconstrainthisnode,butalwaysinconjunctionwith fossilcalibrations(Contiet al.,2002;Rutschmannet al.,2004),subscribingtothepracticeof usingasmanycalibrationpointsaspossibleandthencomparinganddiscussingtheresults 88

(SandersonandDoyle,2001;ThorneandKishino,2002;YangandYoder,2003;Graurand Martin,2004;Magallon,2004).Furthermore,givenhiscriticism,itisironicthatMoyleclaimed supportforhisestimatedageoftheCrypteroniaceaestemlineagebynotingitscorrespondence withthe68myaageinferred(sic!)byMorleyandDick(2003).However,thelatterauthorsdid notestimatethatdivergenceat68mya,butuseditasageologicconstraint,markingthe separationofIndiafromMadagascar(seeFigure1inMorleyandDick,2003). Afurtherpointofcontentionconcernshowagerangesareusedtoreconstructpossible biogeographicscenarios.Forexample,Moylecriticizesthechoiceofusingonlytheolderportion (106141mya)oftheinferred50151myarangeforourbiogegraphicdeductions(Contiet al., 2002).However,the106141rangecorrespondedtotheagesestimatedbyavariableratemethod (PL),whiletheyoungerportionoftheagerangeincludedtheagesestimatedbytwoconstantrate methods(MLwithclockenforcedandLangleyFitch;Sanderson,2003).Becausethelikelihood ratiotest(LRT)hadrejectedrateconstancy,itseemeddubioustouseclockbasedagerangesfor ourbiogeographicinferences. Irrespectiveofthedifferencesproducedbydifferentdatingandcalibrationprocedures,we wouldliketohighlightsomeofMoyle'smisrepresentationsofourbiogeographicconclusions. First,Moylefailstoexplainthegeneralcontextofouranalyses:weusedmoleculardating estimatestotestcompetinghypothesesontheLaurasian(RavenandAxelrod,1974)vs. Gondwanan(TobeandRaven,1984)originofCrypteroniaceae.Ourresultssupporteda Gondwananoriginforthefamily,aconclusiontowhichMoylealsosubscribes.However,despite theapparentagreementbetweenourgeneralbiogeographicconclusions,Moylestates:“The phylogenyanddivergencetimeestimatesproducedherearenotcongruentwithastrict GondwananvicariancehypothesisforthedistributionofCrypteroniaceaeanditsnearestrelatives. […]Instead,assumingaGondwananoriginofthestemlineageleadingtoCrypteroniaceaeand itsallies,thesedatesinfer(sic!)dispersalbetweenAfricaandIndiaasIndiadriftednorthward”. WeweresurprisedtoseethatMoyleproposedthisconclusionasanovelinterpretation,in oppositiontoourpurportedlystrictvicariantexplanation.Sufficeitheretoreportthefollowing summarystatement:“Therefore,itseemsreasonabletoproposethatGondwanandriftplayedan essentialroleinthebiogeographichistoryofCrypteroniaceaeandrelatedfamiliesand specificallythatIndia,initsnorthwardmovementfromGondwanatoAsiaalongtheAfrican coast,servedasthemostlikelymigrationrouteforCrypteroniaceae”(p.1940,Contiet al.,2002). InourmorerecentpaperbasedontheexpandedCAROPdataset,wefurtherdeveloped theconceptthatdispersaloftheCrypteroniaceaestemlineagefromAfricatoIndiamighthave beenfacilitatedbythereductionoftheoceanbarrierbetweenthesetwoplatesuptothe Maastrichtian(Rutschmannet al.,2004).Therefore,ourinterpretationofthebiogeographic 89 historyofCrypteroniaceaeconformstoageodispersalist(sensuLiebermann1997,2000),rather thanastrictlyvicariantmodel.Whileweremainopentothepossibilitythattheuseofdifferent calibrationpointsmightproducerelativelyyoungerageestimatesfortheCrypteroniaceaestem lineage,wealsonotethatMoyle’sandourresultsbothconfirmaCretaceousoriginforthis familyandIndia’scrucialroleinitsbiogeographichistory,asstatedinthetitleofouroriginal paper. Moyleconcludesthatthemaindifferencesbetweenhisandourageestimatesstem essentiallyfromdifferencesincalibration,seeminglyimplyingthathiscalibrationisrightand oursiswrong.However,thecomplexissuesrevolvingaroundnodalassignmentoffossilscannot beeasilyreducedtoaManichaeanviewofscientificinferencethatreliesonfixedcategoriesof "right"and"wrong".Theonlykindofpaleobotanicalrecordthatwouldunquestionablysupport theGondwananoriginofCrypteroniaceaewouldbetheretrievalofpreTertiaryfossils attributabletoCrypteroniaceaefromAfrica,Madagascar,orIndia.Barringthat,webelievethat biogeographicdeductionsshouldbebasedonmultiplelinesofevidence,drawnfromboth phylogeneticpatternsandmoleculardating,incombinationwithpaleogeologicandpaleoclimatic reconstructionsandtheevaluationofthepotentialforlongdistancedispersalofthepropagules Wepursuedthisintegrative,multifacetedapproachinouroriginalandsubsequentpapers.

90

References Conti,E.,T.Eriksson,J.Schönenberger,K.J.Sytsma,andD.A.Baum.2002.EarlyTertiaryout ofIndiadispersalofCrypteroniaceae:evidencefromphylogenyandmoleculardating.Evolution 56:19311942.

Conti,E.,A.Litt,andK.J.Sytsma.1996.CircumscriptionofMyrtalesandtheirrelationsshipsto other:evidencefromrbcLsequencedata.American Journal of Botany83:221233.

Foote,M.,J.P.Hunter,C.M.Janis,andJ.J.SepkoskiJr.1999.Evolutionaryandpreservational constraintsonoriginsofbiologicgroups:divergencetimesofEutherianmammals.Science 283:13101314.

Graur,D.,andW.Martin.2004.Readingtheentrailsofchickens:moleculartimescalesof evolutionandtheillusionofprecision.TRENDS in Genetics20:8086.

Hickey,L.J.1977.StratigraphyandpaleobotanyoftheGoldenValleyformation(EarlyTertiary) ofwesternNorthDakota.Memoir150.GeologicalSocietyofAmerica,Boulder,Colorado.

Lieberman,B.S.1997.EarlyCambrianpaleogeographyandtectonichistory:abiogeographic approach.Geology25:10391042.

Lieberman,B.S.2000.Paleobiogeography.Usingfossilstostudyglobalchange,platetectonics, andevolution.KluwerAcademicPublishers,NewYork.

Magallón,S.A.2004.Datinglineages:molecularandpaleontologicalapproachestothetemporal frameworkofclades.International Journal of Plant Sciences165:721.

Morley,R.J.,andC.W.Dick.2003.Missingfossils,molecularclocksandtheoriginofthe Melastomataceae.American Journal of Botany90:16381645.

Moyle,R.G.2004.Calibrationofmolecularclocksandthebiogeographichistoryof Crypteroniaceae.Evolution58:18711873.

Raven,P.H.,andD.I.Axelrod.1974.Angiospermbiogeographyandpastcontinental movements.Annals of the Missouri Botanical Garden61:539673.

Renner,S.S.2004.Bayesiananalysisofcombinedchloroplastloci,usingmultiplecalibrations, supportstherecentarrivalofMelastomataceaeinAfricaandMadagascar.American Journal of Botany91:14271435.

Renner,S.S.,G.Clausing,andK.Meyer.2001.HistoricalbiogeographyofMelastomataceae: therolesofTertiarymigrationandlongdistancedispersal.American Journal of Botany88:1290 1300.

Renner,S.S.,andK.Meyer.2001.Melastomeaecomefullcircle:biogeographicreconstruction andmolecularclockdating.Evolution55:13151324.

Ricklefs,R.E.,andS.S.Renner.1994.Speciesrichnesswithinfamiliesoffloweringplants. Evolution48:16191636.

91

Rutschmann,F.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?MoleculardatingevidencefromrbcL,ndhF,andrpl16sequences. International Journal of Plant Sciences165:6983.

Sanderson,M.J.2002.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes:a PenalizedLikelihoodapproach.Molecular Biology and Evolution19:101109.

Sanderson,M.J.2003.r8s:inferringabsoluteratesofmolecularevolutionanddivergencetimes intheabsenceofamolecularclock.Bioinformatics19:301302.

Sanderson,M.J.,andJ.A.Doyle.2001.Sourcesoferrorandconfidenceintervalsinestimating theageofAngiospermsfromrbcLand18SrDNAdata.American Journal of Botany88:1499 1516.

Sytsma,K.J.,A.Litt,M.L.Zjhra,J.C.Pires,M.Nepokroeff,E.Conti,J.Walker,andP.G. Wilson.2004.Clades,clocks,andcontinents:historicalandbiogeographicalanalysisof Myrtaceae,Vochysiaceae,andrelativesinthesouthernhemisphere.International Journal of Plant Sciences165:85105.

Tavaré,S.,C.R.Marshall,O.Will,C.Soligo,andR.D.Martin.2002.Usingthefossilrecordto estimatetheageofthelastcommonancestorofextantprimates.Nature416:726729.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata.Systematic Biology51:689702.

Tobe,H.,andP.H.Raven.1984.TheembryologyandrelationshipsofOliniaceae.Plant Systematics and Evolution146:105116.

Wikström,N.,V.Savolainen,andM.W.Chase.2001.Evolutionoftheangiosperms:calibrating thefamilytree.Proceedings of the Royal Society B: Biological Sciences268:22112220.

Yang,Z.,andA.D.Yoder.2003.ComparisonoflikelihoodandBayesianmethodsforestimating divergencetimesusingmultiplelociandcalibrationpoints,withapplicationtoaradiationof cutelookingmouselemurspecies.Systematic Biology52:705716.

92

Chapter IV. Tempo and mode of diversification in the African Penaeaceae and related taxa

FrankRutschmann,JürgSchönenberger1,PeterLinder2,andElenaConti2 1Department of Botany, Stockholm University, Lilla Frescativägen 5, SE-106 91 Stockholm, Sweden 2Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland

Inpreparationforpublicationin AmericanJournalofBotany

93

Abstract TheCapeFloristicRegion(CFR)inSouthAfricaischaracterizedbyveryhighlevelsof plantspeciesdiversity,including69%endemics.AmongthesearethePenaeaceae(Myrtales),a smallfamilyoferiocoidshrubsmostcloselyrelatedtoOliniaceaeandRhynchocalycaceae,which alsooccurintheCape,butfurtherextendtoSouthernandEasternAfrica.Duetotheirisolated phylogeneticpositionandtheirnarrowdistribution,Penaeaceaehavebeenreferredtoasancient, paleoendemicelements.Previousphylogeneticstudiesrevealedapatterncharacterizedbyalong branchforthestemlineage,andmanyshortbranchesforthecrowngroupofPenaeaceae. Herewepresenttheresultsofphylogeneticandmoleculardatinganalysesofeight chloroplastandthreenuclearsequencesaimedatreconstructingthetempoandmodeof diversificationinPenaeaceaeandrelatedfamilies.Bayesianinferenceofdivergencetimesand statisticalevaluationoflineagesthroughtimeplotsprovidedatemporalframeworkfor diversification.Maximumlikelihoodreconstructionofancestralcharacterstatesforleafsizeand vegetationtypesofferednewinsightsintopossibleevolutionaryscenariosfortheir diversification.

Thechloroplastandnucleardatasetsproducedsignificantlyincongruenttreetopologies, possiblysuggestingearlierhybridizationeventsfollowedbychloroplastcapture.Molecular datingandthelineagesthroughtimeanalysesbasedontheplastiddatasetshowedthatthecrown radiationofPenaeaceaestartedabout17mysago,followingtheinitiationofaclimatictrend towardsthemodernseasonallycoldandaridconditionsintheCape.Lignotubersandprotective scleromorphicleavespossiblyrepresentkeyinnovationsthattriggeredtheradiationof PenaeaceaeintheMiddleMiocene,allowingPenaeaceaetogrowonlownutrientsoils.Contrary toPenaeaceae,OliniaceaeandRhynchocalycaceaeremainedrestrictedtoatemperateclimate, andprobablyexperiencedahighdegreeofextinction.Ourancestralcharacterstate reconstructionsindicategeneralshiftsfromtropicaltofynbosvegetationtypes,andfrommacro toleptophyllousleaves,corroboratingthehypothesisthatmodernspecies,adaptedtolownutrient soilsandsummeraridity,replacedanancestraltropicalfloraduringtheLateMiocene aridification.

Keywords:Diversification,radiation,Penaeaceae,Oliniaceae,Rhynchocalycaceae, biogeography,CapeFloristicRegion,SouthAfrica.

94

Introduction TheCapeFloristicRegion(CFR)inSouthAfricaisabiodiversityhotspotwithmorethan 9000plantspeciesinanareaof90000km2.Thelevelofendemismisveryhigh:68.8%ofthe speciesarerestrictedexclusivelytothesouthwesterntipofsouthernAfrica(Goldblattand Manning,2000,2002).Thecompositionofthisfloraisverydistinctive,withsomefamilies,for ex.,Penaeaceae,Stilbaceae,Grubbiaceae,Roridulaceae,andGeissolomataceaefoundexclusively here.Otherfamilies,forex.,Iridaceae,Aizoaceae,Ericaceae,Proteaceae,andRestionaceaeare morenumerousandecologicallydominantintheCFRthaninanyotherregionoftheworld. Speciesrichnessisconcentratedinafewlargeclades,whichradiatedmostlywithintheCFR (Linder,2003;LinderandHardy,2004);50percentofthefloraiscontainedinthe30largest clades(Linder,2003),andthefloraisdominatedbyafewlargegenera(e.g.Ericawithits658 species;GoldblattandManning,2000).ThemostcharacteristicvegetationtypeintheCFRisthe fynbos,whichoccupiesabouthalfoftheCFRandaccountsfor80%ofthespeciesrichness, includingtallproteoids,heathlikeericoids,restioids,andbulbousgeophytes(Goldblattand Manning,2002). ThedominatingclimateintheCFRismediterranean,characterizedbywetwintersand warm,drysummers.Thisprecipitationregimeismorepronouncedinthewesternmost(ranging fromthewestcoasttoSwellendam)thanintheeasternpartoftheCFR(rangingfromthe OverbergtoPortElizabeth;SchulzeandMcGee,1978).Inthewesternpart,thewinterweatheris dominatedbyasuccessionofcoldfrontsandmoist,nothwesterlywinds,whereasinsummer, highpressurecellsanddrysoutheasterlywindsdominatetheclimate.Intheeasternpart,seasons arelesswelldefinedintermsofwinterrainfallandsummerdrought,becausethesoutheasterly windsbringsummerraintothecoastalplainsandthemountainsbetweentheOverbergandthe easternCape.Ingeneral,highaltitudelocationsinthemountainsarelessexposedtoseasonality andgetmorerainthroughouttheyearthanthelowlands(GoldblattandManning,2002;Linder, 2003). MostsoilsintheCFRarederivedfromquartzitesandhardsandstonesthatformtheTable MountainandWitteberggroupsandaregenerallydeficientinnutrients(Krugeret al.,1983).In thecool,highrainfallmountainareas,rainfallleachesthescarcenutrientsfromthesoil,leading toableached,extremelynutrientpoorhorizon.Atthebaseofthemountains,soilsderivedfrom MalmesburyandBokkeveldshalesaregenerallydeeperandcontainmoreclayandnutrientsthan theupperslopesandplateaux(Campbell,1983;GoldblattandManning,2000).

95

Becauseofitsdryandhighflammablenature,thefynbosisfrequentlyexposedtobush fires,initiatedbylightnings,rockfalls,orhumanactivities.Thesehotandintensefires,proposed asamaindrivingforceofdiversification(Cowling,1987;VanWilgen,1987;Mandersand Cunliffe,1987),coverlargeareasthatburndownevery12to15yearsonaverage,withextreme cyclesof5to50years(inaverageevery).Plantsfollowtwomainstrategiestocopewithfire: reseedingandresprouting(Pateet al.,1989;Schutteet al.,1995;Linder,2003).Reseeders regeneratefromseedandfloweronlyafterseveralyears(Cowling,1987,1992),while resproutersusuallyregeneratefromundergroundtherootsorstemsandflowerwithinthefirst yearortwoafterafire.Bothstrategiesareconnectedwithcomplexandspecificmorphological adaptationsthatmusthaveevolvedunderintenseselectivepressures(Linder,2003). AmongthesixfamiliesendemictotheCFRarethePenaeaceae(Myrtales),which comprise23speciesofshrubsandundershrubsinsevengenera(Dahlgren,1967a,1967b,1967c, 1968,1971;DahlgrenandThorne,1984;JohnsonandBriggs,1984;DahlgrenandvanWyk, 1988;SchönenbergerandConti,2003).Mostofthespeciesoccurwithina200kmradiusofCape TowninthesouthwesternmostportionoftheCapeProvince(CarlquistandDebuhr,1977)and inhabitthemountainfynbos,wheretheygrowonrocky,oligotrophicsandstonerocks,slopesand cliffsundermesicconditionswithmorethan600mmrainfallperyear(GoldblattandManning, 2000;Schönenbergeret al.,inpress).Aminorfractionofspeciesoccuralongwaterstreams (Penaea dahlgrenii, Stylapterus ericoides, Stylapterus micranthus, Endonema laterifolia)orin sandyflats(Stylapterus fruticulosus).Allspeciesgrowonsandstone,exceptthelimestone restrictedBrachysiphon mundii.Duetotheirisolatedtaxonomicpositionamongotherplant groupsendemictotheCFRandtheirsmalldistributionrange,Penaeaceaehavebeenviewedasa paleoendemicfloristicelement,togetherwithotherfamilies“withlowevolutionary specialization”(GoldblattandManning,2000)likeBruniaceae,Geissolomaceae,Grubbiaceae, Retziaceae,Roridulaceae,andStilbaceae(GoldblattandManning,2000).Thesepaleoendemics areinterpretedasrelictsofanancienttemperateflorathatoncedominatedtheCFRandlater progressivelyadaptedtonutrientpoorsoils(seeDiscussion;GoldblattandManning,2000). MostcloselyrelatedtoPenaeaceaearetheSoutheastAfricanfamiliesOliniaceaeand Rhynchocalycacae,bothwithfewerspecies,butabroaderdistributionrange.Oliniaceae compriseabouteightspeciesinthesinglegenusOlinia (DahlgrenandThorne,1984;Tobeand Raven,1984b;SebolaandBalkwill,1999;Contiet al.,1996,1997,2002;Schönenbergerand Conti,2003;Rutschmannet al.,2004,submitted).Thesetreesandshrubsoccurinthetemperate aftromontaneandcoastalforestsofeasternandsouthernAfrica(SouthAfrica,Swaziland, Moçambique,Uganda,Kenya,Tanzania,Malawi,Rwanda,Ethiopia,RepublicoftheCongo, Zambia,andAngola),andalsoontheislandofSt.Helena,whereOlinia ventosawasmost 96 probablyintroducedfromSouthAfrica(Cufodontis,1960;SchönenbergerandConti,2003).A soundtaxonomictreatmentofthefamilyisnotyetavailable(SebolaandBalkwill,1999). RhynchocalycaceaecomprisethesinglespeciesRhynchocalyx lawsonioides,arare,evergreen treeendemictotheSouthAfricanprovincesofEasternCapeandKwaZuluNatal(Van BeusekomOsingaandvanBeusekom,1975;JohnsonandBriggs,1984;TobeandRaven,1984; SchönenbergerandConti,2003).Rhynchocalyxisa3to10mhightreeandgrowsmainlyalong themarginsoftemperateforestsandclosetowatercoursesandrivers(PalmerandPitman,1972). Accordingtoearliermolecularphylogeneticstudies,Rhynchocalyxissistertoacladecomprising themonophyleticPenaeaceaeandOliniaceae(Contiet al.,2002;SchönenbergerandConti,2003; Rutschmannet al.,2004).However,dependingongeneandtaxonsamplingandthemethodused forphylogeneticinference,RhynchocalyxmightbenestedwithinOliniaceae,whicharesisterto Penaeaceae(Rutschmannet al.,submitted). Inthemolecularphylogeneticstudiesmentionedabove,alongbranchbetweenthestem lineageandthecrowngroupofbothPenaeaceaeandOliniaceaewasobservedinthephylograms, representingahighnumberofnucleotidesubstitutions.Insubsequentmoleculardatinganalyses aimedatreconstructingthebiogeographichistoryofthesoutheastAsianCrypteroniaceae,closely relatedtoPenaeaceae,Oliniaceae,andRhynchocalyx,thelongstembranchesofPenaeceaeand Oliniaceaepersistedinthechronograms,indicatinglongtimeperiodsbetweentheiroriginand diversification(Contiet al.,2002;Rutschmannet al.,2004;Rutschmannet al.,submitted).In addition,thechronogramssuggestedthatafterthedescribedlongperiodofabsentdiversification, bothcrowngroupsstartedtodiversifyrapidly.However,neitherthespecifictiming,northe tempoandmodeofthesediversificationshavebeeninvestigated. Here,weanalyzeanexpandednucleotidedataset,comprisingDNAsequencesfromeight plastidandthreenuclearregions,withacombinationofphylogeneticandmoleculardating methods,lineagethroughtimeplots,andancestralstatereconstructionstoelucidate diversificationpatternsinPenaeceaeandOliniaceae.Morespecifically,weaddressthefollowing questions:i)WhatarethephylogeneticrelationshipswithinPenaeaceae,basedonevidencefrom boththeplastidandnucleargenomes?;ii)WhendidthestemlineagesofPenaeaceaeand Oliniaceae,respectively,originateandwhendidtheircrowngroupsstarttodiversify?iii)Did speciesinPenaeaceaeandOliniaceaeaccumulateataconstantratethroughtimeornot?Do tempoandmodeofdiversificationdifferbetweenthetwofamilies?iv)Howcantheobserved diversificationpatternsbebestexplainedinthelightoftheknownhistoryoftheCapeflora?

97

Materials and Methods

Taxon sampling and DNA extractions Taxonsampling,identicaltothatdescribedinSchönenbergerandConti(2003),included atotalof31taxa(seeTable1).AlmostfullsamplingwasachievedforPenaeaceae(19of23 speciesplus4subspeciesofPenaea cneorum),Oliniaceae(5ofabout8species), Rhynchocalycaceae(1of1species),andAlzateaceae(1of1species).Thefourmissing Penaeaceae,Stylapterus barbatus,Stylapterus dubius,Stylapterus sulcatus,andStylapterus candolleanus,arealleitherveryrare,occuronlyinrestrictedareas,orwerecollectedonlyonce ortwice.FollowingSebolaandBalkwill(1999),thethreemissingOliniaceaeareOlinia discolor, Olinia rochetiana, andOlinia micrantha.TotalDNAwasextractedasdescribedin SchönenbergerandConti(2003)andRutschmannet al.(2004).

In vitro amplification, sequencing and alignment Atotalof31newInternalTranscribedSpacer(ITS)sequencesweregeneratedforthis study,comprisingITS1,the5.8SrRNAgeneandITS2.Taxonnames,voucherinformation,and GenBankaccessionnumbersarelistedinTable1.Forallremainingsequences,voucher informationandaccessionnumbersarelistedinSchönenbergerandConti(2003),Rutschmannet al.(2004),andRutschmannet al.,submitted.(seeTable1). Oursamplingofgeneticlociwasexpandedfrompublishedstudies(Schönenbergerand Conti,2003;Rutschmannet al.,2004;Rutschmannet al.,submitted)toinclude11generegions: theplastidrbcLexon,ndhFexon, rpl16intron,rps16intron,trnStrnGspacer,atpBrbcLspacer, matKexon,andpsbAtrnHspacer,plusthenuclearribosomal18S,26S,andthenuclearITSgene sequences(comprisingtheITS1,the5.8SrRNAgeneandITS2).TogenerateITSsequences,we usedamplificationandsequencingprimersslightlymodifiedfromBaumet al.(1998)andWhite et al.(1990):ITSLeu:5'GTCCACTGAACCTTATCATTTAG3',ITS4:5'TCCTTCCGC TTATTGATATGC3',ITS3B:5′GCATCGATGAAGAACGTAGC3',ITS2:5'GCT GCGTTCTTCATCGATGC3'.AllotherprimersequencesandtheproceduresforPCR amplificationandsequencingaredescribedinRutschmannet al.(2004)andRutschmannet al., submitted. ThesoftwareSequencher4.5(GeneCodes,AnnArbor,MI,USA)wasusedtoeditand assemblecomplementarystrands.Basepositionswereindividuallydoublecheckedforagreement betweenthecomplementarystrands.ThesequenceswerefirstalignedusingClustalX1.83 (Thompsonet al.,1997)priortoadjustingthealignmentsbyeyewiththesoftwareMacClade

98

4.07(MaddisonandMaddison,2000).ThechloroplastandnuclearDNAdatasetsusedforfurther phylogeneticanalysescontained31taxaandatotalof9955alignedpositions,composedofeight chloroplastandthreenuclearpartitions).Thechloroplastdatasetcomprisedsequencesfromthe rbcL(1144chars),ndhF(800chars)andmatK(730chars)genes,andthenoncodingrpl16 intron(492chars),rps16intron(975chars),trnStrnGspacer(843chars),atpBrbcLspacer (1011chars),andpsbAtrnHspacer(576chars;seeTable1).Thenucleardatasetcontained sequencesfromtheribosomal18S(1630chars)and26S(962chars)genes,andthenoncoding ITS(792chars;seeTable1). ToinvestigatepossibleintragenomicvariationofITSrepeats(ÁlvarezandWendel, 2003),thePCRproductsoftheITSregionfromCrypteronia paniculata,Olinia ventosa, Brachysiphon mundii,andPenaea mucronatawereeachclonedbyusingtheTOPOTA Cloning®kitbyfollowingthemanufacturer’sinstructions(InvitrogenBV,Groningen).After growingthecoloniesat37°CovernightonagarplateswithLuriaBertani(LB)mediumand ampicillin,fourtofiverecombinantclonesperplatewererandomlyselectedandtheITSinsertof eachclonewasinvitroamplifiedusingtheprovideduniversalprimersM13FandM13R.The amplificationproductswerethensequencedbyusingthesameITSprimersandcyclesequencing conditionsdescribedabove. Phylogenetic analyses Thechloroplastandnucleardatasetswereanalyzedseparately.Bayesiananalysesfor topologyandbranchlengthestimationreliedonMrBayesversion3.12(Huelsenbeckand Ronquist,2001;RonquistandHuelsenbeck,2003).MrAIC1.4(Nylander,2005),aprogramthat usesPHYML(GuindonandGascuel,2003)toevaluate24nucleotidesubstitutionmodels,was employedtoselectthebestmodelsbasedonthecorrectedAkaikeinformationcriterion(AICc; BurnhamandAnderson,2002;seeTable2).Parametervaluesforthechosenoptimalmodels werethenestimatedsimultaneouslyforeachpartitionduringtopologyandbranchlength optimizationinMrBayes. BayesiantopologyestimationusedonecoldandthreeincrementallyheatedMarkovchain MonteCarlo(MCMC)chainsrunfor1.5*106cycles,withtreessampledevery100thgeneration, eachusingarandomtreeasastartingpointandatemperatureparametervalueof0.2(thedefault inMrBayes).Foreachdataset,MCMCrunswererepeatedtwice.Thefirst5000treeswere discardedasburnin.TheremainingtreeswereusedtoconstructoneBayesianconsensustree withmeanbranchlengths(Figures1aand1b)andtocalculatetheposteriorprobabilitiesforeach branch.Examinationofthelogarithmiclikelihoodsandtheobservedconsistencybetweenthe runssuggestedthattheusedburninperiodsweresufficientlylong. 99

BootstrapsupportvalueswerecalculatedbyusingthePerlscriptBootPHYML3.4 (Nylander,2005).Thisprogram(slightlymodifiedbythefirstauthor)firstgenerates1000 pseudoreplicatesinSEQBOOT(partofPhylip3.63;Felsenstein,2004),thenperformsa maximumlikelihoodanalysisinPHYML(GuindonandGascuel,2003)foreachreplicateunder themodelofevolutionselectedabove,andfinallycomputesa50%majorityruleconsensustree byusingCONSENSE(alsopartofthePhylippackage). Inadditiontothechloroplastandnucleardatasets,aseparatephylogeneticanalysiswas performedasdescribedabovefortheITSdatasetonly,including19clonesfromCrypteronia paniculata,Olinia ventosa,Brachysiphon mundii,andPenaea mucronata,tocheckfor monophylyoftherespectiveclones. Totestforsignificantdifferencesbetweenthebesttreetopologiesderivedfromthe chloroplastandthenucleardatasets,theKishinoHasegawa(KH)pairedsitestest,alsoknownas ResamplingEstimatedLogLikelihood(RELL)incongruencetest(KishinoandHasegawa,1989; Felsenstein,2004),wasused.Forboththechloroplastandthenucleardataset,105sampledtrees obtainedintheMrBayesanalyseswereusedtoconstructtherespective80%majoritiyrule consensustreesinPAUP*(Swofford,2001).Usingtheplastidsequencedata,thebranchlengths forthetwoconsensustreeswerereestimatedunderMLusingthemodelparametersestimated duringtheMrBayesanalysis.TheKishinoHasegawatestwasthenusedtocomparethelog likelihoodsofthetreesandtestthenullhypothesisthatthetreesarenotsignificantlydifferent. Thesameprocedurewasrepeatedstartingwiththenuclearsequencedata.BecausetheKH pairedsitestestindicatedthatthetwotreesweresignificantlydifferent(seeResults),molecular datingandancestralstatereconstructionanalyseswereperformedonthedataderivedfromthe maternallyinheritedchloroplastgenome(CorriveauandColeman,1988) Calibration Tocalibratethetree,wereliedonpreviousresultsofbroaderphylogeneticanddating analysesinMyrtales(Rutschmannet al.,submitted,Rutschmannet al.,2004,Contiet al.,2002). Mostrecently,theageofthephylogeneticsplitbetweentheAfricanPenaeaceae/Oliniaceaeand theSouthAmericanAlzateaceaewasplacedatbetween85.54and54.99mys,basedonthe97.5th and2.5thpercentileoftheposteriordistributioninRutschmannet al.(submitted).Byusingsucha broadtimerangeforconstrainingthecalibrationnode(nodec;Figures1aand2),wetriedto minimizeproblemsrelatedtosecondarycalibration(GraurandMartin,2004;HedgesandKumar, 2004).

100

Divergence time estimation Byusingtheχ2molecularclocktestofLangleyandFitch(1974)implementedinr8s (Sanderson,2003),wetestedforrateconstancywithintheentiretree(globaltest),orwithin selectedclades(localtest;seeTable3).Thisχ2clocktestcomparestheobservedbranchlengths withthebranchlengthspredictedunderaclockmodel. WethenappliedBayesiandating(Thorneet al.,1998;ThorneandKishino,2002)to estimatedivergencetimes.Thismethodusesaprobabilisticmodeltodescribethechangein evolutionaryrateovertimeandaMarkovchainMonteCarlo(MCMC)routinetoderivethe posteriordistributionofratesandtime.Theprocedurewefollowedisdividedintothreestepsand programswhicharedescribedinmoredetailintheBayesiandatingstepbystepmanualversion 1.5(Rutschmann,2005).Itwasperformedona3GHzPentiumIVmachinerunningUbuntu Linux6.04.Thevaluesofthepriordistributionsinthethirdmultidivtimestep(Kishinoet al., 2001;ThorneandKishino,2002)werespecifiedinunitsof10mys,assuggestedinthemanual:

RTTM=8.554,RTTMSD=2,RTRATEandRTRATESD=0.02525(nucleardataset),0.00549(plastid dataset),and0.00585(combineddataset),BROWNMEANandBROWNSD=0.117,andBIGTIME= 10.WerantheMarkovchainforatleast106cyclesandcollectedonesampleevery100cycles, withoutsamplingthefirst105cycles(burninsector).Weperformedeachanalysisatleasttwice withdifferentinitialconditions(INSEEDparameters)andcheckedtheoutputsamplefilestoassure convergenceoftheMarkovchainbyusingtheprogramTracer1.3(RambautandDrummond, 2005),althoughwerealizethatitisnotpossibletosaywithcertaintythatafinitesamplefroman MCMCalgorithmisrepresentativeofanunderlyingstationarydistribution(CowlesandCarlin, 1996).Inaddition,divergencetimeswerealsoestimatedbyusingpenalizedlikelihood (Sanderson,2002)implementedinr8s (Sanderson,2003).

Diversification rate analysis Byusingthechronogramderivedfromtheplastiddataset(Figure2),thenumberof diverginglineageswasplottedagainstdivergencetime(LTTplots;Figures3and4).Toprovidea globalpictureofdiversificationrates,theLTTanalysiswasfirstperformedforalltaxa,excluding thefoursubspeciesofPenaea cneorum(fulldataset;Figure3).Additionally,wefocused exclusivelyonmembersofthePenaeaceaecrowngroup(againwithoutsubspecies)toprovide moreresolutionfordetectingdiversificationratechangeswithinthefamily(reduceddataset; Figure4).Thenumberoflineageswasplottedinadecimalscale(Figure3aand4a)orlog transformedtolinearizeapotentialexponentiality(Figure3band4b).

101

BoththeCramérvonMisesandtheAndersonDarlinggoodnessoffittestsimplemented inAPE(Paradiset al.,2004)–apackagewritteninRfortheRprojectofstatisticalcomputing (RDevelopmentCoreTeam,2004)wereusedtotestthenullhypothesisthatthediversification ratesareconstantovertheentireultrametrictree(Table4).Bothmethodscomparetheempirical densityfunctionoftheobservations(branchingtimesderivedfromthechronogram)tothe expectedexponentialcumulativedensityfunctionundertheassumptionofconstant diversificationrates(Paradis,1998). Inaddition,survivalanalysis(Paradis,1997)implementedinAPEwasusedtodetect shiftsinnetdiversificationrate(Table4).Themethodcomparesthelikelihoodofthedata (branchingtimes)underthreedifferentsurvivalmodels.ModelAassumesaconstantrateof diversification(whichleadstoanexponentialincreaseinlineagesovertime).ModelBassumesa monotonicallychangingrateofdiversification(Weibulllaw),andincludestheestimated parameterβ,whichindicatesifthediversificationrateincreases(positiveβvalue)ordecreases (negativeβvalue).ModelCassumesconstantdiversificationrates,butassumesoneabrupt changeinthediversificationrateatasinglebreakpoint(Paradiset al.,2004).Thisbreakpointhas tobespecifiedaprioriasparameterγ.FortheglobalandthePenaeaceaecrowngroupanalyses, wesetγto16.6mysand8.7mys,respectively,becausethesevaluesrepresentedthemost probablebreakpointsbasedonavisualinspectionoftheLTTplots(Figures3and4).The comparisonamongmethodswasdoneusingbothlikelihoodratiotests(LRT)andtheAkaike informationcriterion(AIC;seeTable4;Paradis,1997;Kadereitet al.,2004).

Ancestral character state reconstructions Inordertoreconstructcharacterstatesforselectednodesofinterest,anexpanded chronogramfromRutschmannet al.(submitted)wasusedwhichcomprisessixmoretaxaof Crypteroniaceae(Figure5).Althoughthischronogramisbasedonfewergenes,itprovidesbetter taxonsamplingwithinCrypteroniaceaeanditstopologyisalmostentirelycongruentwiththatof thechronogrambasedoneightchloroplastgenes(seeFigure2).All37taxawereassignedtoone outofthreevegetationtypeclasses(tropical,temperate,andfynbos)andoneoutoffiveleafsize classes(lepto,nano,micro,meso,andmacrophyll;Table5).Leafsizeswerecalculatedasthe areaofanellipse(leaflengthxleafwidthxpi/4)andthenassignedtotheappropriateleafsize classesfollowingRaunkiaer(1916,1934).Leafdimensionsweremeasuredonherbarium specimens(seevouchersinTable1)andderivedfrompublishedliterature(PalmerandPitman, 1972;Pereira,1996).AncestralcharacterstateswerethenestimatedunderMaximumLikelihood optimizationinMesquite1.06(buildg97;MaddisonandMaddison,2005)byusingtheMk1

102 model(Table6andFigure5).Additionally,leafsizeswerecodedascontinuouscharactersand reconstructedbyusingMLoptimizationinANCML(Schluteret al.,1997;Table6andFigure5).

103

Results

Phylogenetic analyses Thetwodatasetsusedforphylogeneticanalysescontained31taxaandatotalof9955 alignedpositions,composedofeightchloroplast(6571characters)andthreenucleargene partitions(3384characters;seeTable1). Theoptimalmodelsofevolution,selectedoutof24differentmodelswiththecorrected Akaikeinformationcriterion(implementedinMrAIC1.4;Nylander,2005),aresummarizedin Table2.Forboththechloroplastandthenucleardatasets,thecorrespondingMrBayesmajority ruleconsensustreeswithposteriormeanbranchlengths,maximumlikelihoodbootstrapsupport valuesobtainedwithBootPHYML3.4(abovebranches),andBayesianposteriorprobabilities (belowbranches)areshowninFigures1aand1b. Thetreetopologiesgeneratedfromtheplastidandnucleardatapartitionswere significantlydifferent.Basedontheplastiddataset,theKHpairedsitetesttest(Kishinoand Hasegawa,1989)produceda–lnLscoreof15044.91fortheplastidtopologyanda–lnLscore of15417.92forthenucleartopology,leadingtorejectionofthenullhypothesisthatthetwotrees arenotsignificantlydifferent(p<0.05).Likewise,basedonthenucleardataset,theKHtest resultedina–lnLscoreof8342.07forthenucleartopology,andina–lnLscoreof8469.34for theplastidtopology,whichalsoledtorejectionofthenullhypothesis(p<0.05). ThephylogeneticanalysisofITSsequences,includingthosegeneratedfromclonedPCR products,supportedthemonophylyoftheclonesamplifiedfromCrypteronia paniculata, from Olinia ventosa, fromBrachysiphon mundiiandfromPenaea mucronata(fivecloneseach;results notshown).ThesequencesofITSclonesdifferedfromeachotherbyaminimumof2nucleotides (<1%)betweentheclonesfromBrachysiphon mundiitoamaximumof6nucleotides(about1%) betweentheclonesfromPenaea mucronata.Theseresultssuggestthat,atleastforthetested species,mutationsgivingorigintodifferentITSrepeatsoccurredafterspeciation,thusnot affectingphylogeneticinference. Inagreementwithotherphylogeneticstudies(Contiet al.,1996,1997and2002; SchönenbergerandConti,2003;Rutschmannet al.,2004;Rutschmannet al.,submitted), OliniaceaeandPenaeaceaeformtwomonophyleticsistergroups,basedonboththechloroplast andthenucleardatasets(Figures1aand1b).ThephylogeneticpositionofRhynchocalyx lawsonioides,however,differsamongpartitions:intheplastidtree,itissistertoOliniaceae, whereasinthenucleartreeitissistertothecladeformedbyOliniaceaeandPenaeaceae. However,therelationshipsofR. lawsonioidesareweaklysupportedinbothphylogenies(BS=

104

53%and45%,respectively).PhylogeneticincongruencewasalsoobservedwithinPenaeaceae: Penaeaismonophyleticinthenucleartree,butnotintheplastidtree,becauseherePenaea dahlgreniiissistertoStylapterus ericoides.AlsothephylogeneticpositionofGlischrocolla formosaisdependentonthepartitionusedforthephylogeneticreconstruction:intheplastidtree, itissistertoBrachysiphonrupestris,whereasinthenucleartree,itissistertoEndonema.Inboth trees,Endonema ismonophyletic,andSalteraandSonderothamnusgrouptogether.The phylogeneticrelationshipsofBrachysiphonandStylapterusisproblematic,becausethetaxaare arrangedincladeswithlowstatisticalsupport.However,basedonthepresentdata,neithergenus appearstobemonophyletic. Divergence time estimates TheLangleyandFitchχ2testappliedtotheplastidphylogram(afterexcluding Crypteronia paniculata,whichwasusedasdatingoutgroup),indicatedsignificantdeparturefrom rateconstancy(Table3).Rateconstancywasclearlyrejectedalsowhenthetestwasappliedto subcladesofthetree. Theestimatedmeanages,theirstandarddeviations,andthe95%credibilityintervals basedontheplastiddatasetarereportedforselectednodesofinterestinTable6,anda chronogramisshowninFigure2.Theuseofpenalizedlikelihood(implementedinr8s; Sanderson,2002,2003)insteadofBayesiandating(implementedinmultidivtime;Kishinoet al., 2001;ThorneandKishino,2002)resultedinsimilarageestimates(datanotshown). Diversification rate analysis Byusingthechronogramderivedfromtheplastiddataset(Figure2),thenumberof lineageswasplottedagainsttime(LTTplots).Theplotsforthefulldataset(withoutsubspecies) areshowninFigure3,whereastheLTTplotsforthereduceddataset(Penaeaceaecrowngroup only)areshowninFigure4.Thediamondsinallplotsrepresentmeanestimatedages,whilethe dotsrepresenttheextremesofthecredibilityintervals.InFigures3band4b,thenumberof lineagesarelogtransformed. TheLTTplotsshowtwodistinctivephases:Thefirstisaperiodwithoutany diversificationbetween53.47mysagoand16.6mysago(Figure3),alsorepresentedbythelong branchesbetweenthestemandthecrownnodesofPenaeaceaeandOliniaceaeinthechronogram (Figure2).Thesecondphase(16.6mysagotopresent;Figures3and4)ischaracterizedbya high,butnonexpontentialaccumulationoflineageswithinthecrowngroupofPenaeaceae. Accordinglytotheseobservations,boththeCramérvonMises(CM)andtheAnderson Darling(AD)goodnessoffittestsimplementedinAPE(Paradiset al.,2004)rejectedoverall 105 diversificationrateconstancyona95%significancelevelforbothdatasets(Figures3and4;full dataset:pCM<0.01,pAD<0.025;reduceddataset:pCM<0.01,pAD<0.048).Alsothesurvival analysis(Paradis,1997)confirmedtheexpectationsfromvisualinspectionoftheLTTplots:For thefulldataset(Figure3),modelCwasselectedamongthreedifferentdiversificationmodels, basedonthelowerAICvalues(Table4).Thismodelassumesanabruptchangeindiversification 16.6mysago,butotherwiseimpliesconstantrates(Paradiset al.,2004).Forthereduceddataset (Penaeaceaecrowngroup;Figure4),modelBwasfavored,againbasedonthelowerAICvalues (Table4).Accordingtoitsestimatedβparameter(β=2.456),thismodelassumesthatthe diversificationratedecreasedmonotonicallyovertime.TheresultsoftheLRTwereeithernot significantornotdecisive(seeTable3). Insummary,thesestatisticalresultssuggestthatthenetdiversificationratefor PenaeaceaeandOliniaceaeisnotconstant,butchangesabruptlyatabout16.6mysago(Figure 3).Afterthisbreakpoint,thediversificationrateofPenaeaceaeishigherthanbefore,but decreasesgraduallyovertime,leadingtoanonexponentialincreaseoflineages(Figure4). Ancestral character state reconstructions Forthediscretecharacters(vegetationtypeclassandleafsizeclass),thestateswiththe highestproportionallikelihoodsareshowninTable6.Pvaluesoflessthan0.95indicatethatalso otherancestralcharacterstatesmightbeprobable.Inthesmallpiechartsassociatedtothenodes inFigure5,theproportionallikelihoodsofallpossiblestatesareshown(leftside:vegetation type,rightside:leafsize).Theancestralcharacterstatereconstructionsshowthatthemostrecent commonancestor(MRCA)ofallPenaeaceae(nodee)likelyhadleptophyllousleavesand belongedtoafynbostypevegetation,whereasthefirstmemberoftheOliniaceaecrowngroup (nodeg)wasmicrophyllousandbelongedtoatemperatevegetation.TheMRCAofall Crypteroniaceae(nodeb)mostlikelyhadmesophyllousleavesandoccurredinatropicalhabitat. Fortheothernodes,theresultsarenotsignificant,butacleartendencyisvisibleovertimefrom ancestralplantswithlargeleavesthatgrowintropicalhabitatstophylogeneticallyyoungerplant groupswithsmallerleavesthatoccurinmorearidhabitats.Thisconclusionissupportedbythe gradientofthereconstructedleafsizestreatedasacontinuouscharacterinANCML(Schluteret al.,1997;seeTable6andFigure5,rightside):thereconstructedleafsizesarelarge(over7000 mm2)fortherootnodeandtheMRCAofCrypteroniaceae(nodeb),buttheydecreaseforthe MRCA’sofAlzateaceae(nodec),Oliniaceae(nodeg)andPenaeaceae(nodee).Forexample,the leafsizeoftheMRCAofCrypteroniaceae(nodeb)isreconstructedtobe20timesbiggerthan thatofthePenaeaceaeMRCA(nodee).

106

Discussion

Phylogenetic relationships within Penaeaceae InhistaxonomictreatmentofthePenaeaceae,Dahlgren(1967a,1967b,1967c,1968, 1971)subdividedthefamilyintosevengenera.Subsequently,twoadditionalspecies,Penaea dahlgrenii(RourkeandMcDonald,1989)and Brachysiphon microphyllus(Rourke,1995),were described.Arecentmolecularphylogeneticstudybasedonsixchloroplastmarkerspartially contradictedearliergenericcircumscriptions(SchönenbergerandConti,2003).Specifically,it foundthegeneraBrachysiphon, Penaea, andStylapterus tobenonmonophyletic.Theseresults werenotentirelysurprising,asearlierauthorshadalreadyfoundgenericdelimitationstobe problematic(e.g.,Supprian1894,Gilg1894),andalsoDahlgren(1967a,1968)pointedout severalspeciestobe“morphologicallytransitional”betweengenera,particularlysobetween BrachysiphonandStylapterus.Inaddition,Rourke(1995)statedthatthetwonewlydescribed species,Penaea dahlgreniiandBrachysiphon microphyllus,werenoteasilyassignedtoanyof Dahlgren’sgenera,furtheremphasizingthelackofclearcutmorphologicalboundariesbetween genera(seealsoSchönenbergeret al.,inpress).Thephylogeneticrelationshipssupportedbythe presentanalysisofchloroplastdata(Figure1a),whichaddedtwomarkers(rbcLandndhF)tothe datasetofSchönenbergerandConti(2003),arelargelyidenticaltothoseoftheformerstudy. Resultsarealsosimilarwithrespecttotheoverallresolutionandbranchsupport,whicharestill lowinsomeareasofthetree. Therelationshipsinferredfromthenucleardataset(Figure1b),however,differ significantlyfromthechloroplasttopology,butarelikewisenotcongruentwiththegeneric circumscriptions.Nevertheless,atleastseveralpartsofthetwotopologiesarecongruent,and theseareprobablyreliableinferencesofthespeciestree(Figures1aand1b):1)Endonemais monophyleticandsistertotherestofthefamily,oratleastbelongstotheearliestdiverging lineageinthefamily;2)Glischrocolla alsobelongstooneoftheearliestdiverginglineages, eitherinacladewithBrachysiphon rupestris (cpDNA,strongsupport;Figure1a)orassisterto Endonema(ncDNA,weaksupport;Figure1b);3)SalteragroupswithSonderothamnusinboth topologies,butitremainsunclearwhetherSonderothamnusisparaphyletictoSaltera;4)the genusPenaeasensuDahlgren(1971)ismonophyleticandthelaterdescribedPenaea dahlgrenii iscloselyrelatedtoit,eitherasdirectsistergroup(ncDNA,strongsupport;Figure1b)or perhapsassistergrouptogetherwithStylapterus ericifolius(cpDNA,weaksupport;Figure1a); and5)Penaea cneorumisclosesttoPenaea mucronata,butitremainsunclearwhethervarious subspeciesofP. cneorumareparaphyletictoP. mucronata.Theremainingrelationships–mainly

107 concerningthegeneraBrachysiphonandStylapterus–areeithernotwellsupportedordiffer considerablybetweenthetwotopologies. Amongthebiologicalprocessesthatmighthavecausedtheobservedincongruencies betweenthechloroplastandnucleartreesofPenaeaceaeandrelatedtaxaareorthology/paralogy conflation(e.g.Vanderpoortenet al.,2004),lineagesorting(e.g.Doyleet al.,2004),and hybridization(e.g.Rieseberget al.,1996).Ourtargetedcloningexperimentsonfourspecies (Crypteronia paniculata, Olinia ventosa, Brachysiphon mundii,andPenaea mucronata)showed thatallsequencedITSrepeatsfromaspeciesaremonophyletic,suggestingthatduplication eventsandmutationsthatgaveoriginstothedifferentrepeatsfollowedspeciation.Therefore,in ourcase,orthology/paralogyconflationandlineagesortingappeartobealesslikelyprimary sourceofincongruencebetweenthetwotrees. Hybridization,however,hasbeenshowntobeawidespreadmodeofspeciationinplants atboththehomoploidandallopolyploidlevels,withfundamentaleffectsonthepotential incongruencebetweenthematernallyinheritedchloroplastandthebiparentallyinheritednuclear phylogenies(Soltiset al.,1992;SoltisandSoltis,1999;ÁlvarezandWendel,2003).For example,themostconspicuousconflictamongourgenetreesinvolvesStylapterus ericoides, Stylapterus micranthus, andBrachysiphon acutus:inthenucleartopology(Figure1b),thetwo formerspeciesformastronglysupportedclade,whereasinthechloroplasttopology(Figure1a), thetwolatterspeciesarestronglysupportedasbeingsisters.Fromamorphologicalpointofview, thefirsthypothesismakesdoubtlessmoresenseasStylapterus micranthus andBrachysiphon acutus differinseveralfloralcharacters(fordiscussionseeSchönenbergerandConti,2003). Thus,morphologicalevidence,togetherwiththeobservedconflictbetweennuclearand chloroplastdata,supportsanearlierformulatedhypothesisthattheseeminglycloserelationship ofStylapterus micranthus andBrachysiphon acutusinthechloroplastphylogenymightbethe resultofanearlierhybridizationeventthatwasfollowedbychloroplastcapture(Schönenberger andConti,2003). Fortheremainingincongruentspecies,thereisnofurtherevidencefrommorphological traitsand/ordistributionrangesavailable,exceptafewchromosomecounts,whichdonot concernincongruenttaxa(2n=20forPenaea mucronata,Penaea cneorum,Brachysiphon rupestris;2n=40forSaltera sarcocolla;Dahlgren,1968,1971). Phylogenetic relationships within Oliniaceae TheofthemonogenericOliniaceaeisnotyetsettledandspeciesdelimitation andtheexactnumberofspeciesareunclear(SebolaandBalkwill,1999;vonBalthazarand Schönenberger,inpress).Thefivespeciesincludedinthepresentstudyaregroupedintotwo 108 stronglysupportedclades,whicharebothsupportedbychloroplastandnucleardata(Figures1a andb).ThesametwocladeswerealsofoundanddiscussedbySchönenbergerandConti(2003). Inaddition,thenucleardatasetstronglysupportsasistergrouprelationshipbetweenOlinia ventosaandO. capensis,twosympatricspeciesthathavebeenrecognizedearliertobeclosely relatedalsobasedontheirmorphology(SebolaandBalkwill,1999). Diversification of Penaeaceae, Oliniaceae and Rhynchocalycaceae Byintegratingourresultsfrommoleculardating(timingofdiversification;Table6and Figure2),LTTanalyses(tempoandmodeofdiversification;Figures3and4),andancestral characterstatereconstructions(possiblereasonsofdiversification;Tables5and6andFigure5), weattempttodiscussthediversificationhistoryofPenaeaceaeinthefollowingparagraph.Before weproceedwiththeinterpretationofourdata,wewouldliketoemphasizethatwetriedto minimizetwopitfallsoftheusedmethods:First,theuseofsecondarycalibrationinmolecular datingisproblematicbecausegeneandtaxonsamplingandthemethodsusedinthesecondary studyoftendiffersignificantlyfromthoseappliedinthestudythatproducedtheoriginal calibrationpoint(HedgesandKumar,2003;GraurandMartin,2004;HedgesandKumar,2004). Inaddition,theerrorsassociatedwithdivergencetimeestimationintheoriginalstudyareoften ignoredwhenaspecificageestimateisadoptedforsecondarycalibration(GraurandMartin, 2004).Becauseweusedacalibrationpointfromoneofourrecentstudies(Rutschmannet al., submitted),whichisbasedonacomparablegeneandtaxonsamplingandidenticalmethods,and becausewefullyincorporateerrorestimatesintocalibration,wethinkthattheapplicationof secondarycalibrationisappropriateinthepresentcase.Secondly,itisknownthatLTTanalyses areentirelydependentontaxonsampling,andtheiruseisnotrecommendedbelowasampling levelof80%(BarracloughandNee,2001;Hawkins,2006).Forexample,thefiveterminals representingOliniaceae(Figure2)areinsufficienttoinferdiversificationinformationfromLTT plots(Figures3and4),becausewesampledonlyfiveoutofeigthspecies(62.5%;vonBalthazar andSchönenberger,inpress).ForPenaeaceae,however,wesampled19of23knownspecies, providingenoughdataforinvestigatingthetempoandmodeofdiversificationforthisgroup. OurLTTanalyses(seeFigures3and4)revealedtwodistinctphasesinthediversification ofOliniaceaeandPenaeaceae:i)aperiodwithoutanydiversificationbetween54and17mysago, alsovisibleinthechronogram(Figure2)aslongbranchesbetweenthestemandthecrownnodes ofPenaeaceaeandOliniaceae,andii)asubsequentphasewithahighaccumulationoflineages withinthecrowngroupsofPenaeaceaeandOliniaceae(17mysagotopresent;seeFigures3and 4).

109

Forthefirstperiod,whichspanstheentireOligoceneandEocene,wecanonlyspeculate aboutthehistoryofthetaxaexaminedhere.Forallthreelineages,weobserveanabsenceof diversification,whichcanbeexplainedaseitherlackofspeciationorahighamountof extinction,bothleadingtoastasisintheaccumulationoflineages.Paleoclimaticreconstructions, althoughbasedonscantevidence,assumeachangingclimateduringthisperiod(Zachoset al., 2001;DeContoandPollard,2003).Itisimaginable,butnotsupportedbyfossilevidence,that numerouslineagesofoncemorespeciesrichPenaeaceae,OliniaceaeandRhynchocalycaceae couldhavegoneextinctduringthisperiod,becausetheycouldnotadaptrapidlyenoughtothe changingclimate.Alternatively,speciationwasprobablyhinderedbecausethenecessaryhabitat wasnotavailableatthattime.OurcharacterstatereconstructionssuggestthatearlyPenaeaceae, OliniaceaeandRhynchocalycaceae(noded;Table6andFigure5)possessedmicrophyllous leavesandinhabitedatemperateortropicalenvironmentatthebeginningofthatperiod(Table6 andFigure5).Overtime,Penaeaceaedevelopedsmallerleaves(nodee;Table6andFigure5), whereasthefoliageofOliniaceaeandRhynchocalycaceaeremainedmicrophyllous(nodesfand g;Table6andFigure5). Around16.6mysago(±3.6mys;seeFigure2),thesecondepisodebegan:weobservean abruptchangeindiversification(Table4andFigure3;modelC)atthebeginningoftheMiddle Miocene.InPenaeaceae,butnotinOliniaceaeandRhynchocalycaceae,thenumberoflineages increases,leadingtothe19(outof21)extantspecies.However,thediversificationrateisnot constantthroughoutthisphase:accordingtooursurvivalanalysis(Table4andFigure4),it decreasessignificantlyovertime(modelB).Boththetriggersfortheradiationandthereasonsfor thesubsequentdecreaseofthediversificationratearedifficulttoidentify,becausetheclimatic historyofthatperiodisnotwellknownatsufficientlydetailedtemporalandspatialscalesand fossilsarenotavailable(Linder,2003).Apopularpaleoclimaticscenarioisthearidificationof theCapeintheMiddleMiocene,causedbydeterioratingworldclimaticconditions(Zachosetal, 2001).Althoughsomekeyelementsofthisscenarioaredebated(e.g.,thetimingoftheupliftof theBenguelacurrent;Siesser,1980;SiesserandDingle,1980),aclimatictrendtowardsthe modernseasonallycoolandaridconditionsintheCapeneartheMiocenePlioceneboundaryis commonlyaccepted(Levyns,1964;Linderet al.,1992;GoldblattandManning,2000;Linder, 2003,2005). WastheradiationofPenaeaceaeabout17mysagodrivenbykeyinnovationsrelatedto thedescribedaridificationscenario?Atleastaccordingtothecharacterstatereconstructions, Penaeaceaepossesedalreadysmall,thick,amphistomatousleavesatthistime(nodee;Figure5 andTable6;RuryandDickison,1984;DickieandGasson,1999).Whilethickleavesprovide improvedgasexchangeefficiencyunderwaterstress,amphistomatousleavesaregenerally 110 associatedwithplantsgrowingindryconditions(Parkhurst,1978).Additionally,some Penaeaceae(e.g.,Saltera sarcocolla)possesslignotubers(rootstocks),subterrestrialstorage organsthatallowthemtoendureperiodsoflowwaterandnutrientavailabilityandtoresprout afterfire(CarlquistandDebuhr,1977;Schönenbergeret al.,inpress).Ontheotherhand, Penaeaceaedonothaveadaptationslikesucculenceorbulbstoendurelongdroughtperiods,but arerestrictedtomesichabitatslikehighermountains,wheretheyreceivehigheramountsof precipitationthaninlowerregions,ortheyoccurclosetowaterstreams(Rourke,1995).In addition,theirsmall,scleromorphicleaves(seeTable5)canalsobeviewedasbeingprimarily protective(Turner,1994)andrelatedtoensuringlonglifespansforspeciesgrowingslowlyon nutrientpoorsoils,ratherthananadaptationtosummerdrought(Stocket al.,1992). AmongotherpossibleselectiveforcesthatmayhavetriggeredtheradiationofPenaeaceae isalsotheadaptationtothefireregime.Penaeaceaeareabletoresproutefficientlyafterafire, andseedgerminationhasbeenshowntobestimulatedchemicallybycharredwoodorsmoke (KeeleyandBond,1997).However,thepostfiremortalityofPenaeaceaewasshowntobehigh incomparisontoothershrubslikeAulax,Leucadendron(Proteaceae)orWiddringtonia (Cupressaceae;LeMaitreet al.,1992).Inaddition,Penaeaceaedonotrepresenttypicalreseeders, whichareusuallytallerandinvestmoreresourcesinseedproductionthaninresprouting(Pateet al.,1989;Schutteet al.,1995).Ingeneral,theirabilitytosurvivefiredoesnotseemtobevery efficient,atleastnotasefficientasthesystemssomecompetitorshaveevolved.Asthetimingof thefirstoccurenceofbushfiresintheCapeisunknown(Linder,2003;butseealsoCowling, 1987,1992),itisdifficulttoknowifadaptationtofirebecameimportantintheMiddleMiocene, orbeforeorevenaftertheradiationofPenaeaceae. ItisworthmentioningthatPenaeaceaewerenottheonlygroupthatstartedtodiversify rapidlyatthistime(16.6mys±3.6mys;95%credibilityinterval:24.8–10.7mys;seeTable6). AmongotherCapefloristicelementsthatradiatedintheEarlyandMiddleMioceneareMoraea (Irididaceae;beginningofradiationdatedto22.5±2.15mysago;Goldblatt,2002),Pelargonium (Geraniaceae;diversificationofxerophyticclade18.5to11.4mysago;Bakkeret al.,2005), Phylica(Rhamnaceae;13to14mysago;Richardson,2004,butseeRichardsonet al.,2001),and Indigofera(Fabaceae;13±3.5mysago;Schrireet al.,2003).ForPhylicaandIndigofera,the plantspecifictraitsthatcouldhavepromotedtheradiationswerenotinvestigated,butfor Pelargonium,itissuggestedthatstemandleafsucculenceandtuberformationrepresent importantadaptationstosummeraridity,whichmighthavepromotedthediversificationofthis genus(Bakkeret al.,2005).Similarily,theevolutionofherbaceousformswithunderground cormsinMoraeaareseenasadapationstoaseasonallydryclimateandnutrientpoorsoils (Goldblatt,2002). 111

OliniaceaeandRhynchocalycaceae,althoughmuchmorewidelydistributedthan Penaeaceae,arerestrictedtotheirpurportedlyancienthabitat,thetemperateforest.Bearingmuch biggerleaves,thesetrees,upto21mhigh,growonlyalongwaterstreamsorinmesicmountain forestswherecontinuouswaterandnutrientavailabilityisguaranteed(intheCFR,twospecies occuralongthecoastandsomerivers:Olinia ventosaandOlinia capensis;Goldblattand Manning,2000).Theancestralcharacterstatereconstructionssuggestthatthiscladepossessed microphyllousleavesandfavouredatemperatehabitatsincetheoriginofitsstemlineageabout 58mysago(noded;Table6andFigure5),withthefixationofthesestatesintheMRCAofthe Oliniaceaecrowngroup(nodeg;Table6andFigure5).Wedonotknowwhythesetrees speciatedslowerthanPenaeaceae,butspeculatethatitmightbethelackofpreferredhabitat spaceandtheirlongerlifecyclewhichpreventedthemfromradiatingasfastasPenaeaceae. Conclusions ThediversificationoftheCapefloracanbeexpressedasagradualtransformationfrom speciespoorcladeswithrelictualtaxarestrictedtoforestsandfireprotectedhabitatsalongwater streamstospeciesrichcladeswithtaxathatarehighlyadaptedtoopen,heathy,periodicallyburnt habitats(Linder,2003,2005).DrivenbycomplexclimatechangessincethelateCretaceous, gradualadaptationstodroughtandfiregaveaselectiveadvantagetotheCapefloristicclades overtheancestraltropicalflora(LinderandHardy,2004;seealsoLevyns,1964;Linderet al., 1992;GoldblattandManning,2000). Theevolutionarytrendsrevealedinourancestralcharacterstatereconstructionsfor Penaeaceae,Oliniaceae,andRhynchocalycaceaecorrespondtothismodel:theyindicateshifts fromatropical/temperatehabitattothefynbosvegetationtype,andfrommacroand mesophyllousleavestothicknanoandleptophyllousleaves(seeTable6andFigure5). AlthoughthereasonsforthesuddenincreaseindiversificationofPenaeaceaeintheMiddle Mioceneremainspeculative,lignotubersandprotectivescleromorphicleavespossiblyrepresent keyinnovationsthattriggeredtheirradiation,allowingPenaeaceaetogrowonlownutrientsoils. ThetimeframeofthePenaeaceaeradiationcorrespondswelltoinsightswehavefrom otherCapetaxasuchasMoraea,Pelargonium,PhylicaandIndigofera.Itwillbefascinatingto seeinthenearfuturehowtheintegrationofdiversificationdatafromadditionalCapeclades, togetherwithfurtherpaleoclimaticevidence,willcontributetoaglobalreconstructionofthe historyoftheCapeFlora.

112

References

Álvarez,I.,andJ.F.Wendel.2003.RibosomalITSsequencesandplantphylogeneticinference. Molecular Phylogenetics and Evolution29:417434.

Bakker,F.T.,A.Culham,E.M.Marais,andM.Gibby.2005.NestedradiationinCape Pelargonium.Pp.75100.Plantspecieslevelsystematics:newperspectivesonpattern&process. A.R.G.GantnerVerlag,Ruggell,Liechtenstein.

Barraclough,T.G.,andS.Nee.2001.Phylogeneticsandspeciation.Trends in Ecology & Evolution16:391399.

Baum,D.A.,R.L.Small,andJ.F.Wendel.1998.BiogeographyandfloralevolutionofBaobabs (Adansonia,Bombacaceae)asinferredfrommultipledatasets.Systematic Biology47:181207.

Burnham,K.P.,andD.R.Anderson.2002.ModelSelectionandMulitmodelInference:A PracticalInformationTheoreticApproach.2ndedition.Springer,NewYork.

Campbell,B.M.1983.Montaneplantenvironmentsinthefynbosbiome.Bothalia14:283298.

Carlquist,S.,andL.Debuhr.1977.WoodanatomyofPenaeaceae(Myrtales):comparative, phylogenetic,andecologicalimplications.Botanical Journal of the Linnean Society75:211227.

Conti,E.,T.Eriksson,J.Schönenberger,K.J.Sytsma,andD.A.Baum.2002.EarlyTertiaryout ofIndiadispersalofCrypteroniaceae:evidencefromphylogenyandmoleculardating.Evolution 56:19311942.

Conti,E.,A.Litt,andK.J.Sytsma.1996.CircumscriptionofMyrtalesandtheirrelationsshipsto otherRosids:evidencefromrbcLsequencedata.American Journal of Botany83:221233.

Conti,E.,A.Litt,P.G.Wilson,S.A.Graham,B.G.Briggs,L.A.S.Johnson,andK.J.Sytsma. 1997.InterfamilialrelationshipsinMyrtales:molecularphylogenyandpatternsofmorphological Evolution.Systematic Botany22:629647.

Corriveau,J.L.,andA.W.Coleman.1988.RapidScreeningMethodtoDetectPotential BiparentalInheritanceofPlastidDNAandResultsforover200AngiospermSpecies.American Journal of Botany75:14431458.

Cowles,M.K.,andB.P.Carlin.1996.MarkovchainMonteCarloconvergencediagnosis:A comparativereview.Journal of the American Statistical Association91:883904.

Cowling,R.M.1987.FireanditsroleincoexistenceandspeciationinGondwananshrublands. South African Journal of Science83:106112.

Cowling,R.M.1992.Floraandvegetation.Pp.2361inR.M.Cowling,ed.TheEcologyof Fynbos:Nutrients,FireandDiversity.OxfordUniversityPress,CapeTown,SouthAfrica.

Cufodontis,G.1960.DieidentifizierungvonTephea DelileundanderedieOliniaceae betreffendeFeststellungen.Österreichische Botanische Zeitschrift107:106112.

Dahlgren,R.1967a.StudiesinPenaeaceae.PartI.Systematicsandgrossmophologyofthegenus Stylapterus A.Juss.Opera Botanica15:340. 113

Dahlgren,R.1967b.StudiesonPenaeaceaeIII.ThegenusGlischrocolla.Botaniska Notiser 120:5768.

Dahlgren,R.1967c.StudiesonPenaeaceaeIV.ThegenusEndonema.Botaniska Notiser120:69 83.

Dahlgren,R.1968.StudiesonPenaeaceae.PartII.ThegeneraBrachysiphon,Sonderothamnus andSaltera.Opera Botanica18:572.

Dahlgren,R.1971.StudiesonPenaeaceae.VI.ThegenusPenaea L..Opera Botanica29:558.

Dahlgren,R.,andR.F.Thorne.1984.TheorderMyrtales:circumscription,variation,and relationships.Annals of the Missouri Botanical Garden71:633699.

Dahlgren,R.,andA.E.vanWyk.1988.Structuresandrelationshipsoffamiliesendemictoor centeredinSouthernAfrica.Monographs in Systematic Botany from the Missouri Botanical Garden25:194.

DeConto,R.M.,andD.Pollard.2003.RapidCenozoicglaciationofAntarcticainducedby decliningatmosphericCO2.Nature421:245249.

Dickie,J.B.,andP.E.Gasson.1999.ComparativeleafanatomyofthePenaeaceaeandits ecologicalimplications.Botanical Journal of the Linnean Society131:327351.

Doyle,J.J.,J.L.Doyle,J.T.Rauscher,andA.H.D.Brown.2004.Diploidandpolyploid reticulateevolutionthroughoutthehistoryoftheperennialsoybeans(Glycine subgenusGlycine). New Phytologist161:121132.

Felsenstein,J.2004a.Inferringphylogenies.SinauerAssociates,Inc.,Sunderland,MA.

Felsenstein,J.2004b.PHYLIP(PhylogenyInferencePackage),version3.63.Departmentof Genetics,UniversityofWashington,Seattle,WA.

Gilg,E.1894.Penaeaceae.Natürliche Pflanzenfamilien III6:208213.W.Engelmann,Leipzig.

Goldblatt,P.,andJ.C.Manning.2000.CapePlants.AConspectusoftheCapeFloraofSouth Africa.NationalBotanicalInstituteofSouthAfrica,Pretoria,SouthAfrica.

Goldblatt,P.,andJ.C.Manning.2002.PlantdiversityoftheCapeRegionofsouthernAfrica. Annals of the Missouri Botanical Garden89:281302.

Goldblatt,P.,V.Savolainen,O.Porteous,I.Sostaric,M.Powell,G.Reeves,J.C.Manning,T.G. Barraclough,andM.W.Chase.2002.RadiationintheCapefloraandthephylogenyofpeacock irisesMoraea (Iridaceae)basedonfourplastidDNAregions.Molecular Phylogenetics and Evolution25:341360.

Graur,D.,andW.Martin.2004.Readingtheentrailsofchickens:moleculartimescalesof evolutionandtheillusionofprecision.TRENDS in Genetics20:8086.

Guindon,S.,andO.Gascuel.2003.Asimple,fast,andaccuratealgorithmtoestimatelarge phylogeniesbymaximumlikelihood.Systematic Biology52:696704.

Hawkins,J.A.2006.UsingphylogenytoinvestigatetheoriginsoftheCapeflora:theimportance oftaxonomic,geneandgenomesamplingstrategies.Diversity and Distributions12:2733. 114

Hedges,S.B.,andS.Kumar.2003.Genomicclocksandevolutionarytimescales.TRENDS in Genetics19:200206.

Hedges,S.B.,andS.Kumar.2004.Precisionofmoleculartimeestimates.Trends in Genetics 20:242247.

Huelsenbeck,J.P.,andF.Ronquist.2001.MrBayes:Bayesianinferenceofphylogeny. Bioinformatics17:754.

Johnson,L.A.S.,andB.G.Briggs.1984.MyrtalesandMyrtaceaeaphylogeneticanalysis. Annals of the Missouri Botanical Garden71:700756.

Kadereit,J.W.,E.M.Griebeler,andH.P.Comes.2004.QuaternarydiversificationinEuropean alpineplants:patternandprocess.Philosophical Transactions of the Royal Society of London Series B-Biological Sciences359:265274.

Keeley,J.E.,andW.J.Bond.1997.ConvergentseedgerminationinSouthAfricanfynbosand Californianchaparral.Plant Ecology133:153167.

Kishino,H.,andM.Hasegawa.1989.Evaluationofthemaximumlikelihoodestimateofthe evolutionarytreetopologiesfromDNAsequencedata,andthebranchingorderinHominoidea. Journal of Molecular Evolution170179:170179.

Kishino,H.,J.L.Thorne,andW.J.Bruno.2001.Performanceofadivergencetimeestimation methodunderaprobabilisticmodelofrateevolution.Molecular Biology and Evolution18:352 361.

Kruger,F.J.,D.T.Mitchell,andJ.U.M.Jarvis.1983.MediterraneantypeEcosystems:The RoleofNutrients.Springer,Berlin.

Langley,C.H.,andW.Fitch.1974.Anestimationoftheconstancyoftherateofmolecular evolution.Journal of Molecular Evolution3:161177.

LeMaitre,D.C.,C.A.Jones,andG.G.Forsyth.1992.Survivalofeightwoodysprouting speciesfollowinganautumnfireinSwatboskloof,CapeProvince,SouthAfrica.South African Journal of Botany58:405413.

Levyns,M.R.1964.Presidentialaddress,migrationsandoriginoftheCapeflora.Transactions of the Royal Society of 37:85107.

Linder,H.P.2003.TheradiationoftheCapeflora,southernAfrica.Biological Reviews of the Cambridge Philosophical Society78:597638.

Linder,H.P.2005.Evolutionofdiversity:theCapeflora.TRENDS in Plant Science10:536541.

Linder,H.P.,andC.R.Hardy.2004.EvolutionofthespeciesrichCapeflora.Philosophical Transactions of the Royal Society London B359:16231632.

Linder,H.P.,M.E.Meadows,andR.M.Cowling.1992.HistoryoftheCapeflorainR.M. Cowling,ed.TheEcologyofFynbos:Nutrients,FireandDiversity.OxfordUniversityPress, CapeTown,SouthAfrica.

Maddison,P.G.,andD.R.Maddison.2000.MacClade4:analysisofphylogenyandcharacter evolution.Sinauer,Sunderland,MA. 115

Maddison,W.P.,andD.R.Maddison.2005.Mesquite:amodularsystemforevolutionary analysis.Availableathttp://mesquiteproject.org.

Manders,P.T.,andR.N.Cunliffe.1987.Fynbosplantlifehistories,populationsdynamicsand speciesinteractionsinrelationtofire:anoverview.Pp.1523inR.M.Cowling,C.D.leMaitre, B.McKenzie,R.P.PrysJonesandB.W.vanWilgen,eds.DistrubanceandDynamicsofFynbos BiomeCommunities.CSIR,Pretoria,SouthAfrica.

Nylander,J.2005a.BootPHYML3.4.SchoolofComputationalScience(SCS),FloridaState University,Tallahassee,Florida.

Nylander,J.2005b.MrAIC1.4.SchoolofComputationalScience(SCS),FloridaState University,Tallahassee,Florida.

Palmer,E.,andN.Pitman.1972.TreesofSouthernAfricacoveringallknownindigenousspecies intheRepublicofSouthAfrica,SouthWestAfrica,Botswana,LesothoandSwaziland.A.A. Balkema,CapeTown,SouthAfrica.

Paradis,E.1997.Assessingtemporalvariationsindiversificationratesfromphylogenies: estimationandhypothesistesting.Proceedings of the Royal Society of London B264:11411147.

Paradis,E.1998.Testingforconstantdiversificationratesusingmolecularphylogenies:A generalapproachbasedonstatisticaltestsforgoodnessoffit.Molecular Biology and Evolution 15:476479.

Paradis,E.,J.Claude,andK.Strimmer.2004.APE:AnalysesofPhylogeneticsandEvolutionin Rlanguage.Bioinformatics20:289290.

Parkhurst,D.F.1978.Theadaptivesignificanceofstomataloccurrenceononeorbothsurfaces ofleaves.Journal of Ecology66:367383.

Pate,J.S.,R.H.Froend,B.J.Bowen,A.Hansen,andJ.Kuo.1989.Seedlinggrowthandstorage characteristicsofseederandresprouterspeciesofMediterraneantypeecosystemsofS.W. .Annals of Botany65:585601.

Pereira,J.T.1996.Crypteroniaceae.Pp.135149inE.Soepadmo,K.M.WongandL.G.Saw, eds.TreefloraofSabahandSarawak,Volume2.ForestResearchInstituteMalaysia,Sabah ForestryDepartment,andSarawakForestryDepartment,KualaLumpur,Malaysia.

RDevelopmentCoreTeam.2004.R:Alanguageandenvironmentforstatisticalcomputing.R FoundationforStatisticalComputing,Vienna,Austria.Availablefromhttp://www.Rproject.org.

Rambaut,A.,andA.J.Drummond.2005.Tracer1.3.Aprogramforanalyzingresultsfrom BayesianMCMCprogramssuchasBEAST&MrBayes.DepartmentofZoology,Universityof Oxford,Oxford,UK.Availablefromhttp://evolve.zoo.ox.ac.uk/software.html.

Raunkiaer,C.1916.Theuseofleafsizeinbiologicalplantgeography.BotaniskTidsskrifit,34. Pp.368–378inC.Raunkiaer,ed.Lifeformsofplantsandstatisticalplantgeography.ArnoPress, NewYork.

Raunkiaer,C.1934.Lifeformsofplantsandstatisticalplant geography.ArnoPress,NewYork.

116

Richardson,D.2004.EvolutionofPhylica (Rhamnaceae)intheCape.Abstract for the meeting "Recent Floristic Radiations in the Cape Flora", 3-5 July 2004, Zurich, Switzerland.

Richardson,J.E.,F.M.Weitz,M.F.Fay,Q.C.B.Cronk,H.P.Linder,G.Reeves,andM.W. Chase.2001.RapidandrecentoriginofspeciesrichnessintheCapefloraofSouthAfrica. Nature412:181183.

Rieseberg,L.H.,J.Whitton,andC.R.Linder.1996.Molecularmarkerincongruenceinplant hybridzonesandphylogenetictrees.Acta Botanica Neerlandica45:243262.

Ronquist,F.,andJ.P.Huelsenbeck.2003.MrBayes3:Bayesianphylogeneticinferenceunder mixedmodels.Bioinformatics19:15721574.

Rourke,J.P.1995.AnewspeciesofBrachysiphon(Penaeaceae)fromtheSouthernCape,South Africa.Nordic Journal of Botany15:6366.

Rourke,J.P.,andD.J.McDonald.1989.AnewspeciesofPenaea (Penaeaceae),fromthe Langebergrange,southernCape.South African Journal of Botany55:400404.

Rury,P.M.,andW.C.Dickison.1984.XI.Structuralcorrelationsamongwood,leavesandplant habitat.Pp.495540inR.A.WhiteandW.C.Dickison,eds.ContemporaryProblemsinPlant Anatomy.AcademicPress,London.

Rutschmann,F.Assessingcalibrationuncertaintyinmoleculardating:Theassignmentoffossils toalternativecalibrationpoints.Submitted.

Rutschmann,F.2005.Bayesianmoleculardatingusingpaml/multidivtime.Astepbystep manual.Version1.5(July2005).InstituteofSystematicBotany,UniversityofZurich,Zurich, Switzerland.Availablefromhttp://www.plant.ch.

Rutschmann,F.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?MoleculardatingevidencefromrbcL,ndhF,andrpl16sequences. International Journal of Plant Sciences165:6983.

Sanderson,M.J.2002.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes:a PenalizedLikelihoodapproach.Molecular Biology and Evolution19:101109.

Sanderson,M.J.2003.r8s:inferringabsoluteratesofmolecularevolutionanddivergencetimes intheabsenceofamolecularclock.Bioinformatics19:301302.

Schluter,D.,T.Price,A.O.Mooers,andD.Ludwig.1997.Likelihoodofancestorstatesin adaptiveradiation.Evolution51:16991711.

Schönenberger,J.,andE.Conti.2003.MolecularphylogenyandfloralevolutionofPenaeaceae, Oliniaceae,Rhynchocalycaceae,andAlzateaceae(Myrtales).American Journal of Botany 90:293309.

Schönenberger,J.,E.Conti,F.Rutschmann,andR.Dahlgren.In press.PenaeaceaeinK. Kubitzki,ed.Thefamiliesandgeneraofvascularplants.Vol.9.Springer,Berlin.

Schrire,B.D.,M.Lavin,N.P.Barker,H.CortesBurns,I.vonSenger,andJ.H.Kim.2003. TowardsaphylogenyofIndigofera (LeguminosaePapilionoideae):identificationofmajorclades andrelativeages..Pp.269302inB.B.KlitgaardandA.Bruneau,eds.AdvancesinLegume Systematics,part10,HigherLevelSystematics.RoyalBotanicGardens,Kew,London. 117

Schulze,R.E.,andO.S.McGee.1978.Climaticindicesandclassificationsinrelationstothe biogeographyofsouthernAfrica.Pp.1952inM.J.A.Werger,ed.BiogeographyandEcology ofSouthernAfrica,Chapter2.W.Junk,TheHague,Netherlands.

Schutte,A.L.,J.H.J.Vlok,andB.E.VanWyk.1995.Firesurvivalstrategyastrategyof taxonomic,ecologicalandevolutionaryimportanceinfynboslegumes.Plant Systematics and Evolution195:243259.

Sebola,R.J.,andK.Balkwill.1999.Resurrectionoftwopreviouslyconfusedspecies,Olinia capensis(Jacq.)KlotzschandO. micranthaDecne.(Oliniaceae).South African Journal of Botany 65:97103.

Siesser,W.G.1980.LateMioceneoriginoftheBenguelaupwellingsystemofnorthernNamibia. Science208:283285.

Siesser,W.G.,andR.V.Dingle.1980.TertiarysealevelmovementsaroundsouthernAfrica. Journal of Geology89:8396.

Soltis,D.E.,andP.S.Soltis.1999.Polyploidy:recurrentformationandgenomeevolution. Trends in Ecology & Evolution14:348352.

Soltis,D.E.,P.S.Soltis,andJ.A.Doyle.1992.Moleculardataandpolyploidevolutionin plants.Pp.177201inD.E.Soltis,P.S.SoltisandJ.A.Doyle,eds.Molecularsystematicsof plants.Chapman&Hall,NewYork,USA.

Stock,W.D.,F.vanderHeyden,andO.A.M.Lewis.1992.9.Plantstructureandfunction.Pp. 226240inR.M.Cowling,ed.TheEcologyofFynbos:Nutrients,FireandDiversity.Oxford UniversityPress,CapeTown,SouthAfrica.

Supprian,K.1894.BeiträgezurKenntnisderThymelaeaceaeundPenaeaceae.Botanisches Jahrbuch18:306353.

Swofford,D.L.2001.PAUP*4.0b10:PhylogeneticAnalysisUsingParsimony(*andother methods).Sinauer,Sunderland,MA.

Thompson,J.D.,T.J.Gibson,F.Plewniak,F.Jeanmougin,andD.G.Higgins.1997.The ClustalXwindowsinterface:flexiblestrategiesformultiplesequencealignmentaidedbyquality analysistools.Nucleic Acids Research24:48764882.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata.Systematic Biology51:689702.

Thorne,J.L.,H.Kishino,andI.S.Painter.1998.Estimatingtherateofevolutionoftherateof molecularevolution.Molecular Biology and Evolution15:16471657.

Tobe,H.,andP.H.Raven.1984.TheembryologyandrelationshipsofOliniaceae.Plant Systematics and Evolution146:105116.

Turner,I.M.1994.Sclerophylly:primarilyprotective?Functional ecology8:669675. vanBeusekomOsinga,R.J.,andC.F.vanBeusekom.1975.Delimitationandsubdivisionofthe Crypteroniaceae(Myrtales).Blumea22:255266.

118

VanWilgen,B.W.1987.FireregimesintheFynbosbiome.Pp.614inR.M.Cowling,C.D.le Maitre,B.McKenzie,R.P.PrysJonesandB.W.vanWilgen,eds.DisturbanceandDynamicsof FynbosBiomeCommunities.CISR,Pretoria,SouthAfrica.

Vanderpoorten,A.,A.J.Shaw,andC.J.Cox.2004.Evolutionofmultipleparalogousadenosine kinasegenesinthegenusHygroamblystegium:phylogeneticimplications.Molecular Phylogenetics and Evolution31:505516. vonBalthazar,M.,andJ.Schönenberger.In press.OliniaceaeinK.Kubitzki,ed.Thefamilies andgeneraofvascularplants.Vol.9.Springer,Berlin.

White,T.J.,T.Birns,S.Lee,andJ.Taylor.1990.Amplificationanddirectsequencingoffungal ribosomalRNAgenesforphylogenetics.Pp.315322inM.Innis,D.Gelfand,J.SninskyandT. White,eds.PCRprotocols:aguidetomethodsandapplications.AcademicPress,SanDiego, CA,USA.

Zachos,J.,M.Pagani,L.Sloan,E.Thomas,andK.Billups.2001.Trends,rhythms,and aberrationsinglobalclimate65Matopresent.Science292:686693.

119

Tables Table1.Speciesnames,sourcesandGenBankAccessionnumbersofnewlyamplifiedITSDNA sequences.Herbariaacronyms:BOL=Bolus,UniversityofCapeTown,SouthAfrica;Z= UniversityofZurich,Switzerland.Sourcesofallothergenesequencesusedinthisstudyare listedinSchönenbergerandConti(2003),Rutschmannet al.(2004),andRutschmannet al., submitted.

ITS GenBank Taxon Voucher accession numbers Crypteroniaceae A.DC.(1868),nom.cons. M.W.Chase1235,cultivatedinBogor Crypteronia paniculataBlume AM235848 BotanicGardenVIII.B.67 Alzateaceae S.A.Graham(1985) Alzatea verticillata Ruiz& J.GomezLaurito,s.n.,(USJ) AM235849 Pavon Rhynchocalycaceae L.A.S.Johnson&B.G.Briggs (1985) Rhynchocalyx lawsonioides T.Abbott7658,(Z) AM235850 Oliver Oliniaceae Arn.exSond.(1839),nom. cons. Olinia capensis(Jacq.) J.Schönenberger519,(Z),(BOL) AM235851 Klotzsch J.Schönenberger579,cultivatedin Olinia emarginata BurttDavy AM235852 KirstenboschBotanicalGarden,(Z) Olinia radiataHofmeyr& T.Abbott,6341,(Z) AM235853 Phill. Olinia vanguerioidesBakerf. A.Blarer,s.n.,(Z) AM235854 Olinia ventosa(L.)Cufod. J.Schönenberger378,(Z),(BOL) AM235855 Penaeaceae Sweetex.Guillemin(1828), nom.cons. Brachysiphon acutus(Thunb.) J.Schönenberger365,(Z),(BOL) AM235856 A.Juss. Brachysiphon fucatus (L.)Gilg J.Schönenberger357,(Z),(BOL) AM235857 Brachysiphon microphyllus J.Schönenberger386,(Z),(BOL) AM235858 Rourke 120

Brachysiphon mundiiSond. J.Schönenberger377,(Z),(BOL) AM235859 Brachysiphon rupestrisSond. J.Schönenberger366,(Z),(BOL) AM235860 Endonema lateriflora(L.f.) J.Schönenberger369,(Z),(BOL) AM235861 Gilg Endonema retzioidesSond. J.Schönenberger370,(Z),(BOL) AM235862 Glischrocolla formosa(Thunb.) J.Schönenberger521,photovouchered AM235863 R.Dahlgren Penaea acutifoliaA.Juss. J.Schönenberger376,(Z),(BOL) AM235864 Penaea cneorumMeerb.ssp. J.Schönenberger363,(Z),(BOL) AM235865 cneorum Penaea cneorumMeerb.ssp. J.Schönenberger375,(Z),(BOL) AM235866 giganteaR.Dahlgren Penaea cneorumMeerb.cf.ssp. J.Schönenberger320,(Z),(BOL) AM235867 lanceolata R.Dahlgren Penaea cneorumMeerb.ssp. ovata(Eckl.&Zeyh.exA. J.Schönenberger374,(Z),(BOL) AM235868 DC.)R.Dahlgren Penaea cneorumMeerb.cf.ssp. J.Schönenberger368,(Z),(BOL) AM235869 ruscifoliaR.Dahlgren Penaea dahlgreniiRourke J.Schönenberger388,(Z),(BOL) AM235870 Penaea mucronataL. J.Schönenberger354,(Z),(BOL) AM235871 Saltera sarcocolla (L.)Bullock J.Schönenberger360,(Z),(BOL) AM235872 Sonderothamnus petraeus J.Schönenberger362,(Z),(BOL) AM235873 (Barkerf.)R.Dahlgren Sonderothamnus speciosusR. J.Schönenberger364,(Z),(BOL) AM235874 Dahlgren Stylapterus ericifolius (A.Juss.) J.Schönenberger372,(Z),(BOL) AM235875 R.Dahlgren Stylapterus ericoides A.Juss. J.Schönenberger355,(Z),(BOL) AM235876 ssp.pallidus R.Dahlgren Stylapterus fruticulosus(L.f.) J.Schönenberger359,(Z),(BOL) AM235877 Stylapterus micranthusR. M.Johns,s.n.,(Z) AM235878 Dahlgren

121

Table2.Genepartitionsandmodelsofmolecularevolutionselectedfortheplastidandthe nucleardatasetbyusingMrAIC(Nylander,2005)bytheapplicationofthecorrectedAkaike informationcriterion(AICc).ThecorrespondingmodelparameterswereestimatedinMrBayes (HuelsenbeckandRonquist,2001)duringthephylogeneticreconstruction.

Optimalmodelobtainedbyusing Dataset Genepartition Size AICcselection(inMrAIC)

11144 rbcL GTR+G (1144chars)

11451944 ndhF GTR+G (800chars)

19452436 rpl16intron HKY (492chars)

24373411 rps16intron GTR+G (975chars)

34124254 trnStrnG GTR+G (843chars) Chloroplast

42555265 atpBrbcLspacer GTR+G (1011chars)

52665995 matK GTR+G (730chars)

59966571 psbAtrnH GTR+G (576chars)

11630 nr18S SYM+I+G (1630chars)

16312592 nr26S GTR+I+G (962chars) Nuclear 25933384 ITS HKY+G (792chars)

122

Table3.Estimatesofrateheterogeneityfortheentirephylogramandselectedclades,evaluated byusingtheχ2clocktestofLangleyandFitch(1974)implementedinr8s(Sanderson,2003).χ2 representsthecalculatedtestvalue,dfthedegreesoffreedom(numberoftaxa–1),andpthe significancelevel.Resultsarebasedonthechloroplastdataset.

Clade χ2 df p Constantmolecularclock

Entirephylogram 158.2 29 9.75*1020 rejected Penaeaceaecrowngroup 94.3 22 6.3*1011 rejected Oliniaceaecrowngroup 16.24 4 2.71*103 rejected

123

Table4.Resultsofthesurvivalanalysis(Paradis,1997)implementedinAPE(Paradiset al.,2004).Forthefulldataset(seeFigure3),noneofthethree modelsispreferredbythelikelihoodratiotests(LRT;pvalues>0.05),buttheAkaikeinformationcriterion(AIC)favoursmodelC.Forthereduced dataset(seeFigure4),eithermodelBorCarepreferredbytheLRT’s(pvalues<0.05),whereastheAICfavorsmodelB.Thevaluesbeingdecisivefor modelselectionarebold. Reduceddataset(Figure4): Fulldataset(Figure3) Penaeaceaecrowngrouponly Model loglikelihood AIC loglikelihood AIC diversificationrateisconstant A 33.51 69.02 16.12 34.23 overtime diversificationrateeither 33.49 8.61 B increases(β>0)ordecreases(β β=0.97 70.98 β=2.456 21.22 <0)monotonically (p=0.845) (p=0.0001) diversificationrateisconstant, 31.71 20.62 C butchangesabruptlyatthegiven γ=16.6mys 67.42 γ=8.7mys 45.23 breakpointγ (p=0.058) (p=0.00269)

124

Table5.Habitat,distribution,maximalleafsize,assignedleafsizeclassandvegetationtypeclassofthetaxausedinthisstudyforthereconstructionof ancestralcharacterstates(Table6andFigure5).DistributiondataismainlyfromPereira(1996);PalmerandPitman(1972),andGoldblattandManning (2000).ThephytogeographiccentersoftheCapeFloristicRegion(CFR;GoldblattandManning,2000)areabbreviatedasfollows:SW:Southwest,NW: Northwest,SE:Southeast,LB:Langeberg,KM:Karoomountain.Leafsizeswerecalculatedastheareaofanellipse(leaflengthxleafwidthxpi/4). LeafsizeclassesfollowtheecologicaldefinitionbyRaunkiaer(1916,1934).

Max.leafsize Vegetation Taxon Habitat Distribution Leafsizeclass (areainmm2) typeclass Peatswampandmixed Borneo:Sabah,Sarawak,Brunei, Dactylocladus stenostachys 5497.79 mesophyll tropical swampforests Kalimantan ContintalSEAsia,AndamanIslands, Myanmar,PeninsularMalaysia, Crypteronia paniculata Tropicalhillforests 16493.36 mesophyll tropical Borneo,Sumatra,Java,LesserSunda Islands,Philippines Crypteronia borneensis Mixeddipterocarpforest Borneo:Sabah,SarawakandBrunei 40840.70 macrophyll tropical Myanmar,CentralSumatra, Crypteronia griffithii Primarytropicalforest 47123.89 macrophyll tropical PeninsualrMalaysia,Borneo Crypteronia glabrifolia Mixeddipterocarpforest, Borneo:SarawakandBrunei 12566.37 mesophyll tropical Lowermontainetropical Axinandra zeylanica SriLanka 3534.29 mesophyll tropical rainforest Lowlandorlower Borneo:Sabah,Sarawakand Axinandra coriacea 8246.68 mesophyll tropical montainerainforest Kalimantan CostaRica,Panama,Equador,Peru, Alzatea verticillata Tropicalmountainforest 9424.78 mesophyll tropical Bolivia Marginsoftemperate Rhynchocalyx lawsonioides forests,closeto EasternCapeandKwaZuluNatal 1413.72 microphyll temperate watercourses Olinia ventosa Coastalforests SouthAfrica:WesternandEastern 2324.78 mesophyll temperate 125

CapeProvinces,St.Helena (introduced) SouthAfrica:WesternandEastern Olinia capensis Coastalforests 954.26 microphyll temperate CapeProvinces SouthAfrica:KwaZuluNatal, Mountainforests,wooden Olinia radiata Mpumalanga,Gauteng,NorthWest 1413.72 microphyll temperate kloofs andNorthernProvince SouthAfrica:KwaZuluNatal, Mountainforests,wooden Olinia emarginata Mpumalanga,Gauteng,NorthWest 452.39 microphyll temperate kloofs andNorthernProvince SouthAfrica,Swaziland, Moçambique,Uganda,Kenya, Highmoutaintipsand Olinia vanguerioides Tanzania,Malawi,Rwanda,Ethiopia, 810.53 microphyll temperate exposedrockyslopes RepublicoftheCongo,Zambia, Angola(scatteredpopulations) Mostlydampsandstone Penaea acutifolia CapeFloristicRegion:SE 23.56 leptophyll fynbos slopes Penaea cneorum ssp. Dampsandstoneslopes CapeFloristicRegion:SW,LB,SE 176.71 nanophyll fynbos gigantea andstreambanks Dampsandstoneslopes Penaea cneorum ssp. ovata CapeFloristicRegion:SW,LB,SE 31.42 nanophyll fynbos andstreambanks Penaea cneorum ssp. Dampsandstoneslopes CapeFloristicRegion:SW,LB,SE 24.74 leptophyll fynbos lanceolata andstreambanks Mostlyrockysandstone CapeFloristicRegion:NW,SW,AP, Penaea mucronata 32.99 nanophyll fynbos slopes LB Penaea cneorum ssp. Dampsandstoneslopes CapeFloristicRegion:SW,LB,SE 98.96 nanophyll fynbos cneorum andstreambanks Penaea cneorum ssp. Dampsandstoneslopes CapeFloristicRegion:SW,LB,SE 106.81 nanophyll fynbos ruscifolia andstreambanks Brachysiphon microphyllus Sandstonerocks, CapeFloristicRegion:KM 3.93 leptophyll fynbos Sandstoneslopesalong Penaea dahlgrenii CapeFloristicRegion:LB 18.85 leptophyll fynbos streams

126

Stylapterus ericifolius Sandstoneslopes CapeFloristicRegion:LB 5.89 leptophyll fynbos Stylapterus fruticulosus Sandyflats CapeFloristicRegion:SW 14.14 leptophyll fynbos Stylapterus ericoides ssp. Mountainstreamsatlow CapeFloristicRegion:SW 10.21 leptophyll fynbos pallidus elevations Cool,rockysandstone Brachysiphon fucatus CapeFloristicRegion:SW 56.55 nanophyll fynbos slopes Stylapterus micranthus Streambanks CapeFloristicRegion:SW 78.54 nanophyll fynbos Brachysiphon acutus Rockysandstoneslopes CapeFloristicRegion:SW 42.41 nanophyll fynbos Limestonerocksand Brachysiphon mundii CapeFloristicRegion:AP 4.71 leptophyll fynbos cliffs Saltera sarcocolla Rockysandstoneslopes CapeFloristicRegion:SW,AP 113.10 nanophyll fynbos Sonderothamnus speciosus Rockysandstonestlopes CapeFloristicRegion:SW 28.27 nanophyll fynbos Sonderothamnus petraeus Sandstonerocksandcliffs CapeFloristicRegion:SW 28.08 nanophyll fynbos Brachysiphon rupestris Sandstonerocks CapeFloristicRegion:SW 49.48 nanophyll fynbos Rocksandcliffsathigh Glischrocolla formosa CapeFloristicRegion:SW 30.63 nanophyll fynbos altitude Rockysandstoneslopes Endonema laterifolia CapeFloristicRegion:SW 188.50 nanophyll fynbos alongstreams Rockysouthernsandstone Endonema retzioides CapeFloristicRegion:SW 47.12 nanophyll fynbos slopes

127

Table6.Divergencetimeestimates(seeFigure2)andresultsoftheancestralcharacterstatereconstructions(seeFigure5)forselectednodesofinterest. Datingresultswereobtainedbyanalyzingthechloroplastdatasetwithmultidivtime(Thorneet al.,1998;ThorneandKishino,2002).Theageestimates markedwithasterisksarefromRutschmannet al.,submitted.TheMaximumlikelihoodancestralcharacterstatereconstructionswereperformedin ANCML(Schluteret al.,1997)forthecontinuousleafsizecharacterandinMesquite1.06(MaddisonandMaddison,2005)forthediscreteleafsizeand vegetationtypeclasses,respectively.Pvaluesrepresenttheproportionallikelihoodfortheinferredancestralstates.Pvaluesfortheotherstatesarelower andnotshownhere,butvisibleinthepiechartsinFigure5.

Meanage± Nodein 95% Reconstucted standard Reconstructed Reconstructed Figures Nodedescription credibility leafsize(area deviation leafsizeclass vegetationtypeclass 2/5 interval[mys] inmm2) [mys]

a Crypteroniaceaestem 79.7±7.6* 64.5–94.8* 7314 mesophyll,p=0.38 tropical,p=0.81 b Crypteroniaceaecrown 50.55±8.6* 34.6–68.0* 11628 mesophyll,p=0.70 tropical,p=0.99 c Alzateaceaedivergence 70.6±7.9* 55.0–85.5* 5967 mesophyll,p=0.32 tropical,p=0.75 d Penaeaceaestem 58.4±8.2 45.1–76.3 4329 microphyll,p=0.37 temperate,p=0.51 e Penaeaceaecrown 16.6±3.6 10.7–24.8 605 nanophyll,p=0.98 fynbos,p=0.99 f Oliniaceaestem 53.5±7.9 40.5–70.7 3765 microphyll,p=0.47 temperate,p=0.79 g Oliniaceaecrown 4.7±2.1 1.5–9.5 1485 microphyll,p=0.98 temperate,p=0.99

128

Figures

Figure1a.MrBayesmajorityruleconsensustreewithmeanbranchlengths,basedoneight combinedchloroplastgenesequences(rbcL,ndhF, rpl16intron,rps16intron,trnStrnG,atpB rbcLspacer,matK,andpsbAtrnH;6571characters).Maximumlikelihoodbootstrapsupport valuesandBayesiancladecredibilityvaluesarereportedaboveandbelowthebranches, respectively.Generaldistributionrangesarereportedtotherightofthetree.Crypteronia paniculatawasusedasdatingoutgroup.Nodecrepresentsthephylogeneticsplitbetweenthe AfricanPenaeaceae/OliniaceaeandtheSouthAmericanAlzateaceaeandwasusedasasecondary calibrationpoint.

129

Figure1b.MrBayesmajorityruleconsensustreewithmeanbranchlengths,basedonthree combinednucleargenesequences(nr18S,nr26S,andITS;3384characters).Maximum likelihoodbootstrapsupportvaluesandBayesiancladecredibilityvaluesarereportedaboveand belowthebranches,respectively.Generaldistributionrangesarereportedtotherightofthetree.

130

Figure2.Chronogramobtainedbyestimatingdivergencetimeswithmultidivtime(Thorneet al., 1998)basedonthechloroplastdataset.Thebranchlengthsandagesrepresentposteriormean values.NodecrepresentsthephylogeneticsplitbetweentheAfricanPenaeaceae/Oliniaceaeand theSouthAmericanAlzateaceae.Itwasusedasasecondarycalibrationpointbasedonearlierage estimatesinRutschmannet al.,submitted.Theothernodelabelsrefertothenodesofinterest usedintheancestralcharacterstatereconstruction(seeTable6andFigure5).Crypteronia paniculatawasusedasdatingoutgroupandremovedduringtheanalysis(seeFigure1).

131

Figure3.Lineagesthroughtime(LTT)plots,obtainedbyevaluatingthechronogramshownin Figure2(fulldataset),butwithoutsubspecies.Thenumberoflineages(Figure3a)andthelog transformednumberoflineages(Figure3b),respectively,areplottedagainstestimated divergencetimes.Thedatapointsrepresentmeanestimatedages(diamonds)surroundedby standarddeviationvalues(dots).Datapointsctogrepresentthenodesofinterestusedinthe ancestralcharacterstatereconstructions(seeFigures2and5).Thearrowsmarkthepointintime (16.6mysago)wherethediversificationratechangesabruptlyaccordingtothediversification modelselectedinthesurvivalanalysis(seeTable4;Paradis,1997).

132

Figure4.Lineagesthroughtime(LTT)plots,obtainedbyevaluatingonlythelineagesofthe Penaeaceaecrowngroup(reduceddataset;seeFigure2),withoutsubspecies.Thenumberof lineages(Figure4a)andthelogtransformednumberoflineages(Figure4b),respectively,are plottedagainstestimateddivergencetimes.Thedatapointsrepresentmeanestimatedages (diamonds)surroundedbystandarddeviationvalues(dots).Datapointerepresentsthe Penaeaceaecrownnode(seeFigures2and5).Thearrowsmarkthepointintime(8.7mysago) whereasupposedchangeindiversificationratewasstatisticallytestedandrejectedbythe survivalanalysis(seeTable4;Paradis,1997).

133

Figure5(seelegendonnextpage)

134 Figure5(previouspage).Distributionofreconstructedancestralstatesforleafsize(leftside;three characterstates)andvegetationtype(rightside;fivecharacterstates),optimizedundermaximum likelihoodinMesquite1.06(MaddisonandMaddison,2005)byusingtheMk1model(Table6). Thesmallpiechartsassociatedtothenodesindicatetheproportionallikelihoodsforthedifferent discretecharacterstates.Forthenodesofinterest,labelledatog,moredetailedresultsarereported inTable6.Thenumbersassociatedwithsomenodesinthetreetotherightrepresentthecontinuous leafsizevaluesreconstructedbyusingANCML(Schluteret al.,1997;seeTable6).

135

136

Chapter V. Assessing calibration uncertainty in molecular dating: The assignment of fossils to alternative calibration points

FrankRutschmann,TorstenEriksson1,KamariahAbuSalim2,andElenaConti3 1Bergius Foundation, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden 2Universiti Brunei Darussalam, Department of Biology, Jalan Tungku Link, Gadong BE 1410, Negara Brunei Darussalam 3Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland

Submittedforpublicationin SystematicBiology

137

Abstract Whilerecentmethodologicaladvanceshaveallowedtheincorporationofratevariationin moleculardatinganalyses,thecalibrationprocedure,performedmainlythroughfossils,hasproved moreresistanttoamelioration.Onesourceofuncertaintypertainstotheassignmentoffossilsto specificnodesinaphylogeny,especiallywhenalternativepossibilitiesexistthatcanbeequally justifiedonmorphologicalgrounds.Hereweexpandonarecentlydevelopedfossilcrossvalidation methodtoevaluatewhetheralternativenodalassignmentsproducecalibrationsetsthatdifferin theirinternalconsistency.WeuseanenlargedCrypteroniaceaecenteredphylogenyofMyrtales,six fossils,and72combinationsofcalibrationpoints,termedcalibrationsets,toidentify(i)thefossil assignmentsthatproducethemostinternallyconsistentcalibrationsetsand(ii)theoverallmean age,derivedfromallcalibrationsets,forthesplitoftheSoutheastAsianCrypteroniaceaefromtheir WestGondwanansisterclade(nodeX).Wefoundthatacorrelationexistsbetweensvalues, devisedtomeasuretheconsistencyamongthecalibrationpointsofacalibrationset,andnodal distancesamongcalibrationpoints.Byrankingallsetsaccordingtothepercentdeviationofsfrom theregressionlinewithnodaldistance,weidentifiedthesetswiththehighestlevelofcorrected calibrationsetconsistency.Thesesetsgeneratedlowerstandarddeviationsassociatedwiththeage ofnodeXthansetscharacterizedbylowercorrectedconsistency.Thethreecalibrationsetswiththe highestcorrectedconsistenciesproducedageestimatesfornodeXof79.70mys,79.14mys,and 78.15mys.Theoverallmeanage,derivedfromall72calibrationsets,was77.74mys,witha95% credibilityintervalof60.89to94.21mys.Thesetimeframesaremostcompatiblewiththe hypothesisthattheCrypteroniaceaestemlineagedispersedfromAfricatotheDeccanplateasit driftednorthwardduringtheLateCretaceous. Keywords:Moleculardating,divergencetimes,fossilcalibration,calibrationpoint,cross validation,Crypteroniaceae,biogeography,outofIndia.

138

Introduction TheuseofDNAsequencestoestimatethetimingofevolutionaryeventsisincreasingly popular.BasedonthecentralideathatthedifferencesbetweentheDNAsequencesoftwospecies isafunctionofthetimesincetheirevolutionaryseparation(ZuckerkandlandPauling,1965), moleculardatinghasbeenusedasamethodtoinvestigatebothpatternsandprocessesofevolution (Sandersonet al.,2004;Magallón,2004;WelchandBromham,2005;Renner,2005;Rutschmann, 2006). However,significantmethodologicalchallengesaffecttheuseofmoleculardating approaches.Whilerecentstudieshaveaddressedtheissueofvariationamongsubstitutionrates (Sanderson,1997,2002;Thorneet al.,1998;Kishinoet al.,2001;ArisBrosouandYang,2002; Yang,2004;Penny,2005;HoandLarson,2006;Rutschmann,2006),otherdifficultiespersist, especiallyconcerningthecalibrationprocedure(Lee,1999;Contiet al.,2004;Magallón,2004; ReiszandMüller,2004).Calibrationconsistsintheincorporationofindependent(nonmolecular) chronologicalinformationinaphylogenytotransformrelativeintoabsolutedivergencetimes.This informationcanbebasedongeologicalevents(e.g.,patternsofcontinentaldrift,originofislands andmountainchains)and/orthepaleontologicalrecord(fossils).Geologicalcalibrationspointsare assignedtophylogeneticnodesbasedontheassumptionthatageographicbarriercaused phylogeneticdivergence,thusgeneratingtheriskofcircularreasoning,ifthechronogramderived fromthecalibrationisusedtotestbiogeographicalscenarios(Contiet al.,2004;Magallón,2004). Nevertheless,geologicaleventscanprovideimportantvalidationofdatingestimatesproducedwith othertypesofcalibration(e.g.,Contiet al.,2002;Sytsmaet al.,2004;BellandDonoghue,2005). Whilethefossilrecordiswidelyregardedasthebestsourceofnonmolecularinformation abouttheagesofselectedclades(Marshall,1990b;Sanderson,1998;MagallónandSanderson, 2001),severalinterrelatedproblemsplagueitsuseforcalibrationpurposes,including(i)erroneous fossilageestimates,(ii)theincompletenessofthefossilrecord,(iii)theassignmentoffossilsto specificnodesinaphylogeny,and(iv)thenumberoffossilsusedforcalibration.Thefirstproblem maydependonmisleadingstratigraphiccorrelationsorimproperradiometricdating(Conroyand vanTuinen,2003)andcanonlybeaddressedbyimprovingthegeologicaldatingprocedures. Theincompletenessofthefossilrecordmayresultfromthefailureofentirespeciestobe preservedordiscoveredasfossils(Darwin,1859).Thislackofinformationmakesitdifficultor impossibletoestimatethetemporalgapsbetweenthedivergenceoftwolineages,theoriginofa synapomorphy,andthediscoveryofthatsynapomorphyinthefossilrecord(seeFigure1in Magallón,2004;Springer,1995;FooteandSepkoski,1999).Fossilscanthusprovideonly minimumagesforanylineage.Recentlydevelopedmethodsaimedatestimatingthegapbetween 139 thetimeoffirstappearanceofasynapomorphyinthefossilrecordandthetimeofdivergence betweentwolineagesarebasedontheideathatthesizeofthegapisinverselycorrelatedwiththe qualityanddensityofthefossilrecordwithinagivenstratigraphicinterval,anddependentonthe ratesoforigination,extinctionandpreservationofthefocuslineage(Marshall,1990a,1990b;Foote et al.,1999a,1999b,Tavaréet al.,2002;YangandRannala,2005). Dependingontheirpreservationstate,relativeabundance,andthedistinctivenessof selectedmorphologicaltraits,itcanbeproblematictounambiguouslyassignfossilstoaparticular cladeinagivenphylogeny(BentonandAyala,2003;DoyleandDonoghue,1993).More specifically,itisnecessarytodeterminewhetherthefossilrepresentsanextinctmemberofthestem orthecrowngroupofextanttaxa(Hennig,1969;deQueirozandGauthier,1990;Doyleand Donoghue,1993;MagallónandSanderson,2001;Magallón,2004).Ideally,theassignmentwould bebasedonacomprehensivecladisticmorphologicalanalysisofbothextantandextincttaxa,but, duetotheircomplexity,suchanalysesremainregrettablyrare(Contiet al.,2004;Nearet al., 2005b).Inpractice,assignmentoffossilstoselectednodes(called“calibrationnodes”fromnow on)isusuallybasedonmoreintuitivecomparisonsbetweenthecharacterstatesofthefossilandthe distributionofsynapomorphiesinthephylogeny.Whenafossilisfinallyattachedtoanode,the nodeinquestionassumestheageofthefossil,thusbecominga“calibrationpoint”. Forthereasonsexplainedabove,theuseofasinglefossilforcalibrationcanproduce stronglybiasedmolecularageestimates(Alroy,1999;Lee,1999;SmithandPeterson,2002; ConroyandvanTuinen,2003;HedgesandKumar,2003;vanTuinenandHadly,2003;Graurand Martin,2004;ReiszandMüller,2004).Additionally,thenodaldistanceofthecalibrationpointto thenode(s)ofinterestandtherootofthephylogenymaystronglyinfluencetheestimatedages (SmithandPeterson,2002;ConroyandvanTuinen,2003;ReiszandMüller,2004).Therefore,it seemsdesirabletousemultiplefossils,preferablyplacedindifferentclades(Brochu,2004),for moleculardatingpurposes,inthehopethatthebiasesbuiltintotheirassignmenttospecific calibrationnodesmaycanceleachotherout(SmithandPeterson,2002;Soltiset al.,2002;Conroy andvanTuinen,2003). Recentlydevelopedmethodsallowfortheincorporationofmultiplecalibrationpoints (termed“multicalibration”fromnowon)inthedatingprocedure(Sanderson,1997,2002;Thorne et al.,1998;Kishinoet al.,2001;Yang,2004;YangandRannala,2005;Drummondet al.,2006). Whenmultiplefossilsareavailable,itispossibletouseonefossilatatimetogenerateage estimatesforthenodestowhichtheotherfossilsareassignedandthencomparetheestimatedages withthefossilagesatthosenodes,essentiallyleadingtoanassessmentoftheconsistencyamong calibrationpoints(NearandSanderson,2004;Nearet al.,2005b).Thisprocedure,knownasfossil crossvalidation,allowsfortheidentificationandremovalofincongruentcalibrationpoint(s),and

140 hasbeenappliedinmoleculardatingstudiesof(wheretwooutofeightfossils wereremoved;NearandSanderson,2004),placentalmammals(twooutofnine;Nearand Sanderson,2004),turtles(sevenoutof17;Nearet al.,2005b),centrarchidfishes(fouroutof10; Nearet al.,2005a)anddecapods(nofossilsremoved;Porteret al.,2005).Tosummarize,Nearand Sanderson(2004)devisedamethodtoassesswhetherindividualcalibrationpointswere inconsistentwiththeotherpointsofacalibrationset,leadingtotheremovalofthecorresponding fossil(s)fromthecalibrationprocedure.Inthestudypresentedhere,weexpandtheirapproachto evaluatewhetheralternativeassignmentsofavailablefossilstodifferentcalibrationnodesproduce moreorlessinternallyconsistentcalibrationsets. Toexaminethecalibrationproblemmentionedabove,weutilizeaMyrtalesdataset centeredontherelationshipsofCrypteroniaceaeandrelatedfamilies(named“Crypteroniaceae phylogeny”fromnowon).Earliermoleculardatingresults(Contiet al.,2002,2004;Rutschmannet al.,2004)suggestedapossibleGondwananoriginofthesefamiliesintheEarlytoMiddle Cretaceous,followedbythedispersaloftheCrypteroniaceaestemlineagetotheDeccanplate (comprisingIndiaandMadagascar)whileitwasraftingalongtheAfricancoast,ca.125to84mys ago(McLoughlin,2001;PlummerandBelle,1995;Storeyet al.,1995),abiogeographicscenario knownastheoutofIndiahypothesis(McKenna,1973;AshtonandGunatilleke,1987;Maceyet al.,2000;Morley,2000;BossuytandMilinkovitch,2001).However,theestimatedageofthe crucialbiogeographicnode,representingthesplitbetweentheSoutheastAsianCrypteroniaceaeand theAfrican/SouthAmericansisterclade(nodeX;Figure1),rangedfrom106to141mys(Contiet al.,2002),62to109mys(Rutschmannet al.,2004),57to79mys(Moyle,2004),and52mys (Sytsmaetal,2004),dependingongeneandtaxonsampling,butmostlyonthecontrasting assignmentofselectedfossilstodifferentnodesintheMyrtalesphylogeny(Contiet al.,2004; Moyle,2004).Giventhecontroversialnatureofcalibration,thecontradictingcalibrationprocedures previouslyappliedtodatetheCrypteroniaceaephylogeny,andtheavailabilityofmultiplefossilsin Myrtales,thisgroupoftaxaprovidesanidealcasestudytoinvestigateproblemsofcalibration,at thesametimeattemptingtorefinetheageestimatesthatarecentraltothebiogeographichistoryof Crypteroniaceae. TocalibratetheCrypteroniaceaephylogenyweusesixfossils.Basedonthemorphological traitspreservedinthefossils,fiveoutofthesixfossilscaneachbeassignedtotwoorthree differentnodesinthephylogeny(Figure1;seebelow).Intotal,72differentcombinationsofsix calibrationpointsarepossible,eachcombinationformingacalibrationset.Here,weemployan expandedmoleculardatasetandthesixfossilstoaddressthefollowingquestions:1)Howcanthe fossilcrossvalidationprocedurebeusedtoassignafossiltoacalibrationpointthatismost internallyconsistentwiththeotherpointsinacalibrationset?Inotherwords,whichfossil

141 assignmentsproducethecalibrationsetsthataremostinternallyconsistent?2)Whatisthe distributionofagesandtheoverallmeanageforthesplitbetweentheSoutheastAsian CrypteroniaceaeandtheirWestGondwanansistercladethatisestimatedfromusingall72 calibrationsets? Toourknowledge,thisisthefirststudythatexplorestheapplicationoffossilcross validationtotheproblemofnodalassignmentforselectedfossils(termed“fossilnodalassignment” fromnowon).Whilewerealizethattheresultspresentedherebynomeansrepresentapanaceato thecomplexchallengesofcalibration(Wray,2001;Magallón,2004;NearandSanderson,2004; ReiszandMüller,2004;MüllerandReisz,2005),weneverthelesstrytopresentapractical approach,basedonavailablemethods,toaddressdifficultiesencounteredinmostmoleculardating analyses,butalltoooftenignored.

142

Materials and Methods

Taxon and DNA sampling Samplingwasexpandedfrompublishedstudies(Contiet al.,2002;Schönenbergerand Conti,2003;Rutschmannet al.,2004)toincludeDNAsequencesfromthreeplastid(rbcL,ndhF and rpl16intron)andtwonuclear(ribosomal18Sand26S;termednr18Sandnr26Sfromnowon) locifor74taxa(seeTable1).Intotal,270newsequencesweregeneratedforthisstudy.Almost completetaxonsamplingwasachievedforCrypteroniaceae(sevenof12species;Mentinkand Baas,1992;PereiraandWong,1995;Pereira,1996),Alzateaceae(oneofonespecies;Graham, 1984),Rhynchocalycaceae(oneofonespecies;JohnsonandBriggs,1984),Penaeaceae(19of23 species,plusfoursubspeciesofPenaea cneorum;DahlgrenandThorne,1984;Dahlgrenandvan Wyk,1988),andOliniaceae(fiveofeightspecies;TobeandRaven,1984;SebolaandBalkwill, 1999).ThesixmissingtaxaofCrypteroniaceae,Axinandra alata, A. beccariana,Crypteronia elegans,C.macrophylla,C. cummingii,andC. paniculata var. affinisareeitherveryrare,known onlyfromthetype,orcollectedinnowdeforestedareas,forex.,inKalimantan(Indonesia;Pereira, 1996).DNAextractionsfromdriedvoucherswereunsuccessful,becauseallherbariumspecimens ofthesetaxaweretreatedwithethanolaftercollection.ThefourmissingPenaeaceae,Stylapterus barbatus,S. dubius,S. sulcatus,andS. candolleanusarealsoeitherveryrare,occuronlyin restrictedareas,orwerecollectedonlyonceortwiceeach(pers.comm.JürgSchönenberger). FollowingSebolaandBalkwill(1999),thethreemissingOliniaceaeareOlinia discolor,O. rochetiana, andO. micrantha.Thesamplingoftheremainingtaxawasdesignedtoassignthe fossilsaspreciselyaspossibleandtorepresentcladeheterogeneityatthefamilylevel (Melastomataceae,Myrtaceaes.l.,Vochysiaceae,Onagraceae,),basedonpublished phylogenies(Contiet al.,1996,1997;Renner,2004;Sytsmaet al.,2004).Phylogenieswererooted usingrepresentativesofLythraceae,i.e.,Duabanga grandifloraand hyssopifolia,basedon theresultsofglobalMyrtalesanalyses(Contiet al.,1996,1997;Sytsmaet al.,2004). DNA Extractions, PCR, sequencing, and alignment DNAwasextractedasdescribedinSchönenbergerandConti(2003)andRutschmannet al. (2004).PrimersfromZurawskiet al.(1981),OlmsteadandSweere(1994),Baumet al. (1998),Bult et al.(1992),andKuzoffet al.(1998)wereusedtoamplifyandsequencerbcL,ndhF,rpl16intron, nr18S,andnr26S,respectively.PCRandsequencingproceduresfollowedtheprotocolsdescribedin Rutschmannet al.(2004).ThesoftwareSequencher4.5(GeneCodes,AnnArbor,MI,USA)was usedtoedit,assemble,andproofreadcontigsforcomplementarystrands.RbcL,nr26Sandnr18S

143 sequenceswerereadilyalignedbyeye,whilendhFandrpl16intronsequenceswerefirstaligned usingClustalX1.83(Thompsonet al.,1997)priortofinalvisualadjustmentwithMacClade4.07 (MaddisonandMaddison,2000). Phylogenetic analyses TreetopologyandbranchlengthswereestimatedusingMrBayesversion3.0b4 (HuelsenbeckandRonquist,2001;RonquistandHuelsenbeck,2003).Plastid(rbcL,ndhF,and rpl16intron)andnuclear(nr18S,nr26S)partitionswerefirstanalyzedseparately(resultsnot shown).Becausetherespective80%majorityruleconsensusbootstraptreeshadnowellsupported incongruencies,bothdatasetswerecombined. ModelselectionforthecombineddatasetwasperformedinMrAIC1.4(Nylander,2005b), aprogramthatusesPHYML2.4.4(GuindonandGascuel,2003)tofindthemaximumofthe likelihoodfunctionunder24modelsofmolecularevolution.MrAICidentifiedtheoptimalmodels accordingtotwodifferentselectioncriteria:thecorrectedAkaikeinformationcriterion(AICc)and theBayesianinformationcriterion(BIC).Parametervaluesforthechosenmodelswerethen estimatedsimultaneouslyforeachpartitionduringtopologyandbranchlengthoptimizationin MrBayes. BayesiantopologyestimationusedonecoldandthreeincrementallyheatedMarkovchain MonteCarlochains(MCMC)runfor1.5x106cycles,withtreessampledevery100thgeneration, eachusingarandomtreeasastartingpointandthedefaulttemperatureparametervalueof0.2.For eachdataset,MCMCrunswererepeatedtwice.Thefirst5000treeswerediscardedasburninafter checkingforstationarityonthelogarithmiclikelihoodscurves.Theremainingtreeswereusedto constructoneBayesianconsensustreewithmeanbranchlengthsandtocalculatetheclade credibilityvalues(Figure1). Statisticalsupportforindividualbrancheswasalsocalculatedbybootstrapresamplingusing thePerlscriptBootPHYML3.4(Nylander,2005a).Thisprogramfirstgenerates1000pseudo replicatesinSEQBOOT(partofPhylip3.63;Felsenstein,2004),thenperformsamaximum likelihoodanalysisinPHYML(GuindonandGascuel,2003)foreachreplicateundertheselected modelofevolution,andfinallycomputesa50%majorityruleconsensustreebyusingCONSENSE (alsopartofthePhylippackage).

Evaluation of rate heterogeneity Theconstancyofnucleotidesubstitutionrateswascheckedusingtheχ2molecularclocktest ofLangleyandFitch(1974;LFχ2test,implementedinr8s1.7;Sanderson,2003),whichcompares theobservedbranchlengthswiththebranchlengthspredictedunderaclockmodel. 144

Fossil nodal assignment AftercarefullyreviewingthepaleobotanicliteratureofMyrtales,sixfossilswereselected forcalibrationinmoleculardatinganalyses(seeTable2andFigure1).Basedbothontheir morphologicalcharactersandpreviousnodalassignmentsinpublishedphylogenies (Melastomataceae:ClausingandRenner,2001;Renneret al.,2001;RennerandMeyer,2001; Renner,2004;Myrtaceae:Sytsmaet al.,2004;Onagraceae:Berryet al.,2004),fiveoutofthesix fossilscouldjustifiablybeassignedtodifferentnodes. Fossil1.Fossil1isrepresentedbyleavesfromtheEarlyEocene(53mys)ofNorthDakota (Table2).Hickey(1977),whofirstdescribedthem,statedthattheyresemblemostcloselythe leavesofextantMiconieaeandMerianieae,butassessedthat“theyalldiffer,however,innotbeing deeplycordateandinhavingtertiarieswhichdonotformagoodVpattern”.Renneret al.(2001) furtherconfirmedtheresemblancewithleavesofmodernMiconieaeandMerianieae.However, becauseallMelastomataceae,includingPternandra,sharethesamebasickindofacrodromousleaf venation,Renneret al.(2001)decidedtoassignthefossilstotheentireMelastomataceaecrown group(node1ainthepresentstudy;seeFigure1),aviewlatersharedbySytsmaet al.(2004)ina Myrtaleswidedatinganalysis.Conversely,inthelightofthestatedsimilaritieswithMiconieaeand Merianieaeandtheknowntemporalgapbetweenlineagedivergenceandfirstappearanceofa synapmorphyinthefossilrecord,Contiet al.(2002),MorleyandDick(2003)andRutschmannet al.(2004)decidedtoassignthefossilleaveseithertothestem(node1b)ortothecrowngroup (node1c)thatincludesMiconieaeandMerianieae(Figure1).Renner(2004)includedboth assignmentpossibilitiesinsubsequentBayesiandatinganalysesofMelastomataceae.Insummary, theMioceneleavesofMelastomataceaecanbedefensiblyassignedtothreedifferentnodes(1a,1b, and1c;seeFigure1).Becausethebranchseparatingnode1aand1bislong,fossilassignments aboveorbelowthisbranchwasexpectedtostronglyinfluencethedatingresults. Fossil2.Fossil2isrepresentedbyfossilseedsfromMiocenedepositsinSiberia,the Tambovregion,Belarus,Poland,severalsitesinGermany,andBelgium(2326mys,Dorofeev, 1960,1963,1988;CollinsonandPingen,1992;Dyjoret al.,1992;FaironDemaret,1994;Mai, 1995,2000;Table2).TheseseedsaremostsimilartothoseofextantmembersofOsbeckieaeand Rhexieae(nowMelastomeae;ClausingandRenner,2001),butdifferinseveralsignificantfeatures, especiallythepresenceofmulticellulartubercles(CollinsonandPingen,1992).RennerandMeyer (2001)assignedthefossilstothecrowngroupofMelastomeae,because“thiskindoftesta ornamentationissynapomorphicfortheRhexiaArthrostemmaPachylomasubcladeof Melastomeae”.Renneret al.(2001),Contiet al.(2002),Rutschmannet al.(2004),Renner(2004) andSytsmaet al.(2004)allfollowedthisinterpretation,althoughitisdifficulttoestablishwith 145 certaintywhetherthesefossilsshouldbeassignedtothebaseoftheMelastomeaecrowngrouporto morerecentnodesinthetribe.Givenourcurrenttaxonsampling,theonlypossibleassignmentof fossil2wastothecrowngroupofMelastomeae,asinpreviousstudies(Figure1). Fossil3.Fossil3isrepresentedbythepollenMyrtaceidites lisamae(syn.Syncolporites lisamae)fromtheSantonianofGabon(86mys;Herngreen,1975;Boltenhagen,1976;Muller, 1981),thelowerSenonianofBorneo(89–83.5mys;Muller,1968),andtheMaastrichtianof Colombia(71.3–65mys;vanderHammen,1954;Table2).Sytsmaet al.(2004)attributedthis pollentothecrowngroupofMyrtaceaes.s.(correspondingtonode3cinFigure1),butpollen grainsofMyrtaceaes.s.andPsiloxyloideae(Wilsonet al.,2005)aredifficulttodistinguish. Therefore,aminimalageof86myscanbeassignedtothreedifferentnodes:3a(stemlineageof Myrtaceaes.l.),3b(crowngroupofMyrtaceaes.l.orstemlineageofMyrtaceaes.s.),andnode3c (crowngroupofMyrtaceaes.s.;Figure1).Again,becausethebranchseparatingnodes3aand3bis long,differentassignmentswereexpectedtohavearelevantimpactonthedatingresults. Fossil4.Fossil4isrepresentedbyfruitsandseedsofPaleomyrtinaeafromthelate PaleoceneofNorthDakota(56mys;Craneet al.,1990;Pigget al.,1993)andtheearlyEoceneof BritishColumbia(54mys;Manchester,1999;Table2).Thesefruitsandseedshaveseedcoat features(LanternandSharp,1989)andanunornamentedCshapeembryo(LanternandStevenson, 1986)thatresemblethoseofthelargelyAmericansubtribeMyrtinae,includedin(Pigget al.,1993).Sytsmaet al.(2004)assignedthefossiltothecrowngroupoftheMyrteae (correspondingtonode4binFigure1),becauseMyrtinaeprovedtobeparaphyleticintheir phylogeneticanalysis.AsourtaxonsamplingincludestwomembersofMyrteaethatdonot representsubtribeMyrtinae,wedecidedtoassignfossil4eithertotheMyrteaecrowngroup(node 4b;asinSytsmaet al.,2004)ortheMyrteaestemlineage(node4a;Figure1).Thebranch separatingnodes4aand4bisshort,thusalternativecalibrationswerenotexpectedtohavelarge effectsonnodalageestimates. Fossil5.Fossil5isrepresentedbytheearliestEucalyptlikefruitsfromtheMiddleEocene RedbankPlainsFormationinSouthEasternQueensland,Australia(Rozefelds,1996;discoveredby RobertKnezourin1990;pers.comm.DavidGreenwood,BrandonUniversity,Manitoba,Canada; Table2).SimilarfossilfruitswerefoundintheMiddleEocenesedimentsnearlakeEyre,Nelly Creek,innorthernSouthAustralia(Christophelet al.,1992).Theyprovideaminimumageof48 mysforthemostrecentcommonancestor(MRCA)ofandAngophora(node5b). Alternatively,weassignedthefossiltothestemlineageofEucalypteae(node5a;Figure1), becausetheobservedtypeofcapsuleisalsosimilartothefruitofothertaxainEucalypteae (Rozefelds,1996).Asforfossil4,thebranchseparatingnodes5aand5bisshort,thusalternative calibrationswerenotexpectedtohavelargeeffectsonnodalageestimates.

146

Fossil6.Fossil6isrepresentedbythepollenDiporites aspisfromtheEarlyOligocene (33.728.5mys)ofOtwayBasin(Australia),describedbyBerryet al.(1990;Table2).Comparisons ofthefossilpollenwithextantmembersofFuchsia(Daghlianet al.,1985)leftnoquestionthat Diporites aspis representspollenofFuchsia.MolecularclockanalysesofaFuchsiaphylogeny calibratedwithnonFuchsiafossilsresultedinanestimatedageintervalfortheFuchsiacrown groupthatwasconsistentwiththepaleobotanicalageofDiporites aspis(Berryet al.,2004;Sytsma et al.,2004).Wethereforeassignedaminimalageof28.5mystotheFuchsiacrowngroup(node 6b).Alternatively,weassignedtheageofthefossiltotheFuchsiastemlineage(node6a;Figure1), becausethesynapomorphiesvisibleinthefossilpollenmighthaveevolvedbeforethe diversificationofFuchsia,andclosertothestemnoderepresentingthephylogeneticsplitbetween Fuchsiaanditssisterclade.Asforfossils4and5,thebranchseparatingnodes6aand6bisshort, thusalternativecalibrationswerenotexpectedtohavelargeeffectsonnodalageestimates. Consideringallpossibleassignmentsofthesixfossilsreviewedabove,72different combinationsarepossible,correspondingto72calibrationsets,eachcomprisingsixcalibration points(Table3).Theagesofthesixfossilsusedineachsetwereassignedasminimalconstraintsto thecorrespondingnodesinallmoleculardatinganalyses. Molecular dating analyses AlldatinganalysesdescribedbelowwereperformedwithaBayesianapproach (multidivtime;Thorneet al.,1998;ThorneandKishino,2002),whichusesanMCMCprocedureto derivetheposteriordistributionsofratesandtimesandallowsformultiplecalibrationwindows. TheanalyticalprocedurefollowedthestepsdescribedinRutschmann(2005)andwasperformedon a3GHzPentiumIVmachinerunningUbuntuLinux5.10.Thevaluesofthepriordistributionsin thelastmultidivtimestep(Kishinoet al.,2001;ThorneandKishino,2002)werespecifiedinunits of10mys,assuggestedinthemanual:RTTM=12,RTTMSD=3,RTRATEandRTRATESD=0.00815,

BROWNMEANandBROWNSD=0.0833,andBIGTIME=13.Thefirsttwovalues,whichflexibly constraintheageoftheroot,werechoseninlightofpublishedestimatesfortheageoftheMyrtales crowngroup,including100–107mys(Wikströmet al.,2001,2003),about105mys(Magallón andSanderson,2005),and111mys(Sytsmaet al.,2004;seealsoSandersonet al.,2004). WerantheMarkovchainforatleast5x105cyclesandcollectedonesampleevery100 cycles,withoutsamplingthefirst8x104cycles(burninsector).Initialexperimentswith2x106 cyclesshowednodifferences,leadingustotheconclusionthatconvergencewasreachedmuch earlier.Weperformedeachanalysisatleasttwicewithdifferentinitialconditionsandcheckedthe outputsamplefilestoassureconvergenceoftheMarkovchainbyusingtheprogramTracer1.3 (RambautandDrummond,2005),eventhoughwerealizethatitisnotpossibletoestablishwith 147 certaintythatafinitesamplefromanMCMCalgorithmisrepresentativeofanunderlyingstationary distribution(CowlesandCarlin,1996). Finding the most internally consistent calibration sets by using fossil cross- validation Toevaluatewhethersomeofthe72calibrationsetsweremoreinternallyconsistentthan others,weimplementedthefossilcrossvalidationprocedureofNearandSanderson(2004)and Nearet al.(2005b).Whiletheseauthorsdevelopedthemethodtoidentifypossiblyinconsistent pointsinasinglecalibrationset,weexpandedtheirapproachtocomparetheinternalconsistencies ofdifferentcalibrationsetsgeneratedbyalternativenodalassignmentsofmultiplefossils. Therefore,foreachofthe72calibrationsetsinourcasestudy,weperformedthefollowingsteps: 1.Wefixedoneoutofthesixcalibrationpointsandestimatedtheagesoftheremaining five,unconstrainednodes.Thisprocedureiscalled“fossilcalibrationrun”fromnowon.

2.WethencalculatedthedifferenceDibetweentheestimatedandthefossilagesofthefive unconstrainednodes.ThisdifferencewasdefinedbyNearandSanderson(2004)asanabsolute deviationmeasureDi=(estimatedage–fossilage).Instead,weusedtherelativedeviationmeasure

Di=(estimatedage–fossilage)/fossilage),assuggestedinNearet al.(2005b).

3.Then,wecalculatedSSχ,thesumofthesixsquaredDivalues(byusingequation2.2in NearandSanderson,2004). 4.Thesameprocedure(steps13)wasthenrepeatedfortheremainingfivefossilcalibration runs,obtainedbyfixingadifferentcalibrationpoint. 5.BasedonthesixSSχscoresobtainedforallsixcalibrationruns,wecalculatedthe averagesquareddeviationsforthecalibrationset(withequation2.3inNearandSanderson,2004; seeTable3). Byusingthisprocedureiteratively,weobtainedsvaluesforall72calibrationsets.High valuesofswouldindicatethatoneormorecalibrationpointsinasetareinconsistentwiththe others,suggestingthatthecorrespondingfossilswereerroneouslyassignedtotherespectivenodes, whereaslowsvalueswouldcharacterizecalibrationsetswithhighinternalconsistency. Inordertoaccountforpossibleeffectsrelatedtothemoleculardatingmethod(inourcase multidivtime),thecrossvalidationexperimentswererepeatedbyusingpenalizedlikelihood (Sanderson,2002)implementedinr8s(Sanderson,2003;datanotshown).Forbatchprocessingthe calculationsofSSχands,wewroteacollectionofPerlscripts(availablefromthefirstauthorupon request). Relationshipbetweenaveragesquareddeviationsandnodaldistance.Becausethe fossilcrossvalidationproceduremightbeinfluencedbythepositionofthecalibrationpoints 148 relativetoeachother(Nearet al.,2005a),wetestedwhethertheaveragesquareddeviationss ofthe 72calibrationsetswerecorrelatedwiththenumberofnodesseparatingthepointsofacalibration set(nodaldistance;Figure2).Foreachcalibrationset,nodaldistanceswerecalculatedbyfirst countingthenumberofnodesbetweenthefixednodeandeachofthefiveunconstrainednodesin eachfossilcalibrationrun(seeabove),thensummingthemupoverallruns(seeTable3). CorrelationsignificancewastestedbyusingtheFteststatisticunderalinearregressionmodelinR (RDevelopmentCoreTeam,2004)andtheSpearman’sRankCorrelationtest. Becausethe72calibrationsetsdifferedintheirdegreeofcorrelationbetweenaverage squareddeviationsandnodaldistance(Figure2),wealsocalculatedthepercentdeviationofsfrom theregressionlinewithnodaldistanceforeachcalibrationset(seeTable3)andplottedtheresults asahistogram(Figure3).Thepercentdeviationofsrepresentsacorrectedmeasureofinternal consistencyamongthecalibrationpointsofaset,termed“correctedcalibrationsetconsistency” fromnowon. Effectofcorrectedcalibrationsetconsistencyondatingprecision.Inordertocheck whetherthereisarelationshipbetweenthecorrectedcalibrationsetconsistencyandtheprecisionof thedatingestimatesforthenodeofinterest(nodeX;seeFigure1),weplottedthepercentstandard deviationfortheageofnodeXcalculatedforeachofthe72calibrationsets(seebelow)againstthe percentdeviationofsfromtheregressionlinewithnodaldistance(Table3;Figure4).Correlation significancewasthentestedwithanFteststatisticunderalinearregressionmodelinR,and additionallyverifiedbyusingSpearman’sRankCorrelationtest. Estimation of the age of node X by using all 72 calibration sets ToachieveanoverallestimatefortheageofnodeX(Figure1),weperformed72molecular datinganalyses,eachbyusingadifferentcalibrationset.Foreachanalysis,thedistributionof posteriorprobabilitieswasusedtocalculatethemeanageofnodeX,standarddeviationand95% credibilityintervals(representingthe2.5thand97.5thpercentileoftheposteriordistribution;Table 3).Thetwochronogramsderivedfromthetwocalibrationsetsthatyieldedtheoldestandyoungest agesfornodeX,respectively,wereoverlaidoneachotherforcomparativepurposes(Figure5).To calculatetheoverallmeanfortheageofnodeX,adistributionwasdrawnfromthe1.8x105 Markovchainsamplesgeneratedduringthe72datinganalysesbyusingthestatisticspackageR(R DevelopmentCoreTeam,2004;Figure6).

149

Results Phylogenetic analyses Thedatasetsusedforthephylogeneticanalysescontainedatotalof5124alignedpositions orcharacters(chars)for74taxa,comprisingthreeplastidandtwonuclearpartitions:rbcL(1144 chars),ndhF(818chars),rpl16intron(560chars),nr18S(1634chars),andnr26S(968chars;see Table1). TheoptimalmodelsofmolecularevolutionselectedbyMrAIC(Nylander,2005b)were: SYM+I+GforrbcL,GTR+Gfor ndhF,GTR+Gfor rpl16intron,SYM+I+Gfornr18S,and GTR+I+Gfornr26S.Inallcases,theAICcandBICselectioncriteriaappliedinMrAIC(Nylander, 2005b)convergedonthesamemodels.Parametervaluesforthesemodelswereestimated simultaneouslyforeachpartitionduringtopologyandbranchlengthoptimizationinMrBayes. TheMrBayesmajorityruleconsensustreewithposteriormeanbranchlengths,clade credibilityvalues,andmaximumlikelihoodbootstrapsupportvaluesisshowninFigure1.Thetree topologyiscongruentwithpublishedphylogenies(Contiet al.,2002;Rutschmannet al.,2004; SchönenbergerandConti,2004;Renner,2004;Sytsmaet al.,2004;Wilsonet al.,2005).Thewell supportedSoutheastAsianCrypteroniaceaearesistertoacladeformedbytheCentral/South AmericanAlzateaceaeandtheAfricanRhynchocalycaceae,Oliniaceae,andPeneaceae. isweaklysupportedassistertoMelastomataceae,corroboratingthephylogeniesofRenner(2004) andClausingandRenner(2001).WithinMelastomataceae,Melastomeae,Miconieae,and Merianieaearewellsupportedasmonophyletic.WithinMyrtaceaes.l.,Psiloxyloideaearesisterto therestoftheclade,referredtoasMyrtaceaes.s.(syn.Myrtoideae),inagreementwiththe phylogenyofWilsonet al.(2005).Myrteae,Melaleuceae,Eucalypteae,andLeptospermeaeareall monophyletic,asinWilsonet al.(2005).ThepositionofVochysiaceaesistertoMyrtaceaes.l. confirmstheresultsofSytsmaet al.(2004)andWilsonet al.(2005).Therelationshipsamongthe sampledOnagraceaeareresolvedasinContiet al.(1993),Levinet al.(2003),andBerryet al. (2004). Evaluating rate heterogeneity TheLFχ2testappliedtothephylogramshowninFigure1(afterremovingtheoutgroups Duabanga andCuphea)indicatedsignificantdeparturefromrateconstancy:LFχ2testvalue= 1385.8,df=71,p=7.27x10243.

150

Finding the most internally consistent calibration sets by using fossil cross- validation Theaveragesquareddeviations(svalues)calculatedinthefossilcrossvalidationanalyses rangedfrom0.061(withcalibrationset1)to0.265(withcalibrationsets50and66;seeTable3). Thelowestsscorewasgeneratedbythecalibrationsetwhereallsixfossilswereassignedtostem nodes,whilethehighestsscorewasproducedbyasetwithmostfossilsassignedtocrownnodes (Table3).Theuseofpenalizedlikelihood(implementedinr8s;Sanderson,2002)insteadof Bayesiandating(implementedinmultidivtime;Kishinoet al.,2001;ThorneandKishino,2002)to estimatedivergencetimesdidnotaffectthesscoresinanysignificantway(datanotshown). Therefore,therankingofthesscoresremainedunchanged. Relationshipbetweenaveragesquareddeviationsandnodaldistance.Thelinear regressionbetweentheaveragesquareddeviationssofthe72calibrationsetsandthedistancesin numberofnodesbetweenthecalibrationpointsofeachcalibrationsetproducedamultipleR2of 0.8967(Figure2).TheFteststatisticshowedasignificantcorrelation(degreesoffreedom1and 70;p<2.2x1016).ThisresultwasconfirmedbySpearman’sRankCorrelationtest(stem:rho= 0.9561722;p<2.2x1016).Thethreecalibrationsetswiththelowestsvalueswere1,9,and5 (Figure2,left),whilethethreesetswiththehighestsvalueswere50,66,and58(Figure2,right). Thethreecalibrationsetsthatdeviatedthemostbelowtheregressionlinewere18,10,and11 (Figure2,circled),whereasthethreesetsthatdeviatedthemostabovethelinewere33,41,and25 (Figure2,circled;seeTable3). Thepercentdeviationofsfromtheregressionlinewithnodaldistancerangedfrom 27.35%,associatedwithcalibrationset18,to+18.45%,associatedwithcalibrationset33(see Table3andFigure3).Twelvecalibrationsetshadsvaluesatleast10%lowerthanexpectedbased ontheregressionlinewithnodaldistance(termed“calibrationsetsA”fromnowon;seeFigure3, leftside).Inall12sets,fossil1wasalwaysassignedtonode1a,andfossil6tonode6b, whilethe nodalassignmentsoffossils3,4and5varied(seeTable4).Morespecifically,calibrationsets18, 10,and11(Figure2)showedthesvaluesthatdeviatedthemostbelowtheregressionline (27.35%;25.72%,and23.95%,respectively;Table3andFigure3).Basedontheseresults,we concludethatthesethreesetsarecharacterizedbythehighestlevelofinternalconsistencycorrected fornodaldistance(correctedcalibrationsetconsistency).Conversely,23calibrationsetswere associatedwithsvaluesthatwereatleast10%higherthanexpectedfromtheregressionline (Figure3,rightside;named“calibrationsetsB”fromnowon).Morespecifically,calibrationsets 33,41,and25showedthesvaluesthatdeviatedthemostabovetheregressionline(18.45%; 20.39%;20.73%,respectively;Table5andFigure3).Basedontheseresults,weconcludethat

151 thesethreecalibrationsetsarecharacterizedbythelowestlevelofinternalconsistencycorrectedfor nodaldistance. Tosummarize,thecalibrationsetswiththelowestnegativevaluesofpercentdeviationofs fromtheregressionline(Figure2)representthesetswiththehighestlevelofcorrectedinternal consistencyamongcalibrationpoints(Figure3,left),whilethecalibrationsetswiththehighest positivevaluescorrespondtothesetswiththelowestlevelofcorrectedconsistency(Figure3, right). Effectofcorrectedcalibrationsetconsistencyondatingprecision.Thecorrelation betweenthecorrectedmeasureofcalibrationsetconsistency(definedaspercentdeviationofsfrom theregressionlinewithnodaldistance)andthepercentstandarddeviationfortheageofnodeX wassignificant(Figure4).LinearregressionresultedinamultipleR2of0.5975,andtheFtest statisticshowedasignificantcorrelation(degreesoffreedom1and70;p<1.788x1016).This resultwasconfirmedbySpearman’sRankCorrelationtest(stem:rho=0.721429;p<2.2x1016). Thethreecalibrationsets18,10,and11producedlowerstandarddeviationsfortheageofnodeX thanthethreecalibrationsets33,41,and25(Table3andFigure4). Age of node X estimated by using all 72 calibration sets ThelowestmeanagefornodeX(72.8mys)wasobtainedwithcalibrationset1,thehighest (81.46mys)withcalibrationset66(Table3).Thechronogramscorrespondingtothesecalibration setsareshowninFigure5.Asexpected,calibrationsetswithmorestemassignments(forex.,1,25, and5)producedyoungeragesfornodeXthancalibrationsetswithmorecrownassignments(e.g., 70,72,and66;Table3),becausethedeeperacalibrationpointisplacedinaphylogeny,the youngeraretheageestimatesforallothernodes,andviceversa.Consequently,calibrationsetswith amixtureofstemandcrownassignments(e.g.,51and61withthreecrownandtwostem assignments;Table3)producedintermediateageestimatesfornodeX.Theoverallmeanforthe ageofnodeXbasedonall72datinganalyseswas77.74mys,withastandarddeviationof8.51mys anda95%credibilityintervalof60.89to94.21mys(Figure6).

152

Discussion Despitewellfoundedtheoreticalguidelines(Hennig,1969;DoyleandDonoghue,1993; Patterson,1981;Sanderson,1998;Magallón,2004),itisoftendifficultinpracticetodeterminethe exactphylogeneticplacementoffossilsonthebasisoftheirmorphologicaltraits(Doyleand Donoghue,1992;ManchesterandHermsen,2000).Theuncertaintyofnodalassignmentmightbe especiallysevereforthepaleobotanicalrecord,duetothegenerallylowerdegreeofmorphological integrationinplantsascomparedtoanimals(Hennig,1966;DoyleandDonohue,1987;Donoghue et al.,1989;DoyleandDonoghue,1992).Whileexhaustivecladisticmorphologicalanalysesof extinctandextanttaxashouldallowformorereliableattachmentoffossilstospecificnodes,such analysesarerarelyavailable(Donoghueet al.,1989;DoyleandDonoghue,1993;Hermsenet al., 2003).Inmostcases,practitionersmustdependonpublisheddescriptionsofthemorphological featuresofafossil,whichareoftenvagueandcontradictingwhenitcomestoplacingitina phylogeny(Hickey,1977;CollinsonandPingen,1992;Pigget al.,1993;Rozefelds,1996; ManchesterandHermsen,2000).Therefore,acarefulreviewofthepaleontologicalliteraturefora givengroupoftaxamightleadtomultiplenodalassignmentsofaselectedfossilthatcanbeequally defendedonthebasisofmorphology. Thepossibilityofattachingfossilstomultiplenodesalsodependsonthedensityoftaxon samplingintherelevantphylogeneticneighborhood.Inmanydatedchronograms,onlyonepossible assignmentexists,becauseonlyonetaxonwassampledfromthepertinentgroup(e.g.,the assignmentoffossilMelastomataceaeleavesinContiet al.,2002,ortheassignmentoffossil EucalyptoidfruitsinSytsmaet al.,2004;seealsoSandersonandDoyle,2001).Whileunequivocal, thisprocedureishardlysatisfactory.Inthestudypresentedhere,wedesignedtaxonsamplingin ordertoallowformultiplenodalassignmentpossibilities.Infact,fiveoutofthesixselected Myrtalesfossils(Table2)couldbejustifiablyassignedtomorethanonenode,basedonthe morphologicaltraitsdiscussedinthepaleobotanicalliterature(Hickey,1977;CollinsonandPingen, 1992;Pigget al.,1993;Rozefelds,1996).Intotal,72differentassignmentcombinations (calibrationsets)werepossible,eachcomprisingsixcalibrationpoints(Table3). Finding the most internally consistent calibration sets by using fossil cross- validation InthisstudyofCrypteroniaceaeandrelatedtaxa,weusethefossilcrossvalidation procedureofNearandSanderson(2004)inanovelwaytoassessuncertaintyinfossilnodal assignment.Morespecifically,wetrytoidentifythemostcongruentcalibrationsetsbycomparing

153 theinternalconsistenciesofall72calibrationsetsgeneratedfromalternativeplacementsofsix fossils(Table3).Theprocedurerevealedlargedifferencesamongtheaveragesquareddeviations associatedwiththe72calibrationsets,rangingfromansvalueof0.061forset1toansvalueof 0.265forset66(Table3;Figure2).Therefore,onemightconcludethattheassignmentoffossils1, 2,3,4,5,and6tonodes1a, 2, 3a, 4a, 5a,and6a,respectively,producedthemostinternally consistentcalibrationset,whiletheassignmentofthesamefossilstonodes1c, 2, 3c, 4b, 5b,and 6b,respectively,themostinconsistentone.However,incalibrationset1allthefossilsareassigned totheirstemnodes,whileincalibrationset66allthefossilsareassignedtotheircrownnodes, exceptforfossil2,forwhichonlyonenodalassignmentispossible(Table3).Itisthusreasonable toaskwhetherthesvaluesmightbeinfluencedbythenodaldistanceamongcalibrationpoints. Indeed,asignificantpositivecorrelationbetweentheaveragesquareddeviationsandnodal distanceswasobservedforthecalibrationsets (Figure2). Thepositivecorrelationbetweensvaluesandnodaldistancesfoundinourstudydiffers fromtheresultsdescribedinNearet al.(2005a).Intheirstudyofcentrarchidfishes,theauthors plottedthepercentdeviationbetweenmolecularandfossilagesinasinglecalibrationsetversusthe numberofnodesseparatingallpossiblepairsofcalibrationpointsintheset.Theirresultsshowed nocorrelationbetweenpercentdeviationsandnodaldistances,leadingthemtoconcludethatthe proximityamongcalibrationpointsinaphylogenyhasnoeffectontheresultsoffossilcross validation.Thekeydifferencesbetweentheirandourresultsmaydependinpartonmethodological details(i.e.,thedifferentproceduresusedtocalculatenodaldistancesinthetwostudies),butalso onthefactthat,asNearet al.(2005a)remarked,theirfossilsweremoreorlessevenlydistributed acrossthephylogeny,whileinourcasefossilsareconcentratedinthreeclades(Melastomataceae, Myrtaceaes.l.,Onagraceae;Figure1). Howcanwethenexplainthecorrelationbetweensvaluesandnodaldistancefoundinour study(Figure2)?Itisimportanttorememberthatthesvaluesareessentiallyderivedfromthe differencebetweentheestimatedandthefossilagesofthecalibrationpointsinaset.Therefore,one possibleinterpretationoftheobservedcorrelationmightrelatetotheproceduresusedfornodalage estimation.Morespecifically,theratesmoothingmethodsemployedinourdatinganalyses,based onbothBayesian(Thorneet al.,1998)andpenalizedlikelihood(Sanderson,2002)approaches, allowratestochangebetweenancestraldescendantbranches,thuscreatingestimationerrorsthat dependonthenumberofnodesinvolvedinthesmoothingprocedure.Consequently,thegreaterthe nodaldistanceamongcalibrationpoints,thegreaterthepossibledifferencebetweentheestimated andthefossilagesofthecalibrationpointsinaset.Becausegreaternodaldistancesareassociated withsetswherefossilsaremostlyassignedtothecorrespondingcrownnodes(seeFigure1and Table3),thiswouldexplainwhysuchsetsarecharacterizedbygreatersvalues,asinthecaseofset

154

66(Figure2).Conversely,calibrationsetswheremostfossilsareattachedtothestemnodes,asin thecaseofset1,areassociatedwithsmallernodaldistancesamongcalibrationpoints,hencewith smallersvalues(Figure2;Table3).Thus,ourresultssuggestthatthesmallersvaluesassociated withcalibrationsetswheremostfossilsareassignedtostemnodesdonotinherentlyreflectahigher levelofconsistencyamongthecalibrationpoints,buttheeffectsofnodaldistance.Therefore,s valuesappeartorepresentabiasedestimateofinternalconsistency. Inordertoidentifythecalibrationsetsleastandmostaffectedbynodaldistancebias,we rankedallsetsaccordingtothepercentdeviationofsfromtheregressionlinewithnodaldistance (Figure3).Thisallowedustorecognizecalibrationssets18,10and11asthoseassociatedwiththe highestlevelofinternalconsistencycorrectedfornodaldistance,andsets33,41,and25asthose withthelowestlevelofcorrectedinternalconsistency(Table5).Importantly,themostconsistent calibrationsetsalsoproducedthelowestpercentstandarddeviationsfortheestimatedagesofnode X,andtheleastconsistentsetsthehighestpercentstandarddeviations(Figure4).Thispositive correlationmightbeexplainedbytheobservationthatinconsistentcalibrationpointsinaset contradicteachotherintheirstatementsaboutthetimingofevolutionaryevents,thusproducing conflictingestimatesfortheage(s)ofthenode(s)ofinterest,hencehigherassociatederrors(Near andSanderson,2004;Nearet al.,2005b).Conversely,calibrationpointsinsetswithhighlevelsof correctedinternalconsistencyproduceconvergentestimatesfortheage(s)ofthenode(s)ofinterest, hencelowerassociatederrors. The12calibrationsetsassociatedwiththehighestlevelofcorrectedinternalconsistency (Figure3,leftside)sharesomecommonproperties.Inall,thetemporalinformationprovidedby fossil1ismostconsistentwiththatoftheothercalibrationpointsifitisassignedtonode1a(Table 4andFigure1).ThisresultsupportstheinterpretationbyRenneret al.(2001)andSytsmaet al. (2004)thatthefossilleavesfromtheEarlyEoceneofNorthDakota(Hickey,1977)shouldbe assignedtothenoderepresentingtheentireMelastomataceaecrowngroup,becauseofthe acrodromousleafvenation.Ontheotherhand,fossil6,representingthepollenDiporites aspis from theEarlyOligoceneofOtwayBasin(Australia;Berryet al.,1990;Table2),ismostconsistentwith theothercalibrationpointsifitisassignedtonode6b,representingtheFuchsiacrowngroup(Table 4andFigure1).Thisconclusioniscongruentwiththeresultsofmoleculardatinganalysesthat producedanageintervalforthenodecorrespondingto6bcompatiblewiththeageofDiporites aspis(Berryet al.,2004;Sytsmaet al.,2004). NoclearpatternemergesfromcomparisonsamongcalibrationsetsAfortheassignmentof fossils3,4,and5(Table4).However,inthecalibrationsetwiththehighestlevelofcorrected internalconsistency(18;seeTable5),thethreefossilsareallassignedtotheircrownpositions (nodes3c,4b,and5b;Figure1).Basedonthisevidence,thepollenMyrtaceidites lisamaefromthe

155

SantonianofGabon(fossil3)ismostconsistentlyattributedtoMyrtaceaes.s.(node3c),as proposedbySytsmaet al.(2004).AlsoinagreementwithSytsmaet al.(2004),thefruitsandseeds ofPaleomyrtinaeafromthelatestPaleoceneofNorthDakota(fossil4)aremostconsistentlyplaced withthecrownradiationofthetribeMyrteae(Myrtoideaes.s.;node4b).Finally,theEucalyptlike fruitsfromtheMiddleEoceneofSouthEasternQueensland(fossil5)arebestassignedtothenode representingthemostrecentcommonancestorofEucalyptusandAngophora(node5b),as suggestedbyRozefelds(1996). Age of node X estimated by using all 72 calibration sets TheoverallmeanagefornodeXestimatedfromanalysesperformedwithall72calibration setswas77.74mys,withacredibilityintervalof60.89to94.21mys(seeFigure6).Byusingall possiblecalibrationsetsinthedatinganalyses,allknownuncertaintiesofnodalassignmentare incorporatedinthefinalageestimateforthenodeofinterest,providingincreasedconfidencethat the“real”ageofthenodeiscontainedintheestimate.ItisworthnoticingthattheagesofnodeX (79.70mys;79.14mys,and78.15mys;Table5)estimatedfromthethreecalibrationsets(18,10, 11;respectively)withthehighestlevelofcorrectedinternalconsistencyfallwithinthecredibility intervaloftheoverallmeanage.Therefore,itmightbesuggestedthatthe“overallmeanapproach” increasestheaccuracyoftheestimate,lendingfurthersupporttotheproponentsofmulticalibration (Lee,1999;ConroyandvanTuinen,2003;ReiszandMüller,2004). Atthesametime,however,the“overallmeanapproach”reducestheprecisionofthe estimate.Infact,theoverallmeanageisassociatedwithahigherstandarddeviation(8.51mys) thanthoseoftheagesestimatedbyusingthethreecalibrationsetswiththehighestcorrected calibrationsetconsistency(18:7.55mys;10:7.34mys;11:7.49mys;Table5).Thisobservation mightagainbeexplainedbythefactthatallthebiasesintroducedbyconflictingnodalassignments ofthefossilsinthe“overallmeanapproach”contributetotheerrorsassociatedwiththeestimated ages(ConroyandvanTuinen,2003;Contiet al.,2004;ReiszandMüller,2004;MüllerandReisz, 2005). Allestimatesgeneratedinthisstudy(Table3)forthemeanageofthesplitbetweenthe SoutheastAsianCrypteroniaceaeandtheirWestGondwanansistercladearecontainedwithinthe intervalrangingfrom81.5to72.8mys(Figure5).Thisrangeoverlapsalmostentirelywiththe resultsofpublishedageestimatesforthesamenode(62to109mys,Rutschmannet al.,2004;57to 79mys,Moyle,2004),eventhoughthementionedstudiesdifferedfromoursbothingene/taxon samplingandcalibrationstrategies.Despitethesedifferences,thebiogeographicscenariomost compatiblewiththetimeframescalculatedfornodeXisthattheCrypteroniaceaestemlineage dispersedfromAfricatotheDeccanplateasitdriftednorthwardduringtheLateCretaceous 156

(approximately125to84mysago;PlummerandBelle,1995;McLoughlin,2001).Thenewly obtainedageestimates,then,furthersupportIndia’slikelyroleinexpandingtherangeof CrypteroniaceaefromAfricatoAsiaduringitsnorthboundmovementalongtheAfricancoast, corroboratingtheoutofIndiahypothesisfortheoriginofCrypteroniaceae(Contiet al.,2002; Contiet al.,2004;Moyle,2004;Rutschmannet al.,2004;seealsoLieberman,2003). Tosummarize,ourstudyillustratestwomainapproachestotheproblemofnodalfossil assignmentwhenequallyjustifiablealternativesexist.Ontheonehand,onemightuseamodified versionofthefossilcrossvalidationproceduretoidentifythecalibrationsetswiththehighestlevel ofinternalconsistency,correctedfornodaldistancebias,andthenusethesesetstoestimatethe agesofthenodesofinterest.Suchsetsshouldgeneratelowerstandarddeviationsassociatedwith nodalageestimatesthansetscharacterizedbylowerlevelsofcorrectconsistency.Ontheother hand,estimatingtheoverallmeanagesforthenodesofinterestbyusingallpossiblecalibrationsets mightrepresentamorecautiousapproach. Whilewehaveattemptedtosuggestpracticalprocedures,basedonavailablemethodology (i.e.,fossilcrossvalidation;NearandSanderson,2004;Nearet al.,2005b),toaddressthedifficult problemoffossilnodalassignment,wealsowishtoemphasizethatsuchmeasurescanbynomeans replacecarefulreview,selection,andevaluationofthefossilrecordusedforcalibration.Tofurther improveconfidenceintheassignmentofselectedfossilstospecificnodesinaphylogeny,amulti prongedapproachwillbenecessary,includingcomprehensivemorphologicalcladisticanalysesof extinctandextanttaxa(Donoghueet al.,1989;Doyle,2000;Eklundet al.,2004),quantitative evaluationofthegapbetweenthetimeoflineagedivergenceandthetimeoffirstappearanceof synapomorphiesinthefossilrecord(FooteandSepkoski,1999;Tavaréet al.,2002),improved paleontologicaldatingoffossils,andevaluationofthepositionaleffectsofcalibrationnodesin relationtothenodesofinterest(SmithandPeterson,2002;ConroyandvanTuinen,2003;Porteret al.,2005).

157

References Alroy,J.1999.ThefossilrecordofNorthAmericanmammals:evidenceforaPaleocene evolutionaryradiation.Systematic Biology48:107118.

ArisBrosou,S.,andZ.Yang.2002.Effectsofmodelsofrateevolutiononestimationofdivergence dateswithspecialreferencetothemetazoan18SribosomalRNAphylogeny.Systematic Biology 51:703714.

Ashton,P.S.,andC.V.S.Gunatilleke.1987.NewlightontheplantgeographyofCeylon:I. Historicalplantgeography.Journal of Biogeography14:249285.

Baum,D.A.,R.L.Small,andJ.F.Wendel.1998.BiogeographyandfloralevolutionofBaobabs (Adansonia,Bombacaceae)asinferredfrommultipledatasets.Systematic Biology47:181207.

Bell,C.D.,andM.J.Donoghue.2005.DatingtheDipsacales:Comparingmodels,genes,and evolutionaryimplications.American Journal of Botany92:284296.

Benton,M.J.,andF.J.Ayala.2003.Datingthetreeoflife.Science300:16981700.

Berry,P.E.,W.J.Hahn,K.J.Sytsma,J.C.Hall,andA.Mast.2004.Phylogeneticrelationships andbiogeographyofFuchsia(Onagraceae)basedonnoncodingnuclearandchloroplastDNAdata. American Journal of Botany94:601614.

Berry,P.E.,J.J.Skvarla,A.D.Partridge,andM.K.Macphail.1990.Fuchsiapollenfromthe TertiaryofAustralia.Australian Systematic Botany3:739744.

Boltenhagen,E.1976.PollensetsporesSénoniennesduGabon.Cahiers de Micropaléontologie 17:121.

Bossuyt,F.,andM.C.Milinkovitch.2001.AmphibiansasindicatorsofearlyTertiary"outof India"dispersalofVertebrates.Science292:9395.

Brochu,C.A.2004.Calibrationageandquartetdivergencedateestimation.Evolution58:1375 1382.

Bult,C.,M.Källersjö,andY.Suh.1992.Amplificationandsequencingof16/18SrDNAfromgel purifiedtotalplantDNA.Plant Molecular Biology Reporter10:273284.

Christophel,D.C.,L.J.Scriven,andD.R.Greenwood.1992.AnEocenemegafossilflorafrom NellyCreek,SouthAustralia.Transactions of the Royal Society of South Australia116:6576.

Clausing,G.,andS.S.Renner.2001.MolecularphylogeneticsofMelastomataceaeand Memecylaceae:implicationsforcharacterevolution.American Journal of Botany88:486498.

Collinson,M.E.,andM.Pingen.1992.SeedsoftheMelastomataceaefromtheMioceneofCentral Europe.Pp.129139inJ.KovarEder,ed.PalaeovegetationaldevelopmentinEurope.Museumof NaturalHistory,Vienna,Austria.

Conroy,C.J.,andM.vanTuinen.2003.Extractingtimefromphylogenies:positiveinterplay betweenfossilandgeneticdata.Journal of Mammalogy84:444455.

158

Conti,E.,T.Eriksson,J.Schönenberger,K.J.Sytsma,andD.A.Baum.2002.EarlyTertiaryout ofIndiadispersalofCrypteroniaceae:evidencefromphylogenyandmoleculardating.Evolution 56:19311942.

Conti,E.,A.Fischbach,andK.J.Sytsma.1993.TribalrelationshipsinOnagraceae:implications fromrbcLsequencedata.Annals of the Missouri Botanical Garden80:672685.

Conti,E.,A.Litt,andK.J.Sytsma.1996.CircumscriptionofMyrtalesandtheirrelationsshipsto otherRosids:evidencefromrbcLsequencedata.American Journal of Botany83:221233.

Conti,E.,A.Litt,P.G.Wilson,S.A.Graham,B.G.Briggs,L.A.S.Johnson,andK.J.Sytsma. 1997.InterfamilialrelationshipsinMyrtales:molecularphylogenyandpatternsofmorphological Evolution.Systematic Botany22:629647.

Conti,E.,F.Rutschmann,T.Eriksson,K.J.Sytsma,andD.A.Baum.2004.Calibrationof molecularclocksandthebiogeographichistoryofCrypteroniaceae:AreplytoMoyle.Evolution 58:18741876.

Cowles,M.K.,andB.P.Carlin.1996.MarkovchainMonteCarloconvergencediagnosis:A comparativereview.Journal of the American Statistical Association91:883904.

Crane,P.R.,S.R.Manchester,andD.L.Dilcher.1990.Apreliminarysurveyoffossilleavesand wellpreservedreproductivestucturesfromtheSentinelButteFormation(Paleocene)nearAlmont, NorthDakota.Fieldiana Geology1418:163.

Daghlian,C.P.,J.J.Skvarla,D.T.Pocknall,andP.H.Raven.1985.Fuchsiapollenfromtheearly MioceneofNewZealand.American Journal of Botany72:10391047.

Dahlgren,R.,andR.F.Thorne.1984.TheorderMyrtales:circumscription,variation,and relationships.Annals of the Missouri Botanical Garden71:633699.

Dahlgren,R.,andA.E.VanWyk.1988.Structuresandrelationshipsoffamiliesendemictoor centeredinSouthernAfrica.Monographs in Systematic Botany from the Missouri Botanical Garden25:194.

Darwin,C.1859.Ontheoriginofspeciesbymeansofnaturalselectionorthepreservationof favouredracesinthestruggleforlife.JohnMurray,London. deQueiroz,K.,andJ.Gauthier.1990.Phylogenyasacentralprincipleintaxonomy:phylogenetic definitionsoftaxonnames.Systematic Zoology39:307322.

Donoghue,M.J.,J.A.Doyle,J.Gauthier,A.G.Kluge,andT.Rowe.1989.Theimportanceof fossilsinphylogenyreconstruction.Annual Reviews of Ecology and Systematics20:431460.

Dorofeev,P.I.1960.OntheTertiaryfloraofBelorussia.Botanichesky Zhurnal SSSR45:14181434 (inRussian).

Dorofeev,P.I.1963.TheTertiaryflorasofwesternSiberia.IzdatelstvoAkademiiNaukSSSR. MoskvaLeningrad,Russia(inRussian).

Dorofeev,P.I.1988.MioceneflorasoftheTambovdistrict.AkademiiNauk,Leningrad,Russia(in Russian,posthumouswork,F.Y.Velichkevich,ed.).

159

Doyle,J.A.2000.Paleobotany,relationships,andgeographichistoryofWinteraceae.Annals of the Missouri Botanical Garden87:303316.

Doyle,J.A.,andM.J.Donoghue.1987.Theimportanceoffossilsinelucidatingseedplant phylogenyandmacroevolution.Review of Paleobotany and Palynology50:6395.

Doyle,J.A.,andM.J.Donoghue.1992.Fossilsandseedplantphylogenyreanalyzed.Brittonia 44:89106.

Doyle,J.A.,andM.J.Donoghue.1993.Phylogeniesandangiospermdiversification.Paleobiology 19:141167.

Drummond,A.J.,S.Y.W.Ho,M.J.Phillips,andA.Rambaut.2006.Relaxedphylogeneticsand datingwithconfidence.PLoS Biology4:e88.

Dyjor,S.,Z.Kvacek,M.LanuckaSrodoniowa,W.Pyszynski,A.Sadowska,andE.Zastawniak. 1992.TheYoungerTertiarydepositsintheGozdnicaregion(SWPoland)inthelightofrecent palaeobotanicalresearch.Polish Botanical Studies3:1129.

Eklund,H.,J.A.Doyle,andP.S.Herendeen.2004.Morphologicalphylogeneticanalysisofliving andfossilChloranthaceae.International Journal of Plant Sciences165:107151.

FaironDemaret,M.1994[1996].LesfruitsetgrainesduMiocenedeBioul(EntreSamreet Meuse,Belgique).Etudequalitative,quantitativeetconsiderationspaleoécologiques.Annales de la Societé Géologique de Belgique117:277309.

Felsenstein,J.2004.PHYLIP(PhylogenyInferencePackage),version3.63.Departmentof Genetics,UniversityofWashington,Seattle,WA.

Foote,M.,J.P.Hunter,C.M.Janis,andJ.J.SepkoskiJr.1999.Evolutionaryandpreservational constraintsonoriginsofbiologicgroups:divergencetimesofEutherianmammals.Science 283:13101314.

Foote,M.,andJ.J.SepkoskiJr.1999.Absolutemeasuresofthecompletenessofthefossilrecord. Nature398:415417.

Graham,S.A.1984.Alzateaceae,anewfamilyofMyrtalesintheAmericanTropics.Annals of the Missouri Botanical Garden71:757779.

Graur,D.,andW.Martin.2004.Readingtheentrailsofchickens:moleculartimescalesofevolution andtheillusionofprecision.TRENDS in Genetics20:8086.

Guindon,S.,andO.Gascuel.2003.Asimple,fast,andaccuratealgorithmtoestimatelarge phylogeniesbymaximumlikelihood.Systematic Biology52:696704.

Hedges,S.B.,andS.Kumar.2003.Genomicclocksandevolutionarytimescales.TRENDS in Genetics19:200206.

Hennig,W.1966.PhylogeneticSystematics.UniversityIllinoisPress,Urbana,Illinois.

Hennig,W.1969.DieStammesgeschichtederInsekten.Kramer,Frankfurt,Germany.

Hermsen,E.J.,M.A.Gandolfo,K.C.Nixon,andW.L.Crepet.2003.Divisestylusgen.nov.(aff. Iteaceae),afossilsaxifragefromtheLateCretaceousofNewJersey,USA.American Journal of Botany90:13731388. 160

Herngreen,G.F.W.1975.AnUpperSenonianpollenassemblageofborehole3PIA10AL,State ofAlagoas,Brazil.Pollen Spores17:93140.

Hickey,L.J.1977.StratigraphyandpaleobotanyoftheGoldenValleyformation(EarlyTertiary) ofwesternNorthDakota.Memoir150.GeologicalSocietyofAmerica,Boulder,Colorado.

Ho,S.Y.W.,andG.Larson.2006.Molecularclocks:whenthetimesareachangin'.TRENDS in Genetics22:7983.

Huelsenbeck,J.P.,andF.Ronquist.2001.MrBayes:Bayesianinferenceofphylogeny. Bioinformatics17:754.

Johnson,L.A.S.,andB.G.Briggs.1984.MyrtalesandMyrtaceaeaphylogeneticanalysis. Annals of the Missouri Botanical Garden71:700756.

Kishino,H.,J.L.Thorne,andW.J.Bruno.2001.Performanceofadivergencetimeestimation methodunderaprobabilisticmodelofrateevolution.Molecular Biology and Evolution18:352361.

Kuzoff,R.K.,J.A.Sweere,D.E.Soltis,P.S.Soltis,andE.A.Zimmer.1998.Thephylogenetic potentialofentire26SrDNAsequencesinplants.Molecular Biology and Evolution15:251263.

Langley,C.H.,andW.Fitch.1974.Anestimationoftheconstancyoftherateofmolecular evolution.Journal of Molecular Evolution3:161177.

Lantern,L.R.,andW.P.Sharp.1989.SeedcoatcharactersofsomeAmericanMyrtinae (Myrtaceae):Psidium andrelatedgenera.Systematic Botany14:370376.

Lantern,L.R.,andD.Stevenson.1986.VariabilityofembryosinsubtribeMyrtinae(Myrtaceae). Systematic Botany11:155162.

Lee,M.S.Y.1999.MolecularclockcalibrationsandMetazoandivergencedates.Journal of Molecular Evolution49:385391.

Levin,R.A.,W.L.Wagner,P.C.Hoch,M.Nepokroff,J.C.Pires,E.A.Zimmer,andK.J. Sytsma.2003.FamilylevelrelationshipsofOnagraceaebasedonchloroplastrbcLandndhFdata. American Journal of Botany90:107115.

Lieberman,B.S.2003.Unifyingtheoryandmethodologyinbiogegraphy.Journal of Evolutionary Biology33:125.

Macey,J.R.,J.A.SchulteII,A.Larson,N.B.Ananjeva,Y.Wang,R.Rethiyagoda,N.Rastegar Pouyani,andT.J.Papenfuss.2000.EvaluatingtransTethysmigration:anexampleusingacrodont lizardphylogenetics.Systematic Biology49:233256.

Maddison,P.G.,andD.R.Maddison.2000.MacClade4:analysisofphylogenyandcharacter evolution.Sinauer,Sunderland,MA.

Magallón,S.A.2004.Datinglineages:molecularandpaleontologicalapproachestothetemporal frameworkofclades.International Journal of Plant Sciences165:721.

Magallón,S.A.,andM.J.Sanderson.2001.AbsolutediversificationratesinAngiospermclades. Evolution55:17621780.

Magallón,S.A.,andM.J.Sanderson.2005.Angiospermdivergencetimes:theeffectofgenes, codonpositions,andtimeconstraints.Evolution59:16531670. 161

Mai,D.H.1995.TertiäreVegetationsgeschichteEuropas.G.Fischer,Jena,Germany.

Mai,D.H.2000.DieuntermiozänenFlorenausderSprembergerFolgeunddemII.Flözhorizont derLausitz.TeilIII.DialypetalaeundSympetalae.Palaeontographica Abteilung B253:1106.

Manchester,S.R.1999.BiogeographicalrelationshipsofNorthAmericanTertiaryfloras.Annals of the Missouri Botanical Garden86:472522.

Manchester,S.R.,andE.J.Hermsen.2000.Flowers,fruits,seeds,andpollenofLandeenia gen. Nov.,anextinctsapindaleangenusfromtheEoceneofWyoming.American Journal of Botany 87:19091914.

Marshall,C.R.1990a.Confidenceintervalsonstratigraphicranges.Paleobiology16:110.

Marshall,C.R.1990b.Thefossilrecordandestimatingdivergencetimesbetweenlineages maximumdivergencetimesandtheimportanceofrelieablephylogenies.Journal of Molecular Evolution30:400408.

McKenna,M.C.C.1973.Sweepstakes,filters,corridors,Noah'sarks,andbeachedVikingfuneral shipsinpaleogeography.Pp.291304inD.H.TarlingandS.K.Runcorn,eds.Implicationsof ContinentalDrifttotheEarthSciences.AcademicPress,London.

McLaughlin,S.2001.ThebreakuphistoryofGondwanaanditsimpactonpreCenozoicfloristic provincialism.Australian Journal of Botany48:271300.

Mentink,H.,andP.Baas.1992.LeafanatomyoftheMelastomataceae,Memecylaceae,and Crypteroniaceae.Blumea37:189225.

Morley,R.J.2000.Originandevolutionoftropicalrainforests.JohnWiley&SonsLtd., Chichester,England.

Morley,R.J.,andC.W.Dick.2003.Missingfossils,molecularclocksandtheoriginofthe Melastomataceae.American Journal of Botany90:16381645.

Moyle,R.G.2004.Calibrationofmolecularclocksandthebiogeographichistoryof Crypteroniaceae.Evolution58:18711873.

Muller,J.1968.PalynologyofthePedawanandPlateauSandstoneFormations(Creataceous Eocene)inSarawak,Malaysia.Micropaleontology14:137.

Muller,J.1981.Fossilpollenrecordsofextantangiosperms.Botanical Reviews47:1142.

Müller,J.,andR.R.Reisz.2005.Fourwellconstrainedcalibrationpointsfromthevertebratefossil recordformolecularclockestimates.BioEssays27:10691075.

Near,T.J.,D.I.Bolnick,andP.C.Wainwright.2005a.Fossilcalibrationsandmolecular divergencetimeestimatesincentrarchidfishes(Teleostei:Centrarchidae).Evolution59:17681782.

Near,T.J.,P.A.Meylan,andH.B.Shaffer.2005b.Assessingconcordanceoffossilcalibration pointsinmolecularclockstudies:anexampleusingturtles.American Naturalist165:137146.

Near,T.J.,andM.J.Sanderson.2004.Assessingthequalityofmoleculardivergencetime estimatesbyfossilcalibrationsandfossilbasedmodelselection.Philosophical Transactions of the Royal Society of London B: Biological Sciences359:14771483.

162

Nylander,J.2005a.BootPHYML3.4.SchoolofComputationalScience(SCS),FloridaState University,Tallahassee,Florida.

Nylander,J.2005b.MrAIC1.4.SchoolofComputationalScience(SCS),FloridaStateUniversity, Tallahassee,Florida.

Olmstead,R.G.,andJ.A.Sweere.1994.Combiningdatainphylogeneticsystematics:anempirical approachusingthreemoleculardatasetsintheSolanaceae.Systematic Biology43:467481.

Patterson,C.1981.Significanceoffossilsindeterminingevolutionaryrelationships.Annual Reviews of Ecology and Systematics12:195223.

Penny,D.2005.Relativityformolecularclocks.Nature436:183184.

Pereira,J.T.1996.Crypteroniaceae.Pp.135149inE.Soepadmo,K.M.WongandL.G.Saw,eds. TreefloraofSabahandSarawak,Volume2.ForestResearchInstituteMalaysia,SabahForestry Department,andSarawakForestryDepartment,KualaLumpur,Malaysia.

Pereira,J.T.,andK.M.Wong.1995.ThreenewspeciesofCrypteronia(Crypteroniaceae)from Borneo.Sandakania6:4153.

Pigg,K.B.,R.A.Stockey,andS.L.Maxwell.1993.Paleomyrtinaea,anewgenusof permineralizedmyrtaceousfruitsandseedsfromtheEoceneofBritishColumbiaandPaleoceneof NorthDakota.Canadian Journal of Botany71:19.

Plummer,P.S.,andE.R.Belle.1995.MesozoictectonostratigraphicevolutionoftheSeychelles microcontinent.Sedimentary Geology96:7391.

Porter,M.L.,M.PérezLosada,andK.A.Crandall.2005.Modelbasedmultilocusestimationof decapodphylogenyanddivergencetimes.Molecular Phylogenetics and Evolution37:355369.

RDevelopmentCoreTeam.2004.R:Alanguageandenvironmentforstatisticalcomputing.R FoundationforStatisticalComputing,Vienna,Austria.Availablefromhttp://www.Rproject.org.

Rambaut,A.,andA.J.Drummond.2005.Tracer1.3.Aprogramforanalyzingresultsfrom BayesianMCMCprogramssuchasBEAST&MrBayes.DepartmentofZoology,Universityof Oxford,Oxford,UK.Availablefromhttp://evolve.zoo.ox.ac.uk/software.html.

Reisz,R.R.,andJ.Müller.2004.Moleculartimescalesandthefossilrecord:apaleontological perspective.TRENDS in Genetics20:237241.

Renner,S.S.2004.Bayesiananalysisofcombinedchloroplastloci,usingmultiplecalibrations, supportstherecentarrivalofMelastomataceaeinAfricaandMadagascar.American Journal of Botany91:14271435.

Renner,S.S.2005.Relaxedmolecularclocksfordatinghistoricalplantdispersalevents.TRENDS in Plant Science10:550558.

Renner,S.S.,G.Clausing,andK.Meyer.2001.HistoricalbiogeographyofMelastomataceae:the rolesofTertiarymigrationandlongdistancedispersal.American Journal of Botany88:12901300.

Renner,S.S.,andK.Meyer.2001.Melastomeaecomefullcircle:biogeographicreconstructionand molecularclockdating.Evolution55:13151324.

163

Ronquist,F.,andJ.P.Huelsenbeck.2003.MrBayes3:Bayesianphylogeneticinferenceunder mixedmodels.Bioinformatics19:15721574.

Rozefelds,A.C.1996.Eucalyptusphylogenyandhistory:abriefsummary.Tasforests8:1526.

Rutschmann,F.2005.Bayesianmoleculardatingusingpaml/multidivtime.Astepbystepmanual. Version1.5(July2005).InstituteofSystematicBotany,UniversityofZurich,Zurich,Switzerland. Availablefromhttp://www.plant.ch.

Rutschmann,F.2006.Moleculardatingofphylogenetictrees:Abriefreviewofcurrentmethods thatestimatedivergencetimes.Diversity and Distributions12:3548.

Rutschmann,F.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?MoleculardatingevidencefromrbcL,ndhF,andrpl16sequences. International Journal of Plant Sciences165:6983.

Sanderson,M.J.1997.Anonparametericapproachtoestimatingdivergencetimesintheabsenceof rateconstancy.Molecular Biology and Evolution14:12181231.

Sanderson,M.J.1998.Estimatingrateandtimeinmolecularphylogenies:beyondthemolecular clock?Pp.242264inD.E.Soltis,P.S.SoltisandJ.J.Doyle,eds.Molecularsystematicsofplants II;DNAsequencing.KluwerAcademicPublishers,Norwell,MA.

Sanderson,M.J.2002.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes:a PenalizedLikelihoodapproach.Molecular Biology and Evolution19:101109.

Sanderson,M.J.2003.r8s:inferringabsoluteratesofmolecularevolutionanddivergencetimesin theabsenceofamolecularclock.Bioinformatics19:301302.

Sanderson,M.J.,J.L.Thorne,N.Wikström,andK.Bremer.2004.Molecularevidenceonplant divergencetimes.American Journal of Botany91:16561665.

Schönenberger,J.,andE.Conti.2003.MolecularphylogenyandfloralevolutionofPenaeaceae, Oliniaceae,Rhynchocalycaceae,andAlzateaceae(Myrtales).American Journal of Botany90:293 309.

Sebola,R.J.,andK.Balkwill.1999.Resurrectionoftwopreviouslyconfusedspecies,Olinia capensis(Jacq.)KlotzschandO. micranthaDecne.(Oliniaceae).South African Journal of Botany 65:97103.

Smith,A.B.,andJ.J.Peterson.2002.Datingthetimeoforiginofmajorclades:molecularclocks andthefossilrecord.Annual Review of Earth and Planetary Sciences30:6588.

Soltis,P.S.,D.E.Soltis,V.Savolainen,P.R.Crane,andT.G.Barraclough.2002.Rate heterogeneityamonglineagesoftracheophytes:Integrationofmolecularandfossildataand evidenceformolecularlivingfossils.Proceedings of the National Academy of Sciences USA 99:44304435.

Springer,M.S.1995.Molecularclocksandtheincompletenessofthefossilrecord.Journal of Molecular Evolution41:531538.

Storey,M.,J.J.Mahoney,A.D.Saunders,R.A.Duncan,S.P.Kelley,andM.F.Coffin.1995. TimingofhotspotrelatedvolcanismandthebreakupofMadagascarandIndia.Science267:852 855.

164

Swofford,D.L.2001.PAUP*4.0b10:PhylogeneticAnalysisUsingParsimony(*andother methods).Sinauer,Sunderland,MA.

Sytsma,K.J.,A.Litt,M.L.Zjhra,J.C.Pires,M.Nepokroeff,E.Conti,J.Walker,andP.G. Wilson.2004.Clades,clocks,andcontinents:historicalandbiogeographicalanalysisofMyrtaceae, Vochysiaceae,andrelativesinthesouthernhemisphere.International Journal of Plant Sciences 165:85105.

Tavaré,S.,C.R.Marshall,O.Will,C.Soligo,andR.D.Martin.2002.Usingthefossilrecordto estimatetheageofthelastcommonancestorofextantprimates.Nature416:726729.

Thompson,J.D.,T.J.Gibson,F.Plewniak,F.Jeanmougin,andD.G.Higgins.1997.TheClustalX windowsinterface:flexiblestrategiesformultiplesequencealignmentaidedbyqualityanalysis tools.Nucleic Acids Research24:48764882.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata.Systematic Biology51:689702.

Thorne,J.L.,H.Kishino,andI.S.Painter.1998.Estimatingtherateofevolutionoftherateof molecularevolution.Molecular Biology and Evolution15:16471657.

Tobe,H.,andP.H.Raven.1984.TheembryologyandrelationshipsofOliniaceae.Plant Systematics and Evolution146:105116. vanderHammen,T.1954.Eldesarrollodelafloracolombianaenlosperiodosgeológicos.I. MaestrichtianohastaTerciariomásinferior.Boletín de Geología2:49106. vanTuinen,M.,andE.A.Hadly.2004.Errorinestimationofrateandtimeinferredfortheearly AmniotefossilrecordandAvianmolecularclocks.Journal of Molecular Evolution59:267276.

Welch,J.J.,andL.Bromham.2005.Moleculardatingwhenratesvary.TRENDS in Ecology and Evolution20:320327.

Wikström,N.,V.Savolainen,andM.W.Chase.2001.Evolutionoftheangiosperms:calibrating thefamilytree.Proceedings of the Royal Society B: Biological Sciences268:22112220.

Wikström,N.,V.Savolainen,andM.W.Chase.2003.Angiospermdivergencetimes:congruence andincongruencebetweenfossilsandsequencedivergenceestimates.Pp.142165inP.C.J. DonoghueandM.P.Smith,eds.Tellingtheevolutionarytime:molecularclocksandthefossil record.Taylor&Francis,London,UK.

Wilson,P.G.,M.M.O'Brien,M.M.Heslewood,andC.J.Quinn.2005.Relationshipswithin MyrtaceaesensulatobasedonamatKphylogeny.Plant Systematics and Evolution251:319.

Wray,G.A.2001.DatingbranchesontheTreeofLifeusingDNA.Genome Biology3:1.11.7.

Yang,Z.2004.Aheuristicratesmoothingprocedureformaximumlikelihoodestimationofspecies divergencetimes.Acta Zoologica Sinica50:645656.

Yang,Z.,andB.Rannala.2005.Bayesianestimationofspeciesdivergencetimesunderamolecular clockusingmultiplefossilcalibrationswithsoftbounds.Molecular Biology and Evolution23:212 226.

165

Zuckerkandl,E.,andL.Pauling.1965.Evolutionarydivergenceandconvergenceinproteins.Pp. 97166inV.BrysonandH.Vogel,eds.EvolvingGenesandProteins.AcademicPress,NewYork.

Zurawski,G.,B.Perrot,W.Bottomley,andP.R.Whitfield.1981.Thestructureofthegeneforthe largesubunitofribulose1,5bisphosphatecarboxylasefromspinachchloroplastDNA.Nucleic Acids Research14:32513270.

166

Tables Table1.Speciesnames,sourcesandGenBankaccessionnumbersfortheDNAsequencesusedinthisstudy.Accessionnumberswithanasterisk representnewlygeneratedandsubmittedsequences.TheothersequenceswerefromaSchönenbergerandConti,2003,bContiet al.,1996,cClausingand Renner,2001,dContiet al.,2002,eRenneret al.,2001,fRennerandMeyer,2001,gRutschmannet al.,2004.n.a.=sequencescouldnotbegeneratedand weretreatedasmissingdata.Herbariaacronyms:BOL=Bolus,UniversityofCapeTown,SouthAfrica;BRUN=BruneiForestryCentre,Brunei Darussalam;CANB=CentreforPlantBiodiversityResearch,Canberra,Australia;CAY=InstitutdeRecherchepourleDeveloppement,French Guiana/Cayenne,INPA=InstitutoNacionaldePesquisasdaAmazônia,Manaus,Brazil;K=RoyalBotanicGardens,Kew,England;NY=NewYork BotanicalGarden,Bronx,NewYork;SAN=ForestResearchCentre,Sandakan,Sabah,Malaysia;Z=UniversityofZurich,Switzerland.

GenBankaccessionnumbers Taxon Voucher rbcL ndhF rpl16intron nr18S nr26S Crypteroniaceae A.DC.(1868),nom.cons. J.Pereira,san142218142220,Sabah, Axinandra coriacea Baill. AM235621 n.a. AM235441 AM235477 AM235549 Malaysia,(SAN),(Z). Axinandra zeylanica Thwaites PeterAshton,s.n.,SriLanka AY078157d AJ605094g AJ605107g AM235478 AM235550 Crypteronia borneensis J.T. F.Rutschmann,fru61,(BRUN),(Z) AM235622 AM235389 AM235442 AM235479 AM235551 Pereira&Wong Crypteronia glabrifolia J.T. F.Rutschmann,fru28,(BRUN),(Z) AM235623 AM235390 AM235443 AM235480 AM235552 Pereira&Wong Crypteronia griffithiiC.B. ShawnLum,s.n.,Singapore AJ605087g AJ605098g AJ605108g AM235481 AM235553 Clarke Crypteronia paniculataBlume SeeGenBankassociatedreferences AY078153d AJ605099g AY151597a AM235482 AM235554

167

Dactylocladus stenostachys PeterBecker,s.n.,Brunei AY078156d AJ605100g AJ605109g AM235483 AM235555 Oliver Alzateaceae S.A.Graham(1985) Alzatea verticillata Ruiz& SeeGenBankassociatedreferences U26316b AF215591c AY151598a AM235484 AM235556 Pavon Rhynchocalycaceae L.A.S.Johnson&B.G.Briggs (1985) Rhynchocalyx lawsonioides SeeGenBankassociatedreferences U26336b AF270757c AY151599a AM235485 AM235557 Oliver Oliniaceae Arn.exSond.(1839),nom. cons. Olinia capensis(Jacq.) J.Schönenberger519(Z),(BOL) AM235624 AM235392 AY151600a AM235486 AM235558 Klotzsch J.Schönenberger579,cultivatedin Olinia emarginata BurttDavy AJ605089g AJ605102g AY151601a AM235487 AM235559 KirstenboschBotanicalGarden,(Z) Olinia radiataHofmeyr& T.Abbott,6341,(Z) AM235625 AM235393 AY151602a AM235488 AM235560 Phill. Olinia vanguerioidesBakerf. A.Blarer,s.n.,(Z) AM235626 AM235394 AY151603a AM235489 AM235561 Olinia ventosa(L.)Cufod. SeeGenBankassociatedreferences AF215546c AF215594c AY151604a AM235490 AM235562 Penaeaceae Sweetex.Guillemin(1828), nom.cons. Brachysiphon acutus(Thunb.) J.Schönenberger365,(Z),(BOL) AJ605084g AJ605095g AY151605a AM235491 AM235563 A.Juss. Brachysiphon fucatus (L.)Gilg J.Schönenberger357(Z),(BOL) AJ605085g AJ605096g AY151606a AM235492 AM235564 Brachysiphon microphyllus J.Schönenberger386(Z),(BOL) AJ605086g AJ605097g AY151608a AM235493 AM235565 Rourke Brachysiphon mundiiSond. J.Schönenberger377(Z),(BOL) AM235627 AM235395 AY151607a AM235494 AM235566

168

Brachysiphon rupestrisSond. J.Schönenberger366(Z),(BOL) AM235628 AM235396 AY151609a AM235495 AM235567 Endonema lateriflora(L.f.) J.Schönenberger369(Z),(BOL) AM235629 AM235397 AY151610a AM235496 AM235568 Gilg Endonema retzioidesSond. J.Schönenberger370(Z),(BOL) AJ605088g AJ605101g AY151611a AM235497 AM235569 Glischrocolla formosa J.Schönenberger521,photovouchered AM235630 AM235398 AY151612a AM235498 AM235570 (Thunb.)R.Dahlgren Penaea acutifoliaA.Juss. J.Schönenberger376(Z),(BOL) AM235631 AM235399 AY151613a AM235499 AM235571 Penaea cneorumMeerb.ssp. J.Schönenberger363(Z),(BOL) AM235632 AM235400 AY151614a AM235500 AM235572 cneorum Penaea cneorumMeerb.ssp. J.Schönenberger375(Z),(BOL) AM235633 AM235401 AY151615a AM235501 AM235573 giganteaR.Dahlgren Penaea cneorumMeerb.cf. J.Schönenberger320(Z),(BOL) AM235634 AM235402 AY151616a AM235502 AM235574 ssp.lanceolata R.Dahlgren Penaea cneorumMeerb.ssp. ovata(Eckl.&Zeyh.exA. J.Schönenberger374(Z),(BOL) AM235635 AM235403 AY151617a AM235503 AM235575 DC.)R.Dahlgren Penaea cneorumMeerb.cf. J.Schönenberger368(Z),(BOL) AM235636 AM235404 AY151618a AM235504 AM235576 ssp.ruscifoliaR.Dahlgren Penaea dahlgreniiRourke J.Schönenberger388(Z),(BOL) AM235637 AM235405 AY151619a AM235505 AM235577 Penaea mucronataL. SeeGenBankassociatedreferences AJ605090g AF270756c AY151620a AM235506 AM235578 Saltera sarcocolla (L.)Bullock J.Schönenberger360(Z),(BOL) AJ605091g AJ605103g AY151621a AM235507 AM235579 Sonderothamnus petraeus J.Schönenberger362(Z),(BOL) AY078154d AJ605104g AY151622a AM235508 AM235580 (Barkerf.)R.Dahlgren Sonderothamnus speciosusR. J.Schönenberger364(Z),(BOL) AM235638 AM235406 AY151623a AM235509 AM235581 Dahlgren Stylapterus ericifolius (A. J.Schönenberger372(Z),(BOL) AM235639 AM235407 AY151624a AM235510 AM235582 Juss.)R.Dahlgren Stylapterus ericoides A.Juss. J.Schönenberger355(Z),(BOL) AJ605092g AJ605105g AY151625a AM235511 AM235583 ssp.pallidus R.Dahlgren Stylapterus fruticulosus(L.f.) J.Schönenberger359(Z),(BOL) AM235640 AM235408 AY151626a AM235512 AM235584

169

Stylapterus micranthusR. M.Johns,s.n.,(Z) AJ605093g AJ605106g AY151627a AM235513 AM235585 Dahlgren Memecylaceae DC.(1827),nom.cons. Memecylon durum Cogn. F.Rutschmann,fru35,(BRUN),(Z) AM235641 AM235444 AM235514 AM235586 Memecylon edule Roxb. SeeGenBankassociatedreferences AF215528c AF215574c AF215609c n.a. n.a. Melastomataceae Juss.(1789),nom.cons. Bertolonia marmorata F.Rutschmann,fru78,cultivatedinthe AM235642 AM235409 AM235445 AM235515 AM235587 (Naudin) ZurichBotanicalGarden,(Z) Clidemia petiolaris (Schltdl.& KewDNAdatabase,2534,Chase2534, AM235643 AM235410 AM235446 AM235516 AM235588 Cham.) (K) Graffenrieda latifolia (Naudin) FabianMichelangeli,FAM794,(NY) AM235644 AM235411 AM235447 AM235517 AM235589 Triana Macrocentrum cristatum (DC.) M.F.Prévost(Fanchon)4841,French AM235645 AM235412 AM235448 AM235518 AM235590 Triana Guyana,(CAY),(Z) Melastoma beccarianum Cogn. F.Rutschmann,fru74,(BRUN),(Z) AM235646 AM235413 AM235449 AM235519 AM235591 Meriania macrophylla(Benth.) FabianMichelangeli,FAM829,(NY) AM235647 AM235414 AM235450 AM235520 AM235592 Triana Miconia donaeana Naudin FabianMichelangeli,FAM727,(NY) AM235648 AM235415 AM235451 AM235521 AM235593 J.Pereira,san142201142203,Sabah, Pternandra caerulescens Jack AM235649 AM235416 AM235452 AM235522 AM235594 Malaysia,(SAN),(Z). Pternandra echinata Jack SeeGenBankassociatedreferences AF215520c AF215559c AF270744c n.a. n.a. (Metcalfe1996) T.Eriksson,cultivatedintheBergius Rhexia virginicaL. BotanicalGarden,Stockholm.Seealso U26334b AF215587c AF215623c AM235523 AM235595 GenBankassociatedreferences Tibouchina urvilleana(D.C.) SeeGenBankassociatedreferences U26339b AF272820f AF322234f AM235524 AM235596 Cogn. Tococa guianensisAublet FabianMichelangeli,FAM703 AM235650 AM235417 AM235453 AM235525 AM235597 Myrtaceaes.l.

170

Juss.(1789),nom.cons. EdBiffin,cultivatedintheAustralian Angophora costata (Gaertn.) NationalBotanicGardens,Canberra, AM235651 AM235418 AM235454 AM235526 AM235598 Britten (CANB) Callistemon citrinus (Curtis) F.Rutschmann,fru79,cultivatedinthe AM235652 AM235419 AM235455 AM235527 AM235599 Skeels ZurichBotanicalGarden,(Z) Eucalyptus lehmannii (L. F.Rutschmann,fru80,cultivatedinthe AM235653 AM235420 AM235456 AM235528 AM235600 PreissexSchauer)Benth. ZurichBotanicalGarden,(Z) F.Rutschmann,fru81,cultivatedinthe Eugenia uniflora L. AM235654 AM235421 AM235457 AM235529 AM235601 ZurichBotanicalGarden,(Z) F.Rutschmann,fru82,cultivatedinthe vestita Schauer AM235655 AM235422 AM235458 AM235530 AM235602 ZurichBotanicalGarden,(Z) Leptospermum scoparium JR F.Rutschmann,fru83,cultivatedinthe AM235656 AM235423 AM235459 AM235531 AM235603 Forst.&G.Forst. ZurichBotanicalGarden,(Z) EdBiffin,cultivatedintheAustralian Lophostemon confertus (R. NationalBotanicGardens,Canberra, AM235657 AM235424 AM235460 AM235532 AM235604 Br.)PGWilson&Waterhouse (CANB) Melaleuca alternifolia (Maid. F.Rutschmann,fru84,cultivatedinthe AM235658 AM235425 AM235461 AM235533 AM235605 andBet.)Cheel ZurichBotanicalGarden,(Z) Metrosideros excelsaBanks. F.Rutschmann,fru85,cultivatedinthe AM235659 AM235426 AM235462 AM235534 AM235606 ex.Gaertn. ZurichBotanicalGarden,(Z) Tristaniopsis sp. indet. F.Rutschmann,fru70,(BRUN),(Z) AM235660 AM235427 AM235463 AM235535 AM235607 EdBiffin9102545,cultivatedinthe Uromyrtus metrosideros AustralianNationalBotanicGardens, AM235661 AM235428 AM235464 AM235536 AM235608 (Bailey)AJ.Scott Canberra,(CANB) PeterWilson,cultivatedintheRoyal Heteropyxis natalensis Harv. BotanicalGardens,,RBG AM235662 AM235429 AM235465 AM235537 AM235609 781154. Psiloxylon mauritianum DennisHansen,LaRéunion,(Z) AM235663 AM235430 AM235466 AM235538 AM235610 ThouarsexTul. Vochysiaceae A.St.Hil.(1820),nom.cons.

171

Ruizterania albiflora KewDNAdatabase,3622,RIB1498, AM235664 AM235431 AM235467 AM235539 AM235611 (Warming)MarcanoBerti (INPA) KewDNAdatabase,1054,Litt32, Vochysia tucanorumMart. AM235665 AM235432 AM235468 AM235540 AM235612 (NY) Onagraceae Juss.(1789),nom.cons. F.Rutschmann,fru86,cultivatedinthe Circaea lutetianaL. AM235666 AM235433 AM235469 AM235541 AM235613 ZurichBotanicalGarden,(Z) F.Rutschmann,fru87,cultivatedinthe Fuchsia paniculataLindl. AM235667 AM235434 AM235470 AM235542 AM235614 ZurichBotanicalGarden,(Z) Fuchsia procumbens R.Cunn. T.Eriksson,cultivatedintheBergius AM235668 AM235435 AM235471 AM235543 AM235615 exA.Cunn. BotanicalGarden,Stockholm Gaura lindheimeri Engelm.& F.Rutschmann,fru88,cultivatedinthe AM235669 AM235436 AM235472 AM235544 AM235616 A.Gray ZurichBotanicalGarden,(Z) F.Rutschmann,fru89,cultivatedinthe Ludwigia palustris AM235670 AM235437 AM235473 AM235545 AM235617 BotanischerGartenBasel,(Z) F.Rutschmann,fru90,cultivatedinthe Oenothera macrocarpa Nutt. AM235671 AM235438 AM235474 AM235546 AM235618 ZurichBotanicalGarden,(Z) Lythraceae JaumeSt.Hil.(1805),nom. cons. F.Rutschmann,fru91,cultivatedinthe Cuphea hyssopifolia Kunth AM235672 AM235439 AM235475 AM235547 AM235619 ZurichBotanicalGarden,(Z) PeterWilson,cultivatedintheRoyal Duabanga grandiflora (Roxb. BotanicalGardens,Sydney,RBG AM235673 AM235440 AM235476 AM235548 AM235620 exDC.)Walpers 811005.

172

Table2.Fossilsusedinthisstudywithcorrespondingages,locations,andreferences.Thefossilageshighlightedinboldwereusedforcalibration.

Fossils Fossilages Locations References

1.Melastomataceaeleaves EarlyEocene(53mys) NorthDakota Hickey,1977

Russia(Siberia,Tambov Dorofeev,1960,1963,1988;Collinsonand Miocene 2.Melastomeaeseeds region),Belarus,Poland, Pingen,1992;Dyjoret al.,1992;Fairon (2623mys) Germany,Belgium Demaret,1994;Mai,1995,2000

Santonian Herngreen,1975;Boltenhagen,1976; Gabon (86mys) Muller,1981 3.PollenofMyrtaceidites lisamae LowerSenonian Borneo Muller,1968 = Syncolporites lisamae (89–83.5mys) Maastrichtian Colombia VanderHammen,1954 (71.3–65mys) LatePaleocene NorthDakota Craneet al.,1990;Pigget al.,1993 4.Fruitsandseedsof (56mys) Paleomyrtinaea EarlyEocene(54mys) BritishColumbia Manchester,1999

MiddleEocene RedbankPlainsFormation, Rozefelds,1996 (48mys) Queensland,Australia 5.Eucalyptlikefruits MiddleEocene LakeEyre,NellyCreek, Christophelet al.,1992 (48mys) northernSouthAustralia EarlyOligocene Daghlianet al.,1985;Berryet al.,1990; 6.FuchsiapollenDiporites aspis Australia (33.7–28.5mys) Berryet al.,2004

173

Table3.Characteristicsofthe72differentcalibrationsets,eachconsistingofsixcalibrationpoints:Averagesquareddeviations(seeFigure2);nodal distancessummedupoverallfossilcalibrationruns(seeFigures1and2);percentdeviationofsfromregressionlinewithnodaldistances(seeFigures3 and4);meanagesofnodeX(seeFigure1)withstandarddeviationsand95%credibilityintervals(seeFigures4,5,and6).Thethreesetswiththe highestlevelofcorrectedcalibration–setconsistencyareshadedinlightgrey,whereasthethreesetswiththelowestcorrectedconsistencyareshadedin darkgrey.Notethatfossil2couldbeassignedtoonlyonenodeinourphylogeny(node2).

Percent 95%credibilityinterval Average deviation Mean Calibration Calibrationpoints Nodal squared ofsfrom ageofnodeX SD set distances deviations regression [mys] 2.5th 97.5th line percentile percentile 1 2 3 4 5 6 1 a 2 a a a a 0.0610 214 15.870 72.80 7.92 57.25 88.81 2 a 2 a b b b 0.1411 244 17.133 78.14 7.57 63.14 92.22 3 a 2 a a b b 0.1098 234 15.960 76.66 7.62 61.30 91.12 4 a 2 a b a a 0.0982 224 9.053 75.83 7.74 60.72 91.06 5 a 2 a a a b 0.0769 224 16.133 74.40 7.88 59.24 89.71 6 a 2 a b b a 0.1291 234 1.419 77.27 7.67 61.27 92.36 7 a 2 a a b a 0.0957 224 6.689 74.80 7.78 59.17 89.99 8 a 2 a b a b 0.1120 234 13.642 77.15 7.45 62.66 91.82 9 a 2 b a a a 0.0662 216 11.062 75.55 7.88 59.63 90.29 10 a 2 b b b b 0.1375 246 25.719 79.14 7.34 64.44 93.31 11 a 2 b a b b 0.1088 236 23.954 78.15 7.49 62.97 91.98 12 a 2 b b a a 0.1008 226 3.864 77.12 7.60 61.73 91.73 13 a 2 b a a b 0.0792 226 22.426 76.61 7.54 61.60 91.34 14 a 2 b b b a 0.1285 236 4.954 78.38 7.66 63.06 92.81 15 a 2 b a b a 0.0977 226 0.865 76.81 7.69 61.21 91.95 16 a 2 b b a b 0.1116 236 20.846 78.19 7.43 62.86 92.43 174

17 a 2 c a a a 0.0794 218 16.299 77.08 7.80 61.21 91.72 18 a 2 c b b b 0.1417 248 27.351 79.70 7.55 64.47 94.76 19 a 2 c a b b 0.1169 238 21.903 79.21 7.50 63.69 93.02 20 a 2 c b a a 0.1102 228 5.136 78.01 7.82 61.76 92.96 21 a 2 c a a b 0.0914 228 14.361 78.50 7.57 62.56 92.77 22 a 2 c b b a 0.1337 238 6.553 78.36 7.67 62.63 92.96 23 a 2 c a b a 0.1068 228 2.161 78.43 7.95 62.98 93.42 24 a 2 c b a b 0.1200 238 18.753 79.42 7.63 63.76 93.87 25 b 2 a a a a 0.1414 230 20.730 72.84 8.39 56.80 89.34 26 b 2 a b b b 0.2246 260 0.661 79.30 8.13 63.07 94.74 27 b 2 a a b b 0.1925 250 2.265 76.61 8.42 60.31 93.44 28 b 2 a b a a 0.1794 240 16.351 75.99 8.55 59.39 92.26 29 b 2 a a a b 0.1596 240 5.926 74.55 8.78 58.50 92.04 30 b 2 a b b a 0.2104 250 10.601 77.48 8.59 60.92 93.88 31 b 2 a a b a 0.1762 240 14.793 74.64 8.58 58.15 91.25 32 b 2 a b a b 0.1955 250 3.781 77.69 8.46 60.69 93.73 33 b 2 b a a a 0.1468 232 18.448 74.92 8.83 58.32 92.23 34 b 2 b b b b 0.2211 262 5.682 79.76 8.39 63.48 95.23 35 b 2 b a b b 0.1916 252 2.128 78.40 8.63 60.82 94.68 36 b 2 b b a a 0.1822 242 13.427 77.53 8.54 60.81 94.36 37 b 2 b a a b 0.1619 242 2.608 76.98 8.62 60.23 93.92 38 b 2 b b b a 0.2099 252 6.773 78.52 8.61 61.57 95.03 39 b 2 b a b a 0.1783 242 11.562 76.20 8.59 59.39 93.04 40 b 2 b b a b 0.1952 252 0.248 78.79 8.44 62.39 94.58 41 b 2 c a a a 0.1599 234 20.387 76.58 8.64 59.42 93.34 42 b 2 c b b b 0.2252 264 7.131 80.43 8.41 63.90 96.26 43 b 2 c a b b 0.1996 254 1.861 78.81 8.35 61.89 94.17 44 b 2 c b a a 0.1914 244 13.646 78.27 8.58 61.70 95.00 45 b 2 c a a b 0.1740 244 5.026 78.43 8.62 61.70 95.19 46 b 2 c b b a 0.2150 254 5.450 79.21 8.56 62.70 95.82 47 b 2 c a b a 0.1873 244 11.735 77.16 8.80 60.38 94.60 48 b 2 c b a b 0.2035 254 0.089 79.84 8.00 63.51 95.53 175

49 c 2 a a a a 0.1835 240 18.205 74.49 8.62 58.29 91.65 50 c 2 a b b b 0.2654 270 0.502 79.54 8.84 62.21 96.80 51 c 2 a a b b 0.2335 260 3.177 76.92 8.82 59.50 94.27 52 c 2 a b a a 0.2213 250 14.999 77.40 8.84 59.56 94.04 53 c 2 a a a b 0.2008 250 6.307 76.19 8.79 59.28 93.81 54 c 2 a b b a 0.2521 260 10.316 78.20 8.74 61.17 95.89 55 c 2 a a b a 0.2181 250 13.757 76.47 8.89 58.85 93.67 56 c 2 a b a b 0.2365 260 4.380 78.17 8.66 61.25 94.98 57 c 2 b a a a 0.1884 242 16.280 76.51 8.58 59.66 93.18 58 c 2 b b b b 0.2614 272 3.921 80.37 8.54 63.11 96.18 59 c 2 b a b b 0.2322 262 0.655 78.37 8.96 60.34 96.05 60 c 2 b b a a 0.2235 252 12.441 78.92 8.61 61.62 95.37 61 c 2 b a a b 0.2026 252 3.418 77.64 8.75 60.70 95.12 62 c 2 b b b a 0.2511 262 6.936 79.43 8.72 62.31 96.32 63 c 2 b a b a 0.2198 252 10.947 77.35 8.80 59.40 93.97 64 c 2 b b a b 0.2357 262 0.839 79.77 8.74 62.06 96.74 65 c 2 c a a a 0.2013 244 17.890 77.80 8.68 59.91 94.11 66 c 2 c b b b 0.2654 274 5.245 81.46 8.69 64.39 98.24 67 c 2 c a b b 0.2400 264 0.554 79.74 8.52 63.31 96.77 68 c 2 c b a a 0.2326 254 12.595 79.31 8.70 62.18 95.73 69 c 2 c a a b 0.2146 254 5.256 79.12 8.90 61.32 95.80 70 c 2 c b b a 0.2560 264 5.759 80.57 8.69 63.24 97.94 71 c 2 c a b a 0.2285 254 11.047 78.48 8.81 61.27 95.67 72 c 2 c b a b 0.2438 264 1.013 80.64 8.65 63.42 97.54

176

Table4.DistributionofcalibrationpointsincalibrationsetsA(seeFigure3).Theletterxinthe“consensusset”indicatesthat,amongthe12calibration sets,thefossilwasassignedtoallpossiblecalibrationnodes.

Nodalassignmentsinthe12 Fossil calibrationsetsA

a b c 1 all12 0 0 2 3 4 4 4 4 6 6 5 6 6 6 0 all12 Consensus 1a 2 3x 4x 5x 6b

177

Table5.Characteristicsofthesixcalibrationsetswiththehighest(18,10,11)andthelowest(33,41,25)levelsofcorrectedinternalconsistency.

Calibrationsetswith Calibrationsetswith Fossil Min.fossilage[mys] highestcorrectedconsistency lowestcorrectedconsistency

set18 set10 set11 set33 set41 set25 1 53 1a 1a 1a 1b 1b 1b 2 23 2 2 2 2 2 2 3 86 3c 3b 3b 3b 3c 3a 4 56 4b 4b 4a 4a 4a 4a 5 48 5b 5b 5b 5a 5a 5a 6 28.5 6b 6b 6b 6a 6a 6a

Averagesquareddeviations 0.1417 0.1375 0.1088 0.1468 0.1599 0.1414

Percentdeviationofsfrom 27.351 25.719 23.954 18.448 20.387 20.730 regressionline(seeFigures3and4)

EstimatedagefornodeX[mys] 79.7 79.14 78.15 74.92 76.58 72.84 withstandarddeviation ±7.55 ±7.34 ±7.49 ±8.83 ±8.64 ±8.39

178

Figures

Figure1(seelegendonnextpage)

179

Figure1(previouspage).MrBayesmajorityruleconsensustreewithmeanbranchlengths, basedonthecombined5124nucleotidedataset.Maximumlikelihoodbootstrapsupportvalues andBayesiancladecredibilityvaluesarereportedaboveandbelowthebranches,respectively. Generaldistributionrangesofthefocusgroupsarereportedtotherightofthetree,asarethe infrafamilialranksrelevanttofossilnodalassignments.NodeXrepresentsthephylogeneticsplit betweentheSoutheastAsianCrypteroniaceaestemlineageanditsAfrican/SouthAmericansister clade.Alternativenodalassignments(a,b,orc)forthesixfossilslistedinTable2arelabelledon thetree.Outgrouptaxaareindicatedbyanasterisk.

180

0.3

0.25 50 58 66 s

0.2

2 41 R = 0.8967 0.15 33 25 10 18 0.1 11

5 9 Averagesquared deviation 0.05 1

0 200 210 220 230 240 250 260 270 280

Nodal distance

Figure2.Correlationbetweentheaveragesquareddeviationsandnodaldistanceamong calibrationpoints(seeTable3).RrepresentsPearson’scorrelationcoefficient.Calibrationsets1, 9,5and50,66,58representthesetswiththelowestandhighestsvalues,respectively. Calibrationsets18,10,11and33,41,25(circled)showthesvaluesthatdeviatethemostbelow andabove,respectively,theregressionline.

181

30.00

25 41 20.00 33

calibration 10.00 sets A

0.00 from regression line with nodal distance nodal with line regression from

s calibration -10.00 sets B

-20.00

11 10

Percent deviation of deviation Percent 18 -30.00 Highest corrected Lowest corrected calibration-set consistency calibration-set consistency 72 different calibration sets

Figure3.Histogramrepresentingthepercentdeviationofs fromtheregressionlineofFigure2 forall72calibrationsets.Twelvecalibrationsetsshowedsvaluesthatwereatleast10%lower thanexpectedfromtheregressionline(calibrationsetsA).Thesesetsareassociatedwiththe highestlevelofcorrectedcalibrationsetconsistency.Twentythreecalibrationsetsshoweds valuesthatwereatleast10%higherthanexpectedfromtheregressionline(calibrationsetsB). Thesesetsareassociatedwiththelowestlevelofcorrectedcalibrationsetconsistency.

182

13

12.5

12 33 25 11.5

11 41 R2 = 0.5975 10.5

10 11 18 9.5 10 9

8.5 Highest corrected Lowest corrected calibration-set consistency calibration-set consistency

Percent standard deviation thefor age of node X 8 -30 -20 -10 0 10 20 30

Percent deviation of s from regression line with nodal distance

Figure4.Correlationbetweencorrectedcalibrationsetconsistency(expressedaspercent deviationofsfromtheregressionlinewithnodaldistance;seeFigures2and3)andpercent standarddeviationfortheageofnodeX.Thethreecalibrationsets18,10,and11producedlower standarddeviationsfortheageofnodeXthanthethreecalibrationsets33,41,and25.

183

Figure5.Thetwochronogramsderivedfromthetwocalibrationsets(66and1)thatyieldedthe oldest(inblack)andyoungest(ingrey)agesfornodeX,respectively.Thecalibrationpointsof thetwosets(set66:1c, 2, 3c, 4b, 5b, 6b;set1:1a, 2, 3a, 4a, 5a, 6a)aremarkedonthetrees. 184

Figure6.DistributionofmeanagesfornodeXestimatedfromthe72moleculardatinganalyses. Overallmean:77.74mys,standarddeviation:8.51mys,95%credibilityinterval(representingthe 2.5thand97.5thpercentileoftheposteriordistribution):60.89–94.21mys.

185

186

Chapter VI. Taxon sampling effects in molecular clock dating: An example from the African Restionaceae

H.PeterLinder1,ChristopherR.Hardy1,andFrankRutschmann 1Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland

Publishedin MolecularPhylogeneticsandEvolution35:569582.2005.

187

Abstract Threecommonlyusedmoleculardatingmethodsforcorrectionofvariablerates(non parametricratesmoothing,penalizedlikelihoodandBayesianratecorrection)aswellasthe assumptionofaglobalmolecularclockweretestedforsensitivitytotaxonsampling.Thetest datasetof6854basepairsfor300terminalsincludesanearlycompletesampleoftheRestioclade oftheAfricanRestionaceae(272ofthe288species),aswellas26outgroupspecies.Ofthis, nestedsubsetsof35,51,80,120,150andthefull300specieswereused.Moleculardating experimentswiththesedatasetsshowedthatallmethodsaresensitivetoundersampling,butthat thiseffectismoresevereinanalysesthatusemoreextremeratesmoothing.Additionally,the undersamplingeffectispositivelyrelatedtodistancefromthecalibrationnode.Thecombined effectofundersamplinganddistancefromthecalibrationnoderesultedinuptothreefold differencesintheageestimationofnodesfromthesamedatasetwiththesamecalibrationpoint. WesuggestthatthemostsuitablemethodsarePenalizedLikelihoodandBayesianwhenaglobal clockassumptionhasbeenrejected,asthesemethodsaremoresuccessfulatfindingoptimal levelsofsmoothingtocorrectforrateheterogeneity,andarelesssensitivetoundersampling. Keywords:Moleculardating,NPRS,PenalizedLikelihood,Bayesiandating,sampling effects,Restionaceae,Lineagethroughtimeplots.

188

Introduction Datingtheinternalnodesofcladogramsisusefulformanyevolutionaryinvestigations, forexampleexploringplantinsectcospeciation(e.g.Percyetal.,2004),historical biogeographicalanalysis(e.g.Contietal.,2002;Davisetal.,2002;Nagyetal.,2003;Vinnersten andBremer,2001),andrelatingspeciationratechangestopalaeoenvironmentalchanges(e.g. Kadereitetal.,2004;Linder,2003).However,moleculardatingisbesetbyanumberof problems.Forexample,thepseudoprecisionanderrorsthatmayresultfromtheuseofinadequate calibrationpoints,andespeciallytheuseofderivedcalibrationpointswhicharenotdirectly basedonfossilevidence,haverecentlyreceivedattention(GraurandMartin,2004;Hedgesand Kumar,2004;Lee,1999;ShaulandGraur,2002).Furthermore,theassumptionofaglobal molecularclockhasbeenshowntobeinvalidinmanyinstances(Gaut,1998).Variousmethods havebeendevelopedtoaccommodateratevariation:theseincludetheremovalofcladeswith deviantrates(Takezakietal.,1995),excludingdatapartitionsthatfalsifytheclockassumption (Katoetal.,2003),usingseverallocalclocksforratehomogenousclades(i.e.,thelocalclocks approachofYoderandYang,2000),usingnonparametricratesmoothingtoconstrainbetween internoderatevariation(Sanderson,1997),andsearchingfortheoptimalratesusingBayesian methods(Thorneetal.,1998)andpenalizedlikelihood(Sanderson,2002a).However,there seemstohavebeennoinvestigationintotheeffectsofsamplingonlyasmallproportionofthe terminals(species)ontheageestimatesoftheinteriornodes.Anunderstandingofhow undersamplingeffectsageestimatesisimportant,asmolecularphylogeneticinvestigationsof cladeagesareoftenbasedonsparsetaxonsamples. Hereweinvestigatethesensitivityofvariousmethodsofobtainingmolecularage estimatestoincompletetaxonsamplinginthe"Restioclade"ofAfricanRestionaceae() which,with288species,isthelargestcladeofAfricanRestionaceae.TheAfricanRestionaceae asawholecomprise350speciesofevergreen,rushlikeplantsthatcollectivelydominatemuchof thefynbosvegetationofthespeciesrichCapeFloristicRegionofSouthernAfrica(Linder,1991; Linder,2003;Taylor,1978).Specifically,weevaluateeffectonnodeageestimatesofincreasing ordecreasingtaxonsampling,anddistancefromthecalibrationnode.OurdataontheRestio cladeareparticularlysuitedthistypeofinvestigationbecause(1)taxonsamplingisnearly complete(ca.95%),and(2)phylogeneticrelationshipsarewellresolvedandsupportedbyover 6,000nucleotidesofDNAsequencedata.

189

Methods Phylogeny estimation Twohundredandseventytwospecies(ca.95%)ofthe288speciesofthe"Restioclade" AfricanRestionaceaewereincludedinthecurrentanalysis.Additionally,bothsubspeciesof Restio dodiiandtwoaccessionsofthevariableandwidespreadspeciesIschyrolepis macerwere included,astheyappeartorepresenttwodistinctchloroplastlineagesandmaybeseparate species.Toallowtheuseofthebasaldatingnode,wealsoincluded24speciesofthe "Willdenowiaclade"ofAfricanRestionaceae.Assuch,atotalof298plantsofAfrican Restionaceaeweresampledforthisanalysis.Ofthe16speciesofthe"Restioclade"thatwerenot included,threearepossiblynottaxonomicallydistinct(fordetailedcomment,seeLinder,2001), andtheremaindercouldnotbelocatedinthefieldforthecollectionofextractionqualityplant material.BasedonthephylogeneticstudiesofBriggs et al.(2000)andLinderet al.(2003),the treewasrootedtotwoterminalsrepresentingtheca.150speciesofAustralianRestionaceae. DNAsequencesweregeneratedfromtheplastidregionsspanningthetrnLintronandthe trnL-trnFintergenicspacer(Taberletetal.,1991),thecompletegeneencodingrbcL(Chaseand Albert,1998),thecompleteatpB-rbcLintergenicspacer(ChiangandSchaal,2000;Cuénoudet al.,2000;Manenetal.,1994),andmatKplustheflankingtrnKintron(HiluandLiang,1997). TotalDNAwasisolatedfromsilicageldriedculmsusingtheDNeasy®PlantMiniKit(Qiagen, Inc.;Valencia,California,USA).SequencesweregeneratedusingstandardmethodsforPCR amplificationandautomatedsequencing. RawsequencedatafileswereanalysedwiththeABIPrism™377SoftwareCollection 2.1.ContigswereconstructedinSequencher™andalignmentswereperformedusingthedefault alignmentparametersinClustalX(Thompsonetal.,1997),followedbyadjustmentbyeye. ThesesequenceswereassembledintoasinglematrixinWinClada(Nixon,2002).Thealigned matrixconsistedof6854alignedbases,ofwhich1512areparsimonyinformative.Additionally, indelswerecodedattheendofthematrixusingSimpleIndelCoding(SimmonsandOchoterena, 2000)asimplementedintheprogramGapCoder(YoungandHealy,2001).Thetotalmatrix consistsof1782parsimonyinformativecharacters.Allcharacterswereweightedequallyand treatedasnonadditiveduringtreesearches.Thisdatamatrixhasbeendepositedat www.treebase.org. Parsimonysearcheswereconductedusingtheparsimonyratchet(Nixon,1999)as implementedfromWinClada,runningNONAvers.1.6(Goloboff,1993)asadaughterprocess. Tenratchetsearcheswereconducted,eachinitiatedwiththegenerationofaWagnertree,usinga randomtaxonentrysequence,followedbyTBRbranchswappingwithonetreeretainedandused 190 asthestartingpointfor500ratchetcycles.Intheweighted/constrainedhalfofeachratchetcycle, arandomlyselectedsetof10%ofthecharacterswereresampled,andarandomlyselectedsetof 10%oftheresolvedcladeswereconstrained.Thisanalysisresultedin885equallymost parsimoniouscladograms(L=5415,CI=0.44,RI=0.84;informativecharactersonly).These werethenpooledandswappedtoobtainatotalof10,615cladogramsoflength5415.Oneof thesecladogramswasarbitrarilychosenforthesubsequentinvestigationintotheimpactoftaxon samplingontheestimationofabsolutedatesanddivergencetimes. Construction of smaller subset matrices and cladograms Usingour300taxonmatrix(notincludingindels)andtreeasfixedstartingpoints,six smallermatricesandtreeswereconstructedbydeletingterminalsinMesquite1.02(Maddison andMaddison,2003).Thesesmallerdatasetshave150,120,100,80,51,and35 species/terminalsrespectively.Thelistofspeciesandsequencesineachsmallersetisaprecise subsetofthenextlargerset,andeachemployedthesamerelativealignmentandtreetopologyas thoseobtainedfromthe300taxonanalysis.Theonlydifferenceslieinthenumbersofterminals andbytheexclusionofextraneousgapsfromthelargermatricesthatarenolongernecessaryin thesmallermatrices.Assuch,eachsuccessivelysmallermatrixconsistsof6623,6547,6480, 6399,6248,and6135alignedbases.Forthesmallest(35species)sampling,atleasttwo representativesofthebasallineagesforeachofthe32cladesdepictedinFigure1werechosen. Successivelylargerdatamatricesandcladogramssimplyaddeddescendantspeciesand, therefore,moredistalnodestothese32nodesofinterest(the"testnodes").Thustheproportion ofthedescendentspeciessampleddiffersenormouslyamongthetestnodes,asdoestherateat whichthesamplingdensityincreases(Table1).Thisparticularstrategywaschosenbecauseit resultsinasetofcomparabletestnodesforeachsamplingset(Simmonsetal.,2004).Sampling basallineagesisalsothemethodusedbyphylogeneticiststoestimatetheageofparticularclades withincompletesampling.Onlytestnodes130wereusedintheanalysis.Node32isthe constrainedbasalnode,andnode31isatthebaseoftheWilldenowiaclade,andassuchisnot partofthestudygroup. NPRS, PL and clock analyses Aspreparationfortheclockassumption(CL),nonparametricratesmoothing(NPRS, Sanderson,1997),andpenalizedlikelihood(PL,Sanderson,2002a)approachestodating, molecularbranchlengthswereestimatedforeachofthesevennestedmatricesandcladograms. WeusedtheimplementationofModeltest(PosadaandCrandall,1998)inHyPhyver.0.99beta forWindows®(KosakovskyPondetal.,2004)toselectastatisticallyadequatemodelfromaset 191 of56possiblemodelsofsequenceevolution.Usingtheselectedmodels(Table2),likelihood ratiotests(Felsenstein,1981)wereperformedinHyPhytotestforasignificantdeparturefrom thehypothesisofaglobalmolecularclock.Ineachcase,theclockwasrejected(Table2).Branch lengthswereestimatedinPAUP*4.0(Swofford,2002)usingtheappropriatemodelwithouta clockassumption. ThesebranchesweremadeultrametricusingNPRS,asimplementedinTreeEditfor Macintosh(RambautandCharleston,2004),andpenalizedlikelihoodwithr8s(ver.1.6for Linux,Sanderson,2002b).Forthelatter,anoptimalratesmoothingparametervaluewasselected withtheprerequisitecrossvalidationprocedure(Sanderson,2002a)forallexceptthelargesttwo matrices(i.e.,150and300terminals).Attemptstofindanoptimalsmoothingparameterforthe 150and300taxonsetsfailed,possiblyduetocomputationallimitationswiththeselargedatasets, orpossiblybecauseofthepresenceofzerolengthterminalbranches.Forthe120taxonandfewer datasets,smoothingparametervaluesrangingfroml0–3.5to7.5(inincrementsof100.5)weretested andtheresultingvaluesreportedinTable2.Inordertocomparethefourmethods,theoptimal regressionofthetaxonsamplingandaveragenodeagevaluesforthe35to120samplePL methodwereusedtopredictthevaluesforthe150and300taxonsamples.Thesepredicted valueswerenotincludedinanystatisticaltesting. Despiterejectingtheclock,branchlengthsweremadeultrametricalsounderthe assumptionofamolecularclock,forcomparativepurposes,usingtheappropriatemodelin PAUP*. Wecalibratedthetreesagainstnode32(connectingtheRestioandWilldenowiaclades). Weusedasecondarydate(49.8Ma,witharangeof42.755.9Ma),obtainedfromtheanalysis ofLinderet al.(2003).Inthisanalysistheadjacentnode(connectingtheAfricanandAustralian Restionaceae)wasdatedfromanAfricanpollendepositfromtheearliestTertiary(Linderetal., 2003;Scholtz,1985). Bayesian dating TheBayesdatingmethod(ThorneandKishino,2002;Thorneetal.,1998)usesa probabilisticmodeltodescribethechangeinevolutionaryrateovertimeandusestheMarkov chainMonteCarlo(MCMC)proceduretoderivetheposteriordistributionofratesandtime.It allowsmultiplecalibrationwindowsandprovidesdirectcredibilityintervalsforestimated divergencetimesandsubstitutionrates.Theprocedurewefollowedisdividedintothreedifferent stepsandprograms,andisdescribedinmoredetailinastepbystepmanualavailableat http://www.plant.ch/software.html.Itwasperformedona3GhzPentiumIVmachinerunning WindowsXP.Inafirststep,weestimatedthemodelparametersforthetheF84+Gmodel 192

(Felsenstein,1993;KishinoandHasegawa,1989),themostcomplexmodelofnucleotide substitutionimplementedinthesoftwarebelowsofar.ByusingtheprogramBaseml,whichis partofthePAMLpackage(Yang,1997),weestimatedbasefrequencies,transition/transversion ratekappa,andthealphashapeparameter(describingtherateheterogeneityamongsitesundera discretegammamodel;5categoriesofrates).Then,byusingtheseparameters,weestimatedthe maximumlikelihoodofthebranchlengthsoftherootedevolutionarytreetogetherwitha variancecovariancematrixofthebranchlengthestimatesbyusingtheprogramEstbranches (Thorneetal.,1998).ThemaximumlikelihoodscoresobtainedinBasemlandEstbrancheswere thencomparedtocheckifbothapproacheswereabletooptimizethelikelihood.Thethird programweused,Multidivtime(Kishinoetal.,2001;ThorneandKishino,2002),approximates theposteriordistributionsofsubstitutionratesanddivergencetimesbyusingamultivariate normaldistributionofestimatedbranchlengths(providedherebyEstbranches)andrunninga MarkovchainMonteCarloprocedure.Twoconstraintsfortheageofnode32wereset:alower constraintof42.7Ma,andahigheroneof55.9Ma,representingtheextremevaluesobtainedfor thisnodebyLinderet al.(2003).Theothersettingsforthepriordistributionswere:50forboth rttm (meanofthepriordistributionforthetimeseparatingtheingrouprootfromthepresent) and rttmsd (theprior’sstandarddeviation),0.004forbothrtrate (meanofthepriordistributionforthe rateofmolecularevolutionattheingrouprootnode,calculatedbytakingthemeandistance betweentheingrouprootandtheingrouptipsobtainedfromestbranches)andrtratesd (theprior’s standarddistribution). Brownmean (themeanofthepriordistibutionfortheBrownianmotion parameter„nu“,whichdeterminesthepermittedratechangebetweenancestralanddescendant nodes)wasinitiallyleftatthedefaultvalueof0.4.Later,wechangedthatvalueto0.02and repeatedtheanalysis,followingthemanual’srecommendationthatrttm multipliedwith„nu“ shouldbeabout1.Asthisdidnotaffectthedivergencetimeestimatessignificantly,wereport hereonlytheresultsfromthefirstanalysis.Brownsd,theprior’sstandarddeviationwaschosen tobe0.4.Fortheparameterbigtime,anumberthatshouldbesethigherthanthetimeunits betweenthetipsandtherootintheuser’swildestimagination,we’vechosenavalueof100. WerantheMarkovchainforatleast104cyclesandcollectedonesampleevery100 cycles,afteranunsampledburninof104cycles.Weperformedeachanalysisatleasttwiceby usingdifferentinitialconditionstoassureconvergenceoftheMarkovchain,althoughitisnot possibletosaywithcertaintythatafinitesamplefromanMCMCalgorithmisrepresentativeof anunderlyingstationarydistribution(CowlesandCarlin,1996).

193

Statistical testing and lineage through time plots Thehypothesisthatthetestnodeagesobtainedarerelatedtothenumberoftaxasampled wastestedusingtheWilcoxonPairedSampletest,whichcomparesthenumberofinstancesin whichthelargersamplefindsanolderdatecomparedtothenumberoftimesitfindsayounger date.Thehypothesesthatchangesinageestimationarerelatedtothedistancefromthe calibrationpoint,andtothedegreeofsamplingofthesubcladesubtendedbyeachtestnode,were evaluatedusinglinearregressions.Thisallowedustostatisticallytestboththeextenttowhich thevariationinthedatawasaccountedforbytheregressionline,andalsowhethertheslopeof theregressionlinedeviatessignificantlyfromhorizontal.Allstatisticaltestswereconducted usingSPSS.Foreachanalysisalineagethroughtime(LTT)plot(Neeetal.,1992)was constructed.TherateconstancyoftheradiationinRestionaceaewastestedusingtheConstant RatestestofPybusandHarvey(2000),asimplementedinGammastatisticv1.0(Griebeler,2004).

194

Results Undersampling Allfourmethodsfindmoreorlessthesameagesforthe30testnodeswhenonly35taxa aresampled.However,whenmoretaxaaresampled,theageestimatesofthetestnodesdiverge rapidly(Figure2,Table3).Theproportionofspeciessampled(thustheproportionofnodes distaltothetestnodes)clearlyhasamajorimpactontheagesestimatedforthetestnodes(Figure 3).Forallfourmethodsthemeanestimatedagesofthenodesaresignificantlylesswithasparser taxonsamplingthanwhenalltaxaareincludedinthefinalcalculation.Thus,notincludingall taxainthesampleresultsina"younger"estimationofthetestnodeages.Furthermore,forall fourmethodsthedegreeofageunderestimationincreaseslogarithmicallywiththeproportionof undersampling(Figure3). However,taxonundersamplinghasverydifferenteffectsinthefourmethods.TheCL analysisandPLareonlyslightlyaffected:forthe35taxonsamplestheaverageagesusingCLare 91%,andusingPL88%,ofthoseobtainedwiththe300taxonsample.Theregressionline explainsonly73%ofthevariationinthesedataforCL,and72%inthecaseofPL.Whilstthe moresevereundersamplinginbothCLandPLresultedinsignificantagechange,inboththereis nosignificantchangeintheageestimatesbetweenthe150and300taxonsamplesforCL, suggestingthatat50%samplinganasymptotehadbeenreached,atleastforCL(thevaluesfor the150and300taxonsampleswereinferredforPL,andsotheasymptotecannotbecalculated). ForBayesianandNPRSanalysestheeffectsaremoredramatic,andnoageasymptoteis reached.Thusanychangeinsamplingresultedinsignificantlydifferentageestimations.For NPRSthe35taxonsampletheaverageageestimateisonly56%oftheestimatewiththe300 taxondataset,andforthefittedregressionliner2=0.9804.ForBayesiananalysistheequivalent valuesare72%andr2=0.9819. Theregulardecreaseintheageestimationswithdecreasingsamplesizeisreflectedinthe verygoodfitofthedatatothelogarithmicregression,andindicatesthatthesepatternsarenot random. Distance from the calibration point ForNPRSandtheBayesiananalysisthereisasignificant(atp<0.01),positive,linear relationshipbetweenthedegreeofunderestimationoftheageofanodeanditsdistance(time) fromthecalibrationpoint,forthe35taxonsample(Figure4).Theslopeoftheregressionis somewhatsteeperforNPRSthanfortheBayesiananalysis,andalsoexplainsmoreofthe

195 variation(r2=0.9087comparedtor2=0.7534).Inboththesecasestheslopedeviates significantlyfromthehorizontal.Thusthemoredistantanodeisfromthecalibrationpoint,the moresensitiveitsageestimationistotheeffectsofundersampling.Andconversely,thecloserit istoitscalibrationpoint,thelesssensitiveitistotaxonundersampling.FortheNPRS35taxon analysis,themostdistanttestnodefromthecalibrationpointisdatedtoonly37.7%oftheage indicatedbythe300taxonsample(7insteadof18.7Mafornode5).Theseeffectsaremuchless severeintheBayesiananalysis,wherethisnodeisdatedto6.6insteadof10.4Ma(an underestimationof63%).Conversely,themostproximalnodeintheNPRS35taxonanalysisis estimatedtobe79%ofthevalueofthe300taxonsample(32.96insteadof41.66Ma). TheCLanalysisandPLarelesssensitivetothisdistanceeffect,andintheircasesthe regressionexplainsverylittleofthevariation(r2=0.1469andr2=0.0344respectively). Interestingly,boththeseanalysesshowamuchwiderscatter,consistentwiththeassumptionofa moreclocklikemolecularvariation.Forboththeseanalysesneitherthevariationexplained,nor thedeviationoftheregressionslopefromhorizontal,issignificant. Impact of undersampling of individual clades Thesensitivityofthevariousmethodstovariationinthesamplingdensityoftheclades subtendedbyeachevaluatednodecannotberigorouslytestedfromourdata,sincemostofthese cladeswereratherpoorlysampledinthe35taxonsample.Formostcladeslessthan30percentof thespecieswereincluded,onecladeincludes50%ofthespecies,one63%,andoneallspecies. Nonetheless,itappearsasifthereisnorelationshipbetweenthesamplingdensityofthe individualclades,andtheageestimationoftheirsubtendingnodes(Figure5)foranyofthefour methodsused.Neitherthevarianceinthedata,northedeviationofslopeoftheregressionline fromhorizontal,issignificant,suggestingthatthesubcladesamplinghasnoimpactontheresults. Thusonlytheaveragesamplingdensityonthewholetreeunderinvestigationhasanimpacton theresults,notthesamplingdensityoftheindividualsubclades. Age estimates by the four methods Thefourmethodsresultinratherdifferentageestimates(Table3,Figure6)forthe300 taxondataset.Asexpected,theextremesareformedbyCLandNPRS.TheNPRSanalysis returnsresultsthatarebetween10and15millionyearsolder(thusuptodouble)theage estimatesoftheCLanalysis.Thissuggeststhatallthenodeshavebeenmadeolder,andthis couldonlybeachievedbyinterpretingthebasalbranchofthewholetree,betweenthecalibration pointandthefirstspeciationevents,asbeingmuchshorterthantheunsmootheddataindicates. BayesiananalysisandPLreturnintermediateagesforthenodes.However,forthenodesfurther 196 fromthecalibrationpoint,BayesianagesapproachthoseofPLandCL,whilenodesclosertothe calibrationpointaremoreintermediate.Themostextremedisparityisfoundinthemiddlesection ofthetree,forexamplenode10,whichCLdatesas9.28,Bayesianas14.04andNPRSas22.62 Ma,thusmorethantwofolddifferences. TheLTTplotsforthefourmethodsareremarkablydifferent(Figure7).Inallanalysesthe nodesareshiftedtowardsthebaseofthetree,indicatingthatwithtimethespeciationrateslowed down.ForNPRStheshiftishighlysignificant(p<0.01),forCLandPLweaklysignificant(p< 0.05),andforBayesianitisnotsignificant.

197

Discussion Thedifferencesinthenodeagesreportedbythedifferentmethods,andfordifferent samplingintensities,areremarkablylarge.Onaverage,thehighestageestimateforeachnodeis 2.09timeslargerthanthesmallestestimate,thisfactorrangesfromaminimumof1.41toa maximumof2.94.Thisindicatesapotentiallysubstantialsourceoferrorfordatingstudies.This errorisdeterminedbyboththeoverallsamplingdensityandthedistancefromthecalibration node. Suchlargedifferenceshavebeenreportedbefore.Forexample,Klaket al.(2004) reportedatwofolddifferenceintheageestimationofthestartoftheradiationtimeofthe AfricanRushioideaefortwodifferentgenes;however,onegenewassampledfortwiceasmany speciesastheothergene.Ourresultspointtothepossibilitythatthisdiscrepancymaynotdueto differencesinthemolecularevolutionofthetwogenes,buttodifferencesintaxonsampling. Undersampling Undersamplinghasasevereimpactontheresultsinratesmoothedanalyses,andwith increasingundersamplingtheimpactrapidlybecomesmoreextreme.WithNPRS,ataxon samplingof10%canresultinageestimatesthatarehalfofthecorrectvalue(assumingthat samplingallspeciesgivesthecorrectvalue).Thefittedcurvetotheundersamplingeffect indicatesthatitislogarithmic,whichmeansthatincreasingtheundersamplingmightincreasingly rapidlyexacerbatetheageunderestimation.Manyrecentstudiesincludedlessthan10%oftheir species,suggestingthattheycouldbepronetotheundersamplingerror. Althoughsamplingsignificantlyeffectsanalysesthathavelimited(PL)no(CL)rate smoothing,thiseffectinourstudieswaslessthan15%.ExperimentswithPL,involvingchanging thesmoothingparameter,showedthatdecreasingthesmoothingfunctionλcomeswiththecost ofincreasedsensitivitytosamplingeffects(datanotshown).Itthereforedoesnotautomatically followthattheuseofPLwouldeliminatesamplingeffects.Inaddition,wedonotknowwhat happenswhenthesamplingislessthan10%,andwouldcautionagainstusingtheseresultsto suggestthatinallcircumstancesundersamplingcanbeaccommodatedbyusingCLorPL. Itismostlikelythattheeffectisnotduetosimpleundersampling.Inourexperimentswe addedonlynodesthatweredistaltothetestnodes(relativetothecalibrationnode),anditis possiblethatifnodeswereaddedbothproximallyanddistallytothetestnodes,theremightbeno undersamplingeffect.Addingonlyproximalnodesmightresultinthetestnodesbeingshifted downthetree(furtherintothepast).Thisshiftingofthenodesismanifestedaschangingage estimates.However,itisdifficulttoavoidbiasedsampling.Unbiasedsamplingisonlypossibleif 198 weknowtherelativetimepositionsofallthenodes,andcanselectthemtokeeptheproportions ofproximalanddistalnodesequal.Unfortunatelywedonotknowtheirrelativepositionswithout firstincludingalloftheminadatinganalysis.Randomsamplingdoesnothelp,sincerandomly selectedspeciesbiastowardsretrievingthedeepernodes(PybusandHarvey,2000). Furthermore,mostinvestigatorsareinterestedinestablishingtheageofapresetnumberofnodes, deepinsidethetree(e.g.thestartingageoftheradiationofRushioideae(Klaketal.,2004), Angiosperms(SandersonandDoyle,2001;Wikströmetal.,2001),Phylica(Richardsonetal., 2001))andthesenodescanonlyberetrievedifthetwobasalmostdescendentsofthenodeare includedintheanalysis.Thisforcesanunbalancedsampling. Furthermore,thevagariesofextinctionandspeciationarenotlikelytohavelefta temporallyevenlyspacedsetofsurvivingtaxa.Clustersofshortbranchlengthsinaphylogeny havebeenreportedinverydivergentgroups,suchascommelinidmonocots(Duvalletal.,1993) andspongedwellingsnappingshrimps(Morrisonetal.,2004).Consequentlywecannotestablish whatafullspeciessampleconstitutes,andsotheextentofundersamplingcannotbedetermined. Thusonlymethodsthatwouldminimizetheundersamplingeffectcanbeconsideredtoberobust. Sinceallmethodswetriedshowedsomeundersamplingeffect,itmightbeusefultosearchforan asymptote,aswasshownbytheCLandtoalesserextentthePLmethods. Distance from the calibration node Thereisaremarkablylinearrelationshipbetweenthedegreeofunderestimationofthe testnodeages,andthedistancesfromthecalibrationpointforNPRSandtheBayesiananalysis. Althoughaweaktrendisvisible,thereisnosignificantlinearrelationshipfortheCLandPL analyses. Thisargues,atleastinanalysesusingNPRSorBayesiananalysis,thatthecalibration nodesshouldbesituatedwithinthestudygroup,ashasbeensuggestedbyShaulandGraur (2002).Argumentsformultiplecalibrationpointsareusuallytoprotectagainsterrorsinsingle calibrationpoints(Lee,1999),andasecondstrongargumentisthatdatednodesaresoplacedin theproximityoffixednodes,thusreducingtheerrorthatmightaccumulateoverlongertime spans. Impact of undersampling of individual nodes Somewhatsurprisingly,weshowthattheageestimateforatestnodeisnotaffectedby howcompletethesamplingisforthecladesubtendedbythenode.Instead,theaveragelevelof samplingforthewholedatasetisofimportance.Thusthesamplingeffectcannotbeavoidedby samplingonecladeexhaustively,andleavinganumberofplaceholdersfortherestofthestudy 199 group.Clearlytheeffectsofsamplingdensityarespreadmoreorlessevenlyacrosstheingroup. Thisisadvantagousinthatgroupsthatarespeciespoor,possiblyduetoextinction,arenot intrinsicallyimpossibletodate,butitdoesargueagainststrategiesofsamplingagroupofinterest indetail,whiletherelatedgroupsareundersampled. Age and rate of diversification of Restionaceae Asthesamplingbecomesbetter,theageestimatesfortheAfricanRestionaceaediverge. Thusmoreandbetterdatadonotresultinaconvergencetoasinglepossiblycorrectanswer.This indicatesthatnotonlytaxonsampling,butalsothechoiceofalgorithm,isimportant. Theclockassumption(CL)isfairlyrobusttoundersamplingandtodistancefromthe calibrationnode,andshouldthereforebeusedwheneverpossible.However,iftheclock assumptionisrejected,asitwasforourRestionaceaedata,CLcannotbeused.OntheLTTplot, CLresultsina"wobbly"line(Figure7),whichcouldeitherbeinterpretedasavariablenet diversificationrate,orasviolationsoftheclock.Sincethelatterhasbeendemonstrated,wecan ignoretheseresults. NPRSreturnedremarkablydivergentresultsfromtheothermethodswithrespecttothe estimatedageofthenodes.Itsgreatsensitivitytobothsamplingeffectsandthedistancefromthe calibrationnodesuggestthatthedangerofoversmoothedresultsisreal.Moreremarkableisthe effectofNPRSontheLTTplot.Notonlydoestheradiationstartearlierthanpredictedbythe othermethods,buttheinitialphasesoftheradiationareinterpretedtobemuchmorerapidthan bytheothermethods,sothataconstantratestestshowsasignificantchangeinthenet diversificationrate.Theseresultsmaybedueto"oversmoothing"(Sanderson,2002a). BayesianandPLwerethemostresilienttoundersamplingwithourRestionaceaedata. Bothmethodsarecomputationallyveryintensive,andour300taxonBayesiananalysisrequired morethanfourweeksofcomputationtime.PossiblyPListhebest,sinceitisnotsensitivetothe distancefromcalibration,butwewerenotabletocompletethecrossvalidationanalysesto obtaintheoptimalsmoothingvaluesforthePLanalysesof150and300taxa.Theonlydifference betweenthetwomethodsistheestimationofthestartdateoftheradiation.Thus,whenaglobal clockassumptionisrejected,werecommendthateitherPLorBayesiananalysesshouldbeused. Beyond the Restionaceae Itisdifficulttogeneralizefromourresults,sincetheyarebasedontheresultsofasingle study.Generalitycanbeachievedbyusingsimulateddatasets,butthenwedon’tknowhowwell simulationswillmimictherealsituation.Wehavenotattemptedtoevaluateourresultswith simulateddatasets,largelybecauseoftheenormouscomputingeffortthatwouldbeneededto 200 analyseasufficientlylargesetofreplicates.However,ourresultsclearlydemonstratethatcaution isrequiredwhenusingratesmoothingmethods,andthatanunderstandingofthepotentialeffects ofsamplingandcalibrationpositiononageestimatesisaprerequisitetoanystudy.

201

References Briggs,B.G.,A.D.Marchant,S.Gilmore,andC.L.Porter.2000.Amolecularphylogenyof Restionaceaeandallies.Pp.661671inK.L.WilsonandD.A.Morrison,eds.Systematicsand evolutionofmonocotsVol.1ofProceedingsoftheSecondInternationalConferenceonthe ComparativeBiologyoftheMonocots,Sydney,September1998.CSIRO,Melbourne.

Chase,M.W.,andV.A.Albert.1998.AperspectiveonthecontributionofplastidrbcLDNA sequencestoangiospermphylogenetics.Pp.488507inD.E.Soltis,P.S.SoltisandJ.J.Doyle, eds.MolecularsystematicsofplantsII:DNAsequencing.KluwerAcademicPublishers,Boston.

Chiang,T.,andB.A.Schaal.2000.MolecularevolutionoftheatpBrbcLnoncodingspacerof chloroplastDNAinthemossfamilyHylocomiaceae.Bot. Bull. Acad. Sin.41:8592.

Conti,E.,T.Eriksson,J.Schonenberger,K.J.Sytsma,andD.A.Baum.2002.Earlytertiaryout ofIndiadispersalofCrypteroniaceae:Evidencefromphylogenyandmoleculardating.Evolution 56:19311942.

Cowles,M.K.,andB.P.Carlin.1996.MarkovchainMonteCarloconvergencediagnostics:A comparativereview.Journal of the American Statistical Association91:883904.

Cuénoud,P.,M.A.D.Martinez,P.A.Loizeau,R.Spichiger,S.Andrews,andJ.F.Manen.2000. MolecularphylogenyandbiogeographyofthegenusIlexL.(Aquifoliaceae).Annals of Botany 85:111122.

Davis,C.C.,C.D.Bell,S.Mathews,andM.J.Donoghue.2002.Laurasianmigrationexplains Gondwanandisjunctions:EvidencefromMalpighiaceae.Proceedings of the National Academy of Sciences of the United States of America99:68336837.

Duvall,M.R.,M.T.Clegg,M.W.Chase,W.D.Clark,W.J.Kress,H.G.Hills,L.E.Equiarte, J.F.Smith,B.S.Gaut,E.A.Zimmer,andG.H.Learn.1993.Phylogenetichypothesesforthe monocotyledonsconstructedfromrbcLsequencedata.Annals of the Missouri Botanical Garden 80:607619.

Felsenstein,J.1981.EvolutionarytreesfromDNAsequences:amaximumlikelihoodapproach. Journal of Molecular Evolution35:292303.

Felsenstein,J.1993.PhylogenyInferencePackage(PHYLIP).UniversityofWashington,Seattle.

Gaut,B.S.1998.Molecularclocksandnucleotidesubstitutionratesinhigherplants. Evolutionary Biology30:93120.

Goloboff,P.A.1993.NONA.Publishedprivately,NewYork.

Graur,D.,andW.Martin.2004.Readingtheentrailsofchickens:moleculartimescalesof evolutionandtheillusionofprecision.Trends in Genetics20:8086.

Griebeler,E.M.2004.GammastatisticV1.0.InstitutfürZoologie,AbteilungÖkologie, JohannesGutenbergUniversität,Germany,Mainz.

Hedges,S.B.,andS.Kumar.2004.Precisionofmoleculartimeestimates.Trends in Genetics 20:242247.

202

Hilu,K.W.,andH.P.Liang.1997.ThematKgene:Sequencevariationandapplicationinplant systematics.American Journal of Botany84:830839.

Kadereit,J.W.,E.M.Griebeler,andH.P.Comes.2004.QuaternarydiversificationinEuropean alpineplants:patternandprocess.Philosophical Transactions of the Royal Society London. B 359:265274.

Kato,Y.,K.Aioi,Y.Omori,N.Takahata,andY.Satta.2003.PhylogeneticanalysesofZostera speciesbasedonrbcLandmatKnucleotidesequences:Implicationsfortheoriginand diversificationofseagrassesinJapanesewaters.Genes & Genetic Systems78:329342.

Kishino,H.,andM.Hasegawa.1989.Evaluationofthemaximumlikelihoodestimateofthe evolutionarytreetopologiesfromDNAsequencedata,andthebranchingorderinHominoidea. Journal of Molecular Evolution29:170179.

Kishino,H.,J.L.Thorne,andW.J.Bruno.2001.Performanceofadivergencetimeestimation methodunderaprobabilisticmodelofrateevolution.Molecular Biology and Evolution18:352 361.

Klak,C.,G.Reeves,andT.A.Hedderson.2004.UnmatchedtempoofevolutioninSouthern Africansemideserticeplants.Nature427:6365.

KosakovskyPond,S.L.,S.V.Muse,andS.D.W.Frost.2004.HyphyPackage:Hypothesis TestingusingPhylogenies

Lee,M.S.Y.1999.Molecularclockcalibrationsandmetazoandivergencedates.Journal of Molecular Evolution49:385391.

Linder,H.P.1991.AreviewofthesouthernAfricanRestionaceae.Contributions from the Bolus Herbarium13:209264.

Linder,H.P.2001.TheAfricanRestionaceae.ContributionsfromtheBolusHerbarium,Cape Town.

Linder,H.P.2003.TheradiationoftheCapeflora,southernAfrica.Biological Reviews78:597 638.

Linder,H.P.,P.Eldenäs,andB.G.Briggs.2003.ContrastingpatternsofradiationinAfricanand AustralianRestionaceae.Evolution57:26882702.

Maddison,W.P.,andD.Maddison.2003.Mesquite

Manen,J.,A.Natali,andF.Ehrendorfer.1994.PhylogenyofRubiaceaeRubieaeinferredfrom thesequenceofacpDNAintergeneregion.Plant Systematics and Evolution190:195211.

Morrison,C.L.,R.Rios,andJ.E.Duffy.2004.Phylogeneticevidenceforanancientrapid radiationofCaribbeanspongedwellingsnappingshrimps(Synalpheus).Molecular Phylogenetics and Evolution30:563581.

Nagy,Z.T.,U.Joger,M.Wink,F.Glaw,andM.Vences.2003.Multiplecolonizationof MadagascarandSocotrabycolubridsnakes:evidencefromnuclearandmitochondrialgene phylogenies.Proceedings of the Royal Society of London Series B-Biological Sciences270:2613 2621.

203

Nee,S.,A.O.Mooers,andM.Harvey.1992.Tempoandmodeofevolutionrevealedfrom molecularphylogenies.Proceedings of the National Academy of Science of the United States of America89:83228326.

Nixon,K.C.1999.Theparsimonyratchet,anewmethodforrapidparsimonyanalysis.Cladistics 15:407414.

Nixon,K.C.2002.WinClada.Publishedbytheauthor,Ithaca,NY.

Percy,D.M.,R.D.M.Page,andQ.C.B.Cronk.2004.Plantinsectinteractions:doubledating associatedinsectandplantlineagesrevealsasynchronousradiations.Systematic Biology53:120 127.

Posada,D.,andK.A.Crandall.1998.MODELTEST:testingthemodelofDNAsubstitution. Bioinformatics14:817818.

Pybus,O.G.,andP.H.Harvey.2000.Testingmacroevolutionarymodelsusingincomplete molecularphylogenies.Proceedings of the Royal Society of London Series B-Biological Sciences 267:22672272.

Rambaut,A.,andM.Charleston.2004.TreeEdit:Anapplicationfororganising,viewingand manipulatingsetsofphylogenetictrees.Publishedprivately,Oxford.

Richardson,J.E.,F.M.Weitz,M.F.Fay,Q.C.B.Cronk,H.P.Linder,G.Reeves,andM.W. Chase.2001.RapidandrecentoriginofspeciesrichnessintheCapefloraofSouthAfrica. Nature412:181183.

Sanderson,M.J.1997.Anonparametricapproachtoestimatingdivergencetimesintheabsence ofrateconstancy.Molecular Biology and Evolution14:12181231.

Sanderson,M.J.2002a.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes: Apenalizedlikelihoodapproach.Molecular Biology and Evolution19:101109.

Sanderson,M.J.2002b.r8s.Publishedprivately,Davis.

Sanderson,M.J.,andJ.A.Doyle.2001.Sourcesoferrorandconfidenceintervalsinestimating theageofangiospermsfromrbcLand18SrDNAdata.American Journal of Botany88:1499 1516.

Scholtz,A.1985.ThepalynologyoftheupperlacustrinesedimentsoftheArnotPipe,Banke, Namaqualand.Annals of the South African Museum95:1109.

Shaul,S.,andD.Graur.2002.Playingchicken(Gallus gallus):methodologicalinconsistenciesof moleculardivergencedateestimatesduetosecondarycalibrationpoints.Gene300:5961.

Simmons,M.P.,andH.Ochoterena.2000.Gapsascharactersinsequencebasedphylogenetic analyses.Systematic Biology49:369381.

Simmons,M.P.,K.M.Pickett,andM.Miya.2004.HowmeaningfulareBayesiansupport values?Molecular Biology and Evolution21:188199.

Swofford,D.L.2002.PAUP*:PhylogeneticAnalysisUsingParsimony(*andothermethods). Version4.SinauerAssociates,Sunderland,Massachusetts.

204

Taberlet,P.,L.Gielly,G.Patou,andJ.Bouvet.1991.Universalprimersforamplificationof threenoncodingregionsofchloroplastDNA.Plant Molecular Biology17:11051109.

Takezaki,N.,A.Rzhetsky,andM.Nei.1995.Phylogenetictestofthemolecularclockand linearizedtrees.Molecular Biology and Evolution12:823833.

Taylor,H.C.1978.Capensis.Pp.171229inM.J.A.Werger,ed.Biogeographyandecologyof southernAfrica.Junk,TheHague.

Thompson,J.D.,T.J.Gibson,F.Plewniak,F.Jeanmougin,andD.G.Higgins.1997.The CLUSTALXwindowsinterface:flexiblestrategiesformultiplesequencealignmentaidedby qualityanalysistools.Nucleic Acids Research25:48764882.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata.Systematic Biology51:689702.

Thorne,J.L.,H.Kishino,andI.S.Painter.1998.Estimatingtherateofevolutionoftherateof molecularevolution.Molecular Biology and Evolution15:16471657.

Vinnersten,A.,andK.Bremer.2001.AgeandbiogeographyofmajorcladesinLiliales. American Journal of Botany88:16951703.

Wikström,N.,V.Savolainen,andM.W.Chase.2001.Evolutionoftheangiosperms:calibrating thefamilytree.Proceedings of the Royal Society of London Series B-Biological Sciences 268:22112220.

Yang,Z.1997.PAML:Aprogrampackageforphylogeneticanalysisbymaximumlikelihood. CABIOS or Computer Applications in the Biosciences13:555556.

Yoder,A.D.,andZ.H.Yang.2000.Estimationofprimatespeciationdatesusinglocalmolecular clocks.Molecular Biology and Evolution17:10811090.

Young,N.D.,andJ.Healy.2001.GapCoder:Acomputerprogramforincludingindelsin phylogeneticanalysis.Publishedprivately

205

Tables Table1.Percentageofspeciessampledateachselectednodeforeachsamplingrun.Thesecond columngivesthetotalnumberofspeciessubtendedbyeachselectednode,thesubsequent columnsthepercentofthesespeciessampled.

Total 35 51 80 100 120 150 300 Nodes species taxon taxon taxon taxon taxon taxon taxon 1 4 50 50 50 50 75 75 100 2 39 5 13 31 33 36 41 100 3 47 9 15 30 34 38 45 100 4 50 4 10 18 24 30 44 100 5 11 18 18 27 36 36 55 100 6 61 7 11 20 26 31 49 100 7 108 7 14 24 30 34 47 100 8 2 100 100 100 100 100 100 100 9 110 9 15 25 31 35 48 100 10 3 67 100 100 100 100 100 100 11 113 11 18 27 33 37 50 100 12 4 50 100 100 100 100 100 100 13 117 12 21 30 35 39 51 100 14 31 6 10 23 35 42 45 100 15 30 7 10 20 33 43 53 100 16 61 7 10 21 34 43 49 100 17 2 100 100 100 100 100 100 100 18 63 10 13 24 37 44 51 100 19 180 11 17 28 36 41 51 100 20 12 17 33 33 33 42 50 100 21 192 11 18 28 35 41 51 100 22 49 4 10 16 22 37 51 100 23 12 17 17 25 33 33 33 100 24 61 7 11 18 25 34 48 100 25 253 10 17 26 33 40 50 100 26 9 22 22 33 33 44 44 100 27 262 11 17 26 33 40 50 100 28 11 18 18 27 36 36 45 100 29 273 11 17 26 33 40 50 100 30 274 11 17 26 33 40 50 100 31 24 8 8 25 29 29 46 100

206

Table2.ResultsofModeltest,clocktests,andthepenalizedlikelihood(PL)crossvalidationprocedureforeachofthesevennestedtaxonsamplings. Valueswithasterisk:attemptstodetermineoptimalsmoothingvaluefailed;therefore,threezeroorpositivevalueswerechosen(consistentwiththe rangeofvaluesdeterminedforthesmallerdatasets)tobrackettherangeofprobablevalues.

35taxon 51taxon 80taxon 100taxon 120taxon 150taxon 300taxon

Modeltest GTR+G+I GTR+G+I GTR+G+I GTR+G+I GTR+G+I GTR+G+I GTR+I results

rejected rejected rejected rejected rejected rejected rejected LRtest:clock (X2=106.5, (X2=145.0, (X2=234.0, (X2=308.7, (X2=329.6, (X2=4830.3, (X2=7297.2, df=33,P<0.01) df=49,P<0.01) df=78,P<0.01) df=98,P<0.01) df=118,P<0.01) df=148,P<0.01) df=298,P<0.01)

PLsmoothing 5.0(4.56.0were 6.5 4.0 5.0 1.5 0.0,3.5,6.5* 0.0,3.5,6.5* value(log10) equallyoptimal)

207

Table3.Meannodeagesinmillionsofyearsobtainedforthefourdifferentmoleculardating methodswiththesevendifferentsamplingstrategies.ThePLvaluesfor150and300taxonwere predictedfromthe35120taxonsamplesbyoptimalregression(seemethods).CL:assuminga global,constantclock;PL:Penalizedlikelihood;Bayes:Bayesian;NRS:nonparametricrate smoothing,

35 51 80 100 120 150 300 Nodes Methods taxon taxon taxon taxon taxon taxon taxon CL 7.56 7.72 7.98 8.50 9.23 8.56 8.81 PL 7.65 7.81 7.96 8.60 8.36 8.43 8.80 1 Bayes 6.53 7.04 7.99 9.22 8.65 10.77 13.38 NPRS 7.82 10.26 11.56 13.79 14.13 14.94 19.20 CL 10.48 10.61 10.77 10.91 11.09 10.68 11.10 PL 10.52 10.58 10.69 10.92 10.14 10.23 10.67 2 Bayes 9.47 10.04 11.52 12.01 12.19 13.26 15.90 NPRS 10.40 13.26 15.08 17.96 18.58 20.28 24.81 CL 12.12 12.58 12.96 13.15 13.71 13.30 13.61 PL 12.16 12.52 12.86 13.17 12.70 12.81 13.36 3 Bayes 11.09 11.92 13.52 14.06 14.45 15.70 18.20 NPRS 12.12 15.85 17.62 20.36 21.11 22.98 27.00 CL 12.18 13.45 13.34 13.64 14.07 13.76 14.14 PL 12.40 13.47 13.44 13.56 12.87 12.98 13.54 4 Bayes 10.79 11.55 12.81 13.09 13.46 14.80 16.76 NPRS 11.97 15.49 16.89 18.15 19.31 21.56 25.53 CL 7.94 8.27 9.86 10.03 10.31 9.99 9.81 PL 7.90 8.22 9.74 9.89 9.25 9.33 9.73 5 Bayes 6.65 7.12 9.06 9.34 9.64 10.55 13.54 NPRS 7.00 8.65 11.62 12.01 12.94 14.79 18.72 CL 12.77 13.45 13.59 13.64 14.07 13.76 14.14 PL 12.74 13.47 13.66 13.56 12.87 12.98 13.54 6 Bayes 11.47 12.35 13.33 13.72 14.13 15.51 18.61 NPRS 12.36 15.49 17.16 18.15 19.31 21.56 25.53 CL 14.45 15.10 15.28 15.48 16.04 15.58 15.90 PL 14.47 15.04 15.34 15.49 14.92 15.05 15.70 7 Bayes 13.44 14.36 15.59 16.11 16.54 17.85 20.37 NPRS 14.48 18.84 19.94 22.63 23.45 25.36 28.97 CL 9.00 9.18 9.33 9.36 9.71 9.43 13.45 PL 9.16 9.38 9.49 9.53 9.31 9.39 9.80 8 Bayes 8.94 9.48 10.26 10.67 10.96 11.80 13.33 NPRS 9.76 12.73 13.51 15.56 16.34 18.06 21.83 CL 15.12 15.64 15.76 15.93 16.54 16.16 16.62 PL 15.20 15.53 15.80 15.93 15.58 15.72 16.39 9 Bayes 14.45 15.27 16.52 17.01 17.52 18.88 21.58 NPRS 15.60 19.95 20.87 23.60 24.50 26.38 29.91 10 CL 8.98 9.18 9.25 9.27 9.61 9.29 9.28 PL 9.00 9.24 9.36 9.40 9.27 9.35 9.75 208

Bayes 9.21 9.79 10.66 11.02 11.37 12.29 14.04 NPRS 9.76 12.88 13.77 15.98 16.83 18.67 22.62 CL 15.63 16.09 16.21 16.40 17.05 16.66 17.05 PL 15.78 16.06 16.30 16.41 16.13 16.27 16.97 11 Bayes 15.38 16.14 17.42 17.96 18.53 19.93 22.76 NPRS 16.41 20.81 21.70 24.51 25.42 27.26 30.70 CL 14.20 13.61 14.06 13.90 14.60 14.13 14.05 PL 14.20 13.86 14.00 14.08 14.38 14.51 15.13 12 Bayes 14.50 14.92 16.11 16.72 17.16 18.34 20.16 NPRS 15.62 19.54 20.43 23.20 24.15 25.95 29.35 CL 16.66 17.13 17.64 17.53 18.38 17.96 18.12 PL 16.80 17.18 17.50 17.61 17.69 17.85 18.61 13 Bayes 16.83 17.77 19.13 19.78 20.36 21.77 24.46 NPRS 17.96 22.65 23.53 26.42 27.34 29.07 32.26 CL 10.92 11.23 12.39 13.30 14.25 13.81 12.71 PL 10.92 11.54 12.82 13.50 14.22 14.35 14.96 14 Bayes 11.66 12.60 14.19 15.43 15.99 16.86 18.53 NPRS 12.64 15.96 17.66 21.21 22.70 24.15 24.14 CL 14.16 14.84 15.21 15.11 15.84 15.58 15.17 PL 14.29 14.90 15.48 15.62 16.07 16.21 16.91 15 Bayes 14.55 15.34 16.35 17.21 17.63 18.55 19.73 NPRS 16.04 20.01 20.46 23.99 25.43 26.95 29.80 CL 15.71 16.36 16.77 17.17 17.90 17.56 16.83 PL 15.81 16.51 17.05 17.31 18.07 18.23 19.01 16 Bayes 16.36 17.31 18.38 19.31 19.79 20.83 22.16 NPRS 17.85 22.29 22.78 26.15 27.38 28.88 31.58 CL 13.57 14.33 14.43 14.35 15.16 15.95 14.58 PL 13.68 14.11 14.47 14.78 15.40 15.54 16.20 17 Bayes 14.58 15.43 16.48 17.09 17.50 18.43 19.11 NPRS 15.80 19.62 20.39 23.09 24.10 25.46 28.35 CL 18.58 19.22 19.68 19.94 21.29 20.61 19.97 PL 18.75 19.35 19.80 20.18 20.96 21.15 22.05 18 Bayes 19.35 20.35 21.70 22.49 23.06 24.25 25.67 NPRS 21.00 25.55 26.46 29.43 30.39 31.86 34.51 CL 19.35 19.99 20.42 20.62 21.77 21.23 21.03 PL 19.48 20.03 20.43 20.80 21.55 21.74 22.68 19 Bayes 20.29 21.31 22.73 23.50 24.08 25.35 27.04 NPRS 21.73 26.28 27.25 30.15 31.05 32.51 35.17 CL 15.59 15.83 16.05 16.17 16.95 16.30 16.16 PL 15.52 15.83 16.02 16.31 17.05 17.20 17.94 20 Bayes 17.02 17.95 19.08 19.78 20.38 21.55 23.09 NPRS 18.10 22.14 22.88 25.66 26.65 28.26 32.03 CL 20.24 20.91 21.15 21.60 22.51 21.98 21.89 PL 20.20 20.95 21.02 21.62 22.23 22.43 23.39 21 Bayes 21.47 22.36 23.82 24.69 25.19 26.48 28.47 NPRS 22.84 27.25 28.10 30.98 31.82 33.22 35.86 CL 12.59 14.62 14.61 15.52 16.12 15.48 15.21 PL 12.74 14.81 14.85 15.68 15.26 15.39 16.06 22 Bayes 13.63 14.96 16.10 16.92 17.55 18.32 22.19 NPRS 14.72 17.74 18.34 22.07 22.49 24.31 27.53 209

CL 13.04 13.56 13.59 14.49 15.02 14.57 14.93 PL 13.20 13.97 13.63 14.59 15.57 15.71 16.38 23 Bayes 15.43 16.41 17.75 18.42 18.85 19.96 18.29 NPRS 16.44 20.18 21.40 24.72 25.46 27.21 30.74 CL 17.68 19.02 19.37 20.27 21.07 20.84 20.80 PL 17.86 19.11 19.45 20.29 20.72 20.90 21.80 24 Bayes 19.59 20.70 22.29 23.27 23.71 25.21 27.01 NPRS 20.93 25.24 26.33 29.45 30.19 31.86 34.56 CL 20.94 21.88 22.00 22.61 23.56 23.03 23.15 PL 20.98 21.77 21.93 22.58 23.25 23.46 24.46 25 Bayes 22.50 23.54 25.03 25.97 26.49 27.78 30.07 NPRS 23.70 28.28 29.44 31.98 32.80 34.13 36.69 CL 18.11 18.75 18.32 18.76 19.93 19.37 19.88 PL 18.20 18.64 18.40 18.68 19.98 20.16 21.02 26 Bayes 18.97 19.83 21.23 22.06 22.88 24.00 26.16 NPRS 20.10 24.37 25.39 28.24 29.23 30.66 33.87 CL 21.25 22.15 22.23 22.90 23.79 23.20 23.36 PL 21.28 22.03 22.14 22.78 23.47 23.68 24.70 27 Bayes 23.14 24.17 25.68 26.61 27.14 28.44 30.97 NPRS 23.99 28.55 29.44 32.22 33.04 34.35 36.69 CL 22.89 23.32 21.86 22.26 22.91 22.36 22.50 PL 22.78 22.79 21.58 22.24 23.75 23.96 24.99 28 Bayes 26.07 26.69 27.25 27.95 28.17 29.09 30.33 NPRS 26.91 30.61 30.55 32.65 33.37 34.56 37.31 CL 27.10 27.77 27.71 28.39 29.10 28.48 28.24 PL 26.90 27.28 27.36 28.01 29.15 29.41 30.67 29 Bayes 29.99 30.74 31.89 32.86 33.10 34.06 35.49 NPRS 30.37 34.07 34.83 36.93 37.54 38.51 40.31 CL 29.35 29.72 29.80 30.26 31.07 30.47 30.12 PL 29.44 29.67 29.74 30.23 31.31 31.59 32.95 30 Bayes 32.45 33.08 34.18 35.04 35.33 36.21 38.36 NPRS 32.96 36.16 36.92 38.68 39.24 40.06 41.66

210

Figures

Figure1.Cladogramusedinthisstudy.Specieslistedarethoseusedinthe35taxonanalysis. Theblackcircleisthecalibrationnode,thenumberedopencirclesarethetestnodes.

211

Figure2.Acomparisonoftheactualagesreturnedbythefourdifferentmoleculardating methodsforthesevennestedtaxonsamples.Thexaxisgivesthenumberoftaxasampled,they axistheaverageageofthe30testnodes.Diamonds:NPRS,squares:Bayesian;crosses:PLand triangles:CL.

212

Figure3.Effectofthespeciessamplingdensityontheaveragetestnodeageestimated,forthe fourdifferentmoleculardatingmethods.Thexaxisisthetaxonsamplesize.Theyaxisindicates, foreachmethod,theaverageproportionofthe300taxonsampleageobtainedforeachspecies samplesize.

213

Figure4.Proportionofnodeageunderestimationrelativetodistancefromthecalibrationpoint. Thexaxisindicatesthetimebetweenthetestnodeandthecalibrationnode,calculatedwitheach methodbasedonthe300taxonsample.Theyaxisrepresentstheproportionoftheageobtained withthe35taxonsampleoftheageobtainedwiththe300taxonsample,foreachmethodof analysis.ForbothBayesandNPRStheslopedeviatessignificantly(atp<0.01)from0,andthe r2issignificantatthesamepvalue.

214

Figure5.Differentialeffectsofsamplingoneachtestnodeindividuallyinthe35taxonanalysis, forthefourdifferentmoleculardatingmethodsused.Thexaxisindicatestheproportionofthe speciessampledaboveeachnode.Theyaxisrepresentsthepercentageofageundersamplingfor eachnode.

215

Figure6.Comparisonoftheaveragenodalagesestimatedbythefourdifferentmoleculardating methodsforthe300taxonsample.ThenodesarenumberedasinFigure1.

216

Figure7.Lineagethroughtimeplotsfor300taxa,usingfourdifferentmoleculardatingmethods. Squares:NPRS,triangles:Bayesian,crosses:PL,anddiamonds:CL.NotethatthePLvaluesfor the300taxonsamplewereestimated.

217

218 General summary

Thesixchaptersthatcomposethisdissertationareallrelatedtovariousaspectsof moleculardating,rangingfrommoremethodologicalandexperimentalworktotheapplicationof differentmethodsinthecontextofbiologicalandevolutionaryquestionsandhypotheses. Thefirstchapterrepresentsanuptodatereviewonthemostcommonmoleculardating methods,whichprovidespracticalinformationandusefulcomparisontablesintendedfor researcherslookingfortheirmethodofchoiceanditsadvantagesanddrawbacks.Inaddition,the reviewprovideslinkstothemostrecentandimportantliteratureonmoleculardating. Inthesecondchapter,weusedevidencederivedfrommoleculardatingtotesttheoutof IndiahypothesisforCrypteroniaceae,asmallgroupofSoutheastAsiantropicalrainforesttrees. Accordingtothisbiogeographicscenario,CrypteroniaceaewereamongotherGondwanantaxa thathavebeencarriedfromGondwanatoAsiabyraftingontheIndianplateasitmovedalong theAfricancontinent,fromwheretheydispersed“outofIndia”intoSouthandSoutheastAsia, afterIndiacollidedwiththeAsiancontinentintheEarlyTertiary.Wetestedthevalidityofthis hypothesisbyinferringtheageofCrypteroniaceaebasedonMaximumLikelihoodanalysesof threechloroplastDNAregions(rbcL,nhdF,andrpl16intron)andusingbothclockbased (LangleyFitch)andclockindependentageestimates(NonParametricRateSmoothingand PenalizedLikelihood).OurdatingresultsindicatedanancientGondwananoriginof CrypteroniaceaeintheEarlytoMiddleCretaceous,followedbydiversificationontheIndian plateintheEarlyTertiaryandsubsequentdispersaltoSoutheastAsia.Thesefindingswere congruentwithrecentmolecular,paleontological,andbiogeographicresultsinvertebrates. ThethirdchapterrepresentsareplytoRobertG.Moyle(2004),whoreanalyzeddata publishedinanearlierpaperontheoutofIndiahypothesisforCrypteroniaceae(Contiet al., 2002).ByusingadifferenttaxonsamplingandanothercalibrationpointthanContiet al.(2002), MoyleconcludedthattheoutofIndiahypothesisforCrypteroniaceaehadtoberejected.Inour reply,wedefendedtheanalysisbyContiet al.(2002),highlightedsomeweaknessesinMoyle’s analyticalprocedure,andofferedinthesametimesomegeneralreflectionsonthecontroversial issueofcalibrationinmoleculardatinganalyses. Thefourthchapterisabouttherelativelysmallgroupoftreesandshrubswhichbelongto theSouthandEastAfricanPenaeaceae,Oliniaceae,andRhynchocalycaceae,allcloselyrelatedto theCrypteroniaceaetreatedinchapterstwoandthree(orderMyrtales).Chronogramsinferredin previousstudiesrevealedlongstembranchesforbothPenaeaceaeandOliniaceae,indicatinga longtimeperiodbetweentheoriginanddiversificationoftheselineages.Thechronogramsalso

219 suggestedthatthislongphasewasfollowedbyarelativelyshortepisodewithrapid diversification,especiallywithinPenaeaceae.Inordertoreconstructthetempo,mode,and possiblereasonsofdiversificationoftheseplantgroups,weperformedphylogeneticand moleculardatinganalysesbasedoneightchloroplastandthreenucleargenesequences,followed bystatisticalevaluationoflineagesthroughtimeplotsandMaximumLikelihoodreconstructions oftheancestralcharacterstatesforleafsizeandvegetationtype.Weshowedthatthecrown radiationofPenaeaceaestartedabout17millionyearsago,followingtheinitiationofaclimatic trendtowardsthemodernseasonallycoldandaridconditionsintheCapeFloristicRegion.Our ancestralcharacterstatereconstructionsindicategeneralshiftsfromtropicaltofynbosvegetation types,andfrommacrotoleptophyllousleaves,corroboratingthehypothesisthatmodernspecies, adaptedtolownutrientsoilsandsummeraridity,replacedanancestraltropicalfloraduringthe LateMiocenearidification. Inthefifthchapter,weaddressedoneofthecrucialchallengesinmoleculardating:the problemoffossilcalibration,ormoreprecisely:theuncertaintythatoftensurroundsthe assignmentoffossilstospecificnodesinaphylogeny.WeusedBayesianmoleculardatingand thefossilcrossvalidationprocedureofNearandSanderson(2004)inanovelwaytoassess uncertaintyinfossilnodalassignment.Morespecifically,byusinganexpandedMyrtalesdataset andsixfossilswithalternativeassignments,weidentifiedthethreemostcongruentcalibration setsbycomparingtheconsistenciesof72multiplecalibrationsetsavailableforourstudy.The threeselectedcalibrationsetswerecharacterizedbylowerstandarddeviationsassociatedwith theirestimateddivergencetimes. Finally,inthesixthchapter,wetestedthesensitivityofthreecommonlyusedmolecular datingmethodstotaxonsampling(NonParametricRateSmoothing,PenalizedLikelihood,and Bayesiandatingwithmultidivtime).ByusinganearlycompletesampleoftheRestiocladeofthe AfricangrasslikeRestionaceae(300species,including26outgroupspecies),weformednested subsetsof35,51,80,120,and150speciesandperformedmoleculardatinganalysesbasedonthe fulldatasetandallthesubsets.Wethencomparedtheimpactofthedifferentdatasetsizesand datingmethodsontheageestimates.Ourdatingexperimentsshowedthatallmethodswere sensitivetoundersampling,dependingontheamountofratesmoothingusedinthedating analyses.Inaddition,weobservedthattheundersamplingeffectwaspositivelyrelatedtothe distancefromthecalibrationnode.Finally,weobservedthatbothPenalizedLikelihoodand BayesiandatingmethodsarelesssensitivetoundersamplingthanNonParametricRate Smoothing.

220 Zusammenfassung

DiesechsKapiteldervorliegendenDissertationbefassensichallemitverschiedenen AspektenvonmolekularenDatierungsmethoden,englischmolecular dating methodsgenannt. DabeireichtdieSpannweitederbehandeltenThemenvonexperimentellenUntersuchungender MethodenselbstbishinzurpraktischenAnwendungdermolekularenAltersbestimmungfürdie AufklärungvonbiologischenundevolutionsgeschichtlichenFragen. DasersteKapitelstellteineaktuelleBeschreibungdermeistenheutegebräuchlichen molekularenDatierungsmethodendarundbietetdeminteressiertenLeserpraktische InformationenundVergleichstabellen.SowerdenzumBeispieldiespezifischenVorund NachteilederMethodenbesprochenundHinweiseaufdieaktuellsterelevanteLiteraturzum Themagegeben. ImzweitenKapitelwerdenmolekulareDatierungsmethodenbenützt,umdie VerbreitungsgeschichtederCrypteroniaceen,einerkleinenGruppevonsüdundsüdost asiatischenRegenwaldbäumen,zuuntersuchen.DabeiwurdediesogenannteOut-of-India Hypothesegetestet,welchepostuliert,dassdieCrypteroniaceensichinderspätenKreidezeitvon Afrika(dasdamalsTeildesSuperkontinentsGondwanawar)aufdieindischenKontinentalplatte ausgebreitethabenundmitdieserdurchKontinentaldriftnachAsiengelangtsind.Gemässdieser HypothesehabensichdiePflanzendannspäter,imfrühenTertiär,alsdieindische KontinentalplatteaufAsienstiess,Out-of-IndianachSüdundSüdostasienausgebreitet.Wir testetendiesesSzenario,indemwirdasphylogenetischeAlterderCrypteroniaceenbestimmten. DazurekonstruiertenwirzuerstdenStammbaumderCrypteroniaceenmittelsMaximum LikelihoodAnalysenvondreiDNAAbschnittendesChloroplastenGenoms(rbcL,nhdF,und rpl16intron)undbenütztenanschliessenddreiverschiedenemolekulareDatierungsmethoden (Langley-Fitch, Non Parametric Rate SmoothingundPenalized Likelihood)zur Altersbestimmung.UnsereDNAbasiertenDatierungsresultatezeigten,dassderUrsprungder CrypteroniaceentatsächlichaufdiefrühebismittlereKreidezeitzurückgehtunddasssichdiese ArtenwieimSzenariobeschriebenüberdiedriftendeindischeKontinentalplattenachAsien verbreitethabenkönnten.DieserBefundwirdübrigensdurchneueremolekulareund paläontologischeErkenntnissebeiverschiedenenWirbeltiergruppengestützt. DasdritteKapitelstelltdieAntwortaufeinenkritischenArtikelvonRobertG.Moyle (2004)dar,derAltersbestimmungenauseinerfrüherenArbeitüberdieOut-of-IndiaHypothese vonContiet al.(2002)wiederholteunddieseanzweifelte.DurchVerwendungeinesanderen KalibrierungspunktesinseinermolekularenDatierungkamMoylezumSchluss,dasssichdie

221

CrypteroniaceennichtdurchKontinentaldrift,sondernreinzufälligdurchlong distance dispersal nachAsienausgebreitethätten.InunsererAntwort,welchegleichzeitigmitMoylesKritikim International Journal of Organic Evolutionerschien,verteidigtenwirdieAnalysenvonContiet al.(2002),wiesenaufeinigegravierendeSchwächeninMoylesAnalysenhinunddiskutierten daskontroverseGebietderKalibrierungbeidermolekularenAltersbestimmung. ImviertenKapiteluntersuchtenwireinekleineGruppevonnahverwandtensüdund ostafrikanischenBäumenundSträuchern,diePenaeaceen,OliniaceenundRhynchocalycaceen. DiesePflanzensindalleengverwandtmitdenasiatischenCrypteroniaceen(sieheKapitelzwei unddrei)undgehörenzurOrdnungMyrtales.DatierteStammbäume,sogenannte Chronogramme,zeigteninfrüherenStudien,dassdiePenaeaceenundOliniaceenwährendeiner langenZeitperiodevonüber40MillionenJahrenDauerkeineneuenArtengebildethabenoder dieseeinerhohenSterberateunterworfenwaren.Erstvoretwa20MillionenJahrennahmdie Artenzahldannplötzlichmassivzu.UmdieseserstaunlicheDiversifikationsmusterzeitlich genauerzuuntersuchenunddiemöglichenUrsachendafüraufzuklären,führtenwir phylogenetischeUntersuchungenundmolekulareAltersbestimmungendurch,dieaufachtGenen ausdemChloroplastenGenomunddreinukleärenGenenberuhten.Anschliessendstelltenwir lineages through time plotsaufundrekonstruiertenmitMaximum LikelihoodVerfahrendie mutmassliche,ursprünglicheBlattgrösseunddenursprünglichbevorzugtenVegetationstypder VorfahrenderuntersuchtenPflanzen.Wirkonntenzeigen,dassdiePhasederintensiven Artbildungvoretwa17MillionenJahrenbegannundvermutlichdurcheineKlimaänderungin Südafrikaausgelöstwurde,diederKapRegioneinsaisonales,mediterranesKlimamit niederschlagsreichenWinternundheissen,trockenenSommernbrachte.Unsere Rekonstruktionenergabenferner,dassdiePflanzenimVerlaufeihrerevolutivenEntwicklungdie BlätterverkleinerthabenundsichvoneinemursprünglichtropischenHabitatandieheute vorherrschendemediterraneFynbosVegetationangepassthaben.DieseMerkmalsänderungen sindalsAnpassungenandiesommerlicheTrockenheitunddienährstoffarmenBödenzu verstehen,diesichimspätenMiozäninSüdafrikaentwickelten. ImfünftenKapitelgehtesumdasobenbereitserwähnteundumstritteneThemader Kalibrierungder„molekularenUhr“beiderDurchführungderAltersbestimmung.Dadie DatierungsresultateimWesentlichenvonderKalibrierungabhängigsind,handeltessichumein äusserstdelikatesThema.ImDetailgehtesumdieSchwierigkeit,dieFossilien,dieman normalerweisezumKalibrierenverwendetundderenAltermanungefährkennt,präziseden zugehörigenKnotenpunkteneinesStammbaumeszuzuordnen.WirgingendiesesProbleman, indemwirdieBayesian datingMethodezusammenmitdervonNearundSanderson(2004) erstmalsbeschriebenenfossil cross-validation procedurebenützten.Esgelanguns,aus72

222 verschiedenenMöglichkeiten,sechsverschiedeneFossilieneinemStammbaumzuzuordnen,jene dreiKombinationenzuermitteln,welchediekonsistentestenDatierungsresultateergaben.Als StammbaumbenütztenwireineeigensrekonstruiertePhylogenievon74Blütenpflanzenartender OrdnungMyrtales.AlswirdiedreiausgewähltenKombinationenzurAltersbestimmung einsetzten,stelltenwirfest,dassdieDatierungsresultatekleinereStandardabweichungen aufwiesenalsdieErgebnisseanderer,wenigerkonsistenterKombinationenvon Kalibrierungspunkten. ImsechstenKapitelschliesslichüberprüftenwir,wieempfindlichdreiheuteverbreitet eingesetztemolekulareDatierungsmethoden(Non Parametric Rate Smoothing,Penalized LikelihoodundBayesian dating)aufunterschiedlichestaxon samplingreagieren.Dazubenützten wirDatensätzeverschiedenerGrösse,welcheDNASequenzenvonjeweils35,51,80,120,150 oder300RestionaceenArtenenthielten.RestionaceensindgrasähnlicheBlütenpflanzen,welche hauptsächlichinSüdafrikaundAustralienverbreitetsind.DurchAnwendungderverschiedenen DatierungsmethodenverglichenwirdenEinflussdestaxon samplingsundderverwendeten MethodenaufdieDatierungsresultate.UnsereExperimentezeigten,dassalleMethodenmehr oderwenigerstarkaufunterschiedlichestaxon samplingreagieren,abhängigvonderStärkedes beiderDatierungeingesetztenrate smoothings.Derbeobachteteundersampling Effektwar ausserdempositivkorreliertmitderDistanzzwischendendatiertenKnotenimStammbaumund demKalibrierungspunkt.Abschliessendstelltenwirfest,dasssowohldiePenalized Likelihood- alsauchdieBayesian datingMethodewenigersensibelaufundersampling reagierenalsdieNon Parametric Rate SmoothingMethode.

223

224 Curriculum vitae

Personalien NameundVorname: Rutschmann,FrankKaspar Geborenam: 14.Januar1970inBülachZH,Schweiz Heimatort: ZürichZH,Schweiz Ausbildung Mittelschule: KantonaleMaturitätsschulefürErwachsene,Zürich. Abschluss1997,TypusB(Latein). Hochschulstudium: UniversitätZürich,GrundstudiumBiologie, 4Semester,1997bis1999. ETHZürich,FachstudiumAllgemeineBiologie, 4Semester,1999bis2001. Diplomfach: AllgemeineBiologie(ETHZürich),mitdenSchwerpunkten Pflanzenphysiologie,Biochemie,MolekulareGenetik, ZellbiologieundMikrobiologie. Diplomarbeit: „CharakterisierungeinerCalciumabhängigenProteinkinase LeCPK1ausLycopersicon esculentum“. InstitutfürPflanzenwissenschaftenderETHZürich, Prof.NikolausAmrhein.Herbst2001. Doktorat: UniversitätZürich,InstitutfürSystematischeBotanik, Prof.ElenaConti.Assistenz(50%)vonSeptember2002 bisJuli2006.

225