This Article Appeared in a Journal Published by Elsevier. the Attached

Total Page:16

File Type:pdf, Size:1020Kb

This Article Appeared in a Journal Published by Elsevier. the Attached This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Gene 515 (2013) 349–358 Contents lists available at SciVerse ScienceDirect Gene journal homepage: www.elsevier.com/locate/gene The complete mitochondrial genome of Biston panterinaria (Lepidoptera: Geometridae), with phylogenetic utility of mitochondrial genome in the Lepidoptera Xiushuai Yang a,b, Dayong Xue a, Hongxiang Han a,⁎ a Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China b Graduate University of the Chinese Academy of Sciences, Beijing 100049, China article info abstract Article history: The complete mitochondrial genome (mitogenome) of the Chinese pistacia looper Biston panterinaria was Accepted 1 November 2012 sequenced and annotated (15,517 bp). It contains the typical 37 genes of animal mitogenomes and a high Available online 5 December 2012 A+T content (79.5%). All protein coding genes (PCGs) use standard ATN initiation codons except for cytochrome c oxidase 1 (COX1) with CGA. Eleven PCGs use a common stop codon of TAA or TAG, whereas COX2 and NADH Keywords: dehydrogenase 4 (ND4) use a single T. All transfer RNA (tRNA) genes have the typical clover-leaf structure with Mitochondrial genome the exception of tRNASer(AGN). We reconstructed a preliminary mitochondrial phylogeny of six ditrysian super- Biston panterinaria Molecular phylogeny families and performed comparative analyses of inference methods (Bayesian Inference (BI), Maximum Likeli- hood (ML), and Maximum Parsimony (MP)), dataset compositions (including and excluding 3rd codon positions), and alignment methods (Muscle, Clustal W, and MAFFT). Our analyses indicated that inference methods and dataset compositions more significantly affected the phylogenetic results than alignment methods. BI analysis consistently revealed uncontroversial relationships with all dataset compositions. By contrast, ML analysis failed to reconstruct stable phylogeny at two nodes, whereas MP analysis had more difficulties in the tree resolution and nodal support. Distinct from most previous studies, our analyses revealed that Geometroidea had a closer lineage relationship with Bombycoidea than Noctuoidea. Similar to previous molecular studies, our analyses revealed that Hesperiidae were nested in the Papilionoidea clade, providing further evidence to the previous concept that Papilionoidea was paraphyletic, and none of the butterflies were associated with the Macroheterocera. © 2012 Elsevier B.V. All rights reserved. 1. Introduction 2009b; Hao et al., 2012; Jiang et al., 2009; Kim et al., 2009b, 2011; Mahendran et al., 2006), mitogenomes are also important in various Mitochondrial genomes (mitogenomes) of insects are typically scientific disciplines, such as comparative and evolutionary genomics double-stranded and circular molecules that span 14–20 kb. They con- (Ballard, 2000; Ballard and Rand, 2005; Papanicolaou et al., 2008), tain 13 protein coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, molecular evolution (Brower, 1994; Zakharov et al., 2004), phylo- and 22 transfer RNA (tRNA) genes (Boore, 1999; Wolstenholme, geography (Avise, 2000), and population genetics (Avise et al., 1987; 1992), as well as a non-coding region known as the A+T rich or control Hurst and Jiggins, 2005). region, which participates in the initiation of transcription and replica- Lepidoptera is one of the world largest insect orders, second only tion (Taanman, 1999; Zhang and Hewitt, 1997; Zhang et al., 1995). In to Coleoptera, with approximately 157,424 described species (van addition to their application in the reconstruction of phylogenetic rela- Nieukerken et al., 2011). The controversial issues of the phylogenetic re- tionships among insects (Cameron and Whiting, 2008; Dowton et al., lationships in the Lepidoptera have been intensively discussed, at both deep-level and low-level (Fibiger et al., 2010; Mutanen et al., 2010; Sihvonen et al., 2011; Wahlberg et al., 2005; Zahiri et al., 2011, 2012). Abbreviations: Mitogenome, mitochondrial genome; PCGs, protein coding genes; Increasing numbers of molecular markers have been exploited for phy- – ATP6 and ATP8, ATP synthase subunits 6 and 8 genes; COX1-3, cytochrome c oxidase 1 logenetic analyses. These markers include mitochondrial genes large 3genes;CYTB,cytochromeb gene; ND1-6 and ND4L, NADH dehydrogenase subunits 1–6 and 4L genes; rRNA, ribosomal RNA; lrRNA and srRNA, large and small subunit ribo- subunit ribosomal RNA (lrRNA) (Pashley and Ke, 1992), small subunit somal RNA; tRNA, transfer RNA; PCR, polymerase chain reaction; DHU, dihydrouridine; ribosomal RNA (srRNA) (Niehuis et al., 2006), cytochrome c oxidase 1 TΨC, pseudouridine; BI, Bayesian Inference; ML, Maximum Likelihood; MP, Maximum (COX1) (Wahlberg et al., 2005; Wu et al., 2010), COX2 (Braby et al., Parsimony; BP, bootstrap percentage. 2005), cytochrome b (CYTB) (Li et al., 2005), NADH dehydrogenase 1 ⁎ Corresponding author at: Key Laboratory of Zoological Systematics and Evolution, (ND1) (Martin and Pashley, 1992; Weller et al., 1994), and ND5 (Yagi Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. Tel.: +86 10 64807230; fax: +86 10 64807099. et al., 1999), as well as the nuclear genes 18S (Weller et al., 1992), 28S E-mail address: [email protected] (H. Han). (Abraham et al., 2001), CAD (Regier et al., 2008b; Zwick, 2008), DDC 0378-1119/$ – see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.gene.2012.11.031 Author's personal copy 350 X. Yang et al. / Gene 515 (2013) 349–358 (Regier et al., 2001, 2002, 2005), EF-1α (Mitchell et al., 1997, 2006), Table 1 enolase (Regier et al., 2008a), GAPDH (Wahlberg and Wheat, 2008; Statistics of the data matrices in the study. Wahlberg et al., 2009), IDH (Sihvonen et al., 2011; Zwick et al., 2011), Dataset name Number of nucleotides (bp) MDH (Zahiri et al., 2011, 2012), RpS5 (Mutanen et al., 2010), and PCG12MU 7790 wingless (Kawahara et al., 2009). Molecular phylogenetic studies of PCG12CW 7748 the Lepidoptera used to rely on a combination of two or more of the PCG12MA 7740 aforementioned molecular markers, and different markers or different PCG123MU 11,685 taxon samplings result in inconsistencies (Heikkilä et al., 2012; PCG123CW 11,622 PCG123MA 11,650 Mitchell et al., 1997, 2006; Mutanen et al., 2010; Regier et al., 2009; Wahlberg et al., 2005; Weller et al., 1994; Zahiri et al., 2011). Recently, the expansion of molecular markers and taxon samplings in the Lepi- doptera, especially in the superfamilies Bombycoidea, Noctuoidea, and in July 2011. Three legs from one side of the body were removed Papilionoidea, has greatly improved the resolution of some ambiguous and preserved in 100% ethanol during collection. After transport to phylogenetic relationships (Heikkilä et al., 2012; Mutanen et al., 2010; the laboratory, the legs were stored at −20 °C until DNA extraction, Regier et al., 2009; Zahiri et al., 2011; Zwick et al., 2011). However, and the specimens were deposited at the Museum of the Institute of many relationships remain poorly resolved. Zoology, Chinese Academy of Sciences. Total genomic DNA was Considerable efforts have been expended in the past decade extracted from the leg muscle tissue using a Qiagen DNeasy Blood & to reconstruct the evolutionary relationships using mitogenomes Tissue Kit (69506). (Cameron et al., 2007, 2009; Dowton et al., 2009a; Fenn et al., 2008; Kawaguchi et al., 2001; Minegishi et al., 2005; Miya et al., 2003; 2.2. Polymerase chain reaction (PCR) amplification and sequencing Song et al., 2010; Wiegmann et al., 2011). A range of phylogenetic approaches such as inference methods, partitioning strategies, align- The entire genome was amplified using standard PCR methods with ment methods, and gene exclusion have been tested to find the most a set of universal primers for the lepidopteran mitogenome (Folmer appropriate methods for analyzing mitogenomes, especially in insects et al., 1994; Lee et al., 2006; Simon et al., 1994, 2006; Zhao et al., (Cameron et al., 2009; Dowton et al., 2009a; Fenn et al., 2008; Song 2011; Zhu et al., 2010). Then, perfectly matched primers for internal et al., 2010; Wiegmann et al., 2011). In these studies, three of the four fragments were designed based on the sequences amplified by the most diverse holometabolous insect orders (Coleoptera, Diptera, Lepi- universal primers. Short PCRs were performed using Takara Taq™ doptera, and Hymenoptera) have been examined (Cameron et al., DNA polymerase (DR001B) under the following cycling parameters: 2007; Dowton et al., 2009a; Song et al., 2010). The number of complete 94 °C for 2 min; 35 cycles of 30 s at 94 °C, 30 s at 53 °C, and 1 min at or nearly complete lepidopteran mitogenomes in the GenBank has rap- 72 °C; and 72 °C for 10 min. Long PCRs were performed using Takara idly increased to 138,
Recommended publications
  • The Complete Mitochondrial Genome of Trabala Vishnou Guttata (Lepidoptera: Lasiocampidae) and the Related Phylogenetic Analyses
    The complete mitochondrial genome of Trabala vishnou guttata (Lepidoptera: Lasiocampidae) and the related phylogenetic analyses Liuyu Wu, Xiao Xiong, Xuming Wang, Tianrong Xin, Jing Wang, Zhiwen Zou & Bin Xia Genetica An International Journal of Genetics and Evolution ISSN 0016-6707 Volume 144 Number 6 Genetica (2016) 144:675-688 DOI 10.1007/s10709-016-9934-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing Switzerland. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Genetica (2016) 144:675–688 DOI 10.1007/s10709-016-9934-x The complete mitochondrial genome of Trabala vishnou guttata (Lepidoptera: Lasiocampidae) and the related phylogenetic analyses 1 1 2 1 1 Liuyu Wu • Xiao Xiong • Xuming Wang • Tianrong Xin • Jing Wang • 1 1 Zhiwen Zou • Bin Xia Received: 20 May 2016 / Accepted: 17 October 2016 / Published online: 21 October 2016 Ó Springer International Publishing Switzerland 2016 Abstract The bluish yellow lappet moth, Trabala vishnou related species (Dendrolimus taxa) are clustered on Lasio- guttata is an extraordinarily important pest in China.
    [Show full text]
  • Lepidoptera: Noctuoidea: Erebidae) and Its Phylogenetic Implications
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 558–570, 2016 http://www.eje.cz doi: 10.14411/eje.2016.076 ORIGINAL ARTICLE Characterization of the complete mitochondrial genome of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) and its phylogenetic implications YU SUN, SEN TIAN, CEN QIAN, YU-XUAN SUN, MUHAMMAD N. ABBAS, SAIMA KAUSAR, LEI WANG, GUOQING WEI, BAO-JIAN ZHU * and CHAO-LIANG LIU * College of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China; e-mails: [email protected] (Y. Sun), [email protected] (S. Tian), [email protected] (C. Qian), [email protected] (Y.-X. Sun), [email protected] (M.-N. Abbas), [email protected] (S. Kausar), [email protected] (L. Wang), [email protected] (G.-Q. Wei), [email protected] (B.-J. Zhu), [email protected] (C.-L. Liu) Key words. Lepidoptera, Noctuoidea, Erebidae, Spilarctia robusta, phylogenetic analyses, mitogenome, evolution, gene rearrangement Abstract. The complete mitochondrial genome (mitogenome) of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) was se- quenced and analyzed. The circular mitogenome is made up of 15,447 base pairs (bp). It contains a set of 37 genes, with the gene complement and order similar to that of other lepidopterans. The 12 protein coding genes (PCGs) have a typical mitochondrial start codon (ATN codons), whereas cytochrome c oxidase subunit 1 (cox1) gene utilizes unusually the CAG codon as documented for other lepidopteran mitogenomes. Four of the 13 PCGs have incomplete termination codons, the cox1, nad4 and nad6 with a single T, but cox2 has TA. It comprises six major intergenic spacers, with the exception of the A+T-rich region, spanning at least 10 bp in the mitogenome.
    [Show full text]
  • Phylogenomics Reveals Major Diversification Rate Shifts in The
    bioRxiv preprint doi: https://doi.org/10.1101/517995; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Phylogenomics reveals major diversification rate shifts in the evolution of silk moths and 2 relatives 3 4 Hamilton CA1,2*, St Laurent RA1, Dexter, K1, Kitching IJ3, Breinholt JW1,4, Zwick A5, Timmermans 5 MJTN6, Barber JR7, Kawahara AY1* 6 7 Institutional Affiliations: 8 1Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA 9 2Department of Entomology, Plant Pathology, & Nematology, University of Idaho, Moscow, ID 10 83844 USA 11 3Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 12 4RAPiD Genomics, 747 SW 2nd Avenue #314, Gainesville, FL 32601. USA 13 5Australian National Insect Collection, CSIRO, Clunies Ross St, Acton, ACT 2601, Canberra, 14 Australia 15 6Department of Natural Sciences, Middlesex University, The Burroughs, London NW4 4BT, UK 16 7Department of Biological Sciences, Boise State University, Boise, ID 83725, USA 17 *Correspondence: [email protected] (CAH) or [email protected] (AYK) 18 19 20 Abstract 21 The silkmoths and their relatives (Bombycoidea) are an ecologically and taxonomically 22 diverse superfamily that includes some of the most charismatic species of all the Lepidoptera. 23 Despite displaying some of the most spectacular forms and ecological traits among insects, 24 relatively little attention has been given to understanding their evolution and the drivers of 25 their diversity.
    [Show full text]
  • Complete Mitochondrial Genome of Golden Silk Producer Antheraea Assamensis and Its Comparative Analysis with Other Lepidopteran Insects
    bioRxiv preprint doi: https://doi.org/10.1101/110031; this version posted February 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Complete mitochondrial genome of golden silk producer Antheraea assamensis and its comparative analysis with other lepidopteran insects Deepika Singh1,2, Debajyoti Kabiraj1, Hasnahana Chetia1, Pragya Sharma3, Kartik Neog4, Utpal Bora1,2,5* 1Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India 2Centre for the Environment, Indian Institute of Technology Guwahati, Assam-781039, India 3Department of Bioengineering and Technology, Gauhati University Institute of Science and Technology (GUIST), Gauhati University, Guwahati-781014, Assam, India 4Biotechnology Section, Central Muga Eri Research & Training Institute (CMER&TI), Lahdoigarh-785700, Jorhat, Assam, India 5Mugagen Laboratories Pvt. Ltd., Technology Incubation Centre, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India *Corresponding Author Prof. Utpal Bora, Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam – 781039, India. Email: [email protected], [email protected] Phone: +913612582215/3204 1 bioRxiv preprint doi: https://doi.org/10.1101/110031; this version posted February 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Muga (Antheraea assamensis) is an economically important silkmoth endemic to North-eastern part of India and is the producer of the strongest known commercial silk. However, there is a scarcity of -omics data for understanding the organism at a molecular level.
    [Show full text]
  • RNA Helicase Domains of Viral Origin in Proteins of Insect Retrotransposons: Possible Source for Evolutionary Advantages
    A peer-reviewed version of this preprint was published in PeerJ on 16 August 2017. View the peer-reviewed version (peerj.com/articles/3673), which is the preferred citable publication unless you specifically need to cite this preprint. Morozov SY, Lazareva EA, Solovyev AG. 2017. RNA helicase domains of viral origin in proteins of insect retrotransposons: possible source for evolutionary advantages. PeerJ 5:e3673 https://doi.org/10.7717/peerj.3673 RNA helicase domains of viral origin in proteins of insect retrotransposons: possible source for evolutionary advantages Sergey Y. Morozov Corresp., 1 , Ekaterina A. Lazareva 2 , Andrey G. Solovyev 1, 3 1 Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia 2 Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia 3 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia Corresponding Author: Sergey Y. Morozov Email address: [email protected] Recently, a novel phenomenon of horizontal gene transfer of helicase-encoding sequence from positive-stranded RNA viruses to LINE transposons in insect genomes was described. TRAS family transposons encoding an ORF2 protein, which comprised all typical functional domains and an additional helicase domain, were found to be preserved in many families during the evolution of the order Lepidoptera. In the present paper, in species of orders Hemiptera and Orthoptera, we found helicase domain-encoding sequences integrated into ORF1 of retrotransposons of the Jockey family. RNA helicases encoded by transposons of TRAS and Jockey families represented separate brunches in a phylogenetic tree of helicase domains and thus could be considered as independently originated in the evolution of insect transposons.
    [Show full text]
  • Taxonomic and Molecular Studies in Cleridae and Hemiptera
    University of Kentucky UKnowledge Theses and Dissertations--Entomology Entomology 2015 TAXONOMIC AND MOLECULAR STUDIES IN CLERIDAE AND HEMIPTERA John Moeller Leavengood Jr. University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Leavengood, John Moeller Jr., "TAXONOMIC AND MOLECULAR STUDIES IN CLERIDAE AND HEMIPTERA" (2015). Theses and Dissertations--Entomology. 18. https://uknowledge.uky.edu/entomology_etds/18 This Doctoral Dissertation is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Entomology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • Mitochondrial Genomes of Two Bombycoidea Insects and Implications for Their Phylogeny
    www.nature.com/scientificreports OPEN Mitochondrial Genomes of Two Bombycoidea Insects and Implications for Their Phylogeny Received: 20 February 2017 Zhao-Zhe Xin, Yu Liu, Xiao-Yu Zhu, Ying Wang, Hua-Bin Zhang, Dai-Zhen Zhang, Chun-Lin Accepted: 22 June 2017 Zhou, Bo-Ping Tang & Qiu-Ning Liu Published online: 26 July 2017 The mitochondrial genome (mt genome) provides important information for understanding molecular evolution and phylogenetics. As such, the two complete mt genomes of Ampelophaga rubiginosa and Rondotia menciana were sequenced and annotated. The two circular genomes of A. rubiginosa and R. menciana are 15,282 and 15,636 bp long, respectively, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and an A + T-rich region. The nucleotide composition of the A. rubiginosa mt genome is A + T rich (81.5%) but is lower than that of R. menciana (82.2%). The AT skew is slightly positive and the GC skew is negative in these two mt genomes. Except for cox1, which started with CGA, all other 12PCGs started with ATN codons. The A + T-rich regions of A. rubiginosa and R. menciana were 399 bp and 604 bp long and consist of several features common to Bombycoidea insects. The order and orientation of A. rubiginosa and R. menciana mitogenomes with the order trnM-trnI-trnQ-nad2 is diferent from the ancestral insects in which trnM is located between trnQ and nad2 (trnI-trnQ-trnM- nad2). Phylogenetic analyses indicate that A. rubiginosa belongs in the Sphingidae family, and R. menciana belongs in the Bombycidae family.
    [Show full text]
  • EU Project Number 613678
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................
    [Show full text]
  • Lepidoptera, Geometridae, Ennominae) from China
    A peer-reviewed open-access journal ZooKeys 139:A review 45–96 (2011)of Biston Leach, 1815 (Lepidoptera, Geometridae, Ennominae) from China... 45 doi: 10.3897/zookeys.139.1308 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A review of Biston Leach, 1815 (Lepidoptera, Geometridae, Ennominae) from China, with description of one new species Nan Jiang1,2,†, Dayong Xue1,‡, Hongxiang Han1,§ 1 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China † urn:lsid:zoobank.org:author:F09E9F50-5E54-40FE-8C04-3CEA6565446B ‡ urn:lsid:zoobank.org:author:BBEC2B15-1EEE-40C4-90B0-EB6B116F2AED § urn:lsid:zoobank.org:author:1162241D-772E-4668-BAA3-F7E0AFBE21EE Corresponding author: Hongxiang Han ([email protected]) Academic editor: A.Hausmann | Received 26 March 2011 | Accepted 15 August 2011 | Published 25 October 2011 urn:lsid:zoobank.org:pub:F505D74E-1098-473D-B7DE-0ED283297B4F Citation: Jiang N, Xue D, Han H (2011) A review of Biston Leach, 1815 (Lepidoptera, Geometridae, Ennominae) from China, with description of one new species. ZooKeys 139: 45–96. doi: 10.3897/zookeys.139.1308 Abstract The genus Biston Leach, 1815 is reviewed for China. Seventeen species are recognized, of which B. me- diolata sp. n. is described. B. pustulata (Warren, 1896) and B. panterinaria exanthemata (Moore, 1888) are newly recorded for China. The following new synonyms are established: B. suppressaria suppressaria (Guenée, 1858) (= B. suppressaria benescripta (Prout, 1915), syn. n. = B. luculentus Inoue, 1992 syn. n.); B. falcata (Warren, 1893) (= Amphidasis erilda Oberthür, 1910, syn.
    [Show full text]
  • The Complete Mitochondrial Genomes of Two Ghost Moths, Thitarodes
    Cao et al. BMC Genomics 2012, 13:276 http://www.biomedcentral.com/1471-2164/13/276 RESEARCH ARTICLE Open Access The complete mitochondrial genomes of two ghost moths, Thitarodes renzhiensis and Thitarodes yunnanensis: the ancestral gene arrangement in Lepidoptera Yong-Qiang Cao1,2†, Chuan Ma3†, Ji-Yue Chen1 and Da-Rong Yang1* Abstract Background: Lepidoptera encompasses more than 160,000 described species that have been classified into 45–48 superfamilies. The previously determined Lepidoptera mitochondrial genomes (mitogenomes) are limited to six superfamilies of the lineage Ditrysia. Compared with the ancestral insect gene order, these mitogenomes all contain a tRNA rearrangement. To gain new insights into Lepidoptera mitogenome evolution, we sequenced the mitogenomes of two ghost moths that belong to the non-ditrysian lineage Hepialoidea and conducted a comparative mitogenomic analysis across Lepidoptera. Results: The mitogenomes of Thitarodes renzhiensis and T. yunnanensis are 16,173 bp and 15,816 bp long with an A + T content of 81.28 % and 82.34 %, respectively. Both mitogenomes include 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and the A + T-rich region. Different tandem repeats in the A + T-rich region mainly account for the size difference between the two mitogenomes. All the protein-coding genes start with typical mitochondrial initiation codons, except for cox1 (CGA) and nad1 (TTG) in both mitogenomes. The anticodon of trnS(AGN) in T. renzhiensis and T. yunnanensis is UCU instead of the mostly used GCU in other sequenced Lepidoptera mitogenomes. The 1,584-bp sequence from rrnS to nad2 was also determined for an unspecified ghost moth (Thitarodes sp.), which has no repetitive sequence in the A + T-rich region.
    [Show full text]
  • The Multipartite Mitochondrial Genome of Liposcelis Bostrychophila: Insights Into the Evolution of Mitochondrial Genomes in Bilateral Animals
    The Multipartite Mitochondrial Genome of Liposcelis bostrychophila: Insights into the Evolution of Mitochondrial Genomes in Bilateral Animals Dan-Dan Wei1., Renfu Shao2,3*., Ming-Long Yuan1, Wei Dou1, Stephen C. Barker2, Jin-Jun Wang1* 1 Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China, 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia, 3 School of Science, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia Abstract Booklice (order Psocoptera) in the genus Liposcelis are major pests to stored grains worldwide and are closely related to parasitic lice (order Phthiraptera). We sequenced the mitochondrial (mt) genome of Liposcelis bostrychophila and found that the typical single mt chromosome of bilateral animals has fragmented into and been replaced by two medium-sized chromosomes in this booklouse; each of these chromosomes has about half of the genes of the typical mt chromosome of bilateral animals. These mt chromosomes are 8,530 bp (mt chromosome I) and 7,933 bp (mt chromosome II) in size. Intriguingly, mt chromosome I is twice as abundant as chromosome II. It appears that the selection pressure for compact mt genomes in bilateral animals favors small mt chromosomes when small mt chromosomes co-exist with the typical large mt chromosomes. Thus, small mt chromosomes may have selective advantages over large mt chromosomes in bilateral animals. Phylogenetic analyses of mt genome sequences of Psocodea (i.e. Psocoptera plus Phthiraptera) indicate that: 1) the order Psocoptera (booklice and barklice) is paraphyletic; and 2) the order Phthiraptera (the parasitic lice) is monophyletic.
    [Show full text]
  • Korean Red List of Threatened Species Korean Red List Second Edition of Threatened Species Second Edition Korean Red List of Threatened Species Second Edition
    Korean Red List Government Publications Registration Number : 11-1480592-000718-01 of Threatened Species Korean Red List of Threatened Species Korean Red List Second Edition of Threatened Species Second Edition Korean Red List of Threatened Species Second Edition 2014 NIBR National Institute of Biological Resources Publisher : National Institute of Biological Resources Editor in President : Sang-Bae Kim Edited by : Min-Hwan Suh, Byoung-Yoon Lee, Seung Tae Kim, Chan-Ho Park, Hyun-Kyoung Oh, Hee-Young Kim, Joon-Ho Lee, Sue Yeon Lee Copyright @ National Institute of Biological Resources, 2014. All rights reserved, First published August 2014 Printed by Jisungsa Government Publications Registration Number : 11-1480592-000718-01 ISBN Number : 9788968111037 93400 Korean Red List of Threatened Species Second Edition 2014 Regional Red List Committee in Korea Co-chair of the Committee Dr. Suh, Young Bae, Seoul National University Dr. Kim, Yong Jin, National Institute of Biological Resources Members of the Committee Dr. Bae, Yeon Jae, Korea University Dr. Bang, In-Chul, Soonchunhyang University Dr. Chae, Byung Soo, National Park Research Institute Dr. Cho, Sam-Rae, Kongju National University Dr. Cho, Young Bok, National History Museum of Hannam University Dr. Choi, Kee-Ryong, University of Ulsan Dr. Choi, Kwang Sik, Jeju National University Dr. Choi, Sei-Woong, Mokpo National University Dr. Choi, Young Gun, Yeongwol Cave Eco-Museum Ms. Chung, Sun Hwa, Ministry of Environment Dr. Hahn, Sang-Hun, National Institute of Biological Resourses Dr. Han, Ho-Yeon, Yonsei University Dr. Kim, Hyung Seop, Gangneung-Wonju National University Dr. Kim, Jong-Bum, Korea-PacificAmphibians-Reptiles Institute Dr. Kim, Seung-Tae, Seoul National University Dr.
    [Show full text]