SEMINAR NASIONAL IKAN KE-10

DAFTAR ISI – JILID I

Bidang Biosistematika, Taksonomi dan Genetika

Dewi Imelda Roesma, Djong Hon Tjong dan Dyta Rabbani Aidil. ANALISIS FILOGENETIK IKAN BARAU DAN SASAU (: ) DARI DANAU DAN SUNGAI DI SUMATERA BARAT BERDASARKAN GEN SITOKROM B ……… 1 Dewi Imelda Roesma, Syaifullah dan Delfia Rahmadhani. ANALISIS MORFOLOGI IKAN (Kuhl & van Hasselt, 1823) DAN Hampala sp. DARI DANAU SINGKARAK DAN DANAU MANINJAU, …………… 13 I Nyoman Yoga Parawangsa, Putu Roni Graha Persada, Prawira A.R.P. Tampubolon dan Nyoman Dati Pertami. KARAKTER MORFOMETRIK DAN MERISTIC IKAN EKOR PEDANG (Xiphophorus helleri Heckel, 1884) DI DANAU BUYAN, BULELENG, BALI ……………………………………………...... 27 Melta Rini Fahmi. KERAGAMAN GENETIK GEN 16 SRRNA DAN KERAGAAN BUDIDAYA IKAN SIDAT Anguilla bicolor MCCLELLAND, 1844 DI INDONESIA ………………………………...………………. 37 Gerald R. Allen, Mark V. Erdmann dan Renny K. Hadiaty. STUDI AWAL IKAN DI PERAIRAN PANTAI KEPULAUAN ARU …..………….…………………… 53

Bidang Biologi Reproduksi dan Pertumbuhan

Andika Irawan, Zairion, Isdradjad Setyobudiandi, Agus Alim Hakim, Ali Mashar, Achmad Fahrudin dan Yusli Wardiatno. ASPEK DINAMIKA POPULASI IKAN GULAMAH (Johnius trachycephalus Bleeker, 1851) DI PERAIRAN TIMUR ………...... 73 Andika Luky Setiyo Hendrawan, Dimas Angga Hedianto dan Agus Arifin Sentosa. MAKANAN DAN STRATEGI MAKAN IKAN CORENCANG (Cyclocheilichthys apogon) DI WADUK IR. H. DJUANDA, JAWA BARAT ………………………………………………………..…………... 87 Anis Septiyaningsih, Mennofatria Boer dan Ali Mashar. PERTUMBUHAN DAN MORTALITAS IKAN TETENGKEK (Megalaspis cordyla Linnaeus, 1758) DI TELUKPALABUHANRATU, SUKABUMI, JAWA BARAT ………………………………… 95 Dewa Gde Tri Bodhi Saputra, Prawira A.R.P. Tampubolon, Nyoman Dati Pertami UKURAN PERTAMA KALI MATANG GONAD DAN FEKUNDITAS IKAN ZEBRA (Amatitlania nigro fasciata Gunther, 1867) DI DANAU TAMBLINGAN, BULELENG, BALI ……………………………………………………………………………………………………………………….. 107 Friesland Tuapetel KARAKTERISTIK REPRODUKSI IKAN SELAR KUNING, Selaroides leptolepis (Cuvier, 1833) DI TELUK AMBON DALAM ………………………………………………...... 115 Naily Nihaya, Mennofatria Boer dan Ali Mashar PERTUMBUHAN DAN MORTALITAS IKAN SWANGGI (Priacanthus tayenus Richardson, 1846) DI TELUK PALABUHANRATU, SUKABUMI, JAWA BARAT ……………... 127

Neri Kautsari, Herussalam dan Yudi Ahdiansyah. KELIMPAHAN JENIS DAN TINGKAT KEMATANGAN GONAD IKAN KURISI YANG TERTANGKAP DI PERAIRAN TELUK SALEH, SUMBAWA …………………………………………... 139

DAFTAR ISI | ix

SEMINAR NASIONAL IKAN KE-10

Prihatiningsih dan Anthony Sisco Panggabean. BIOLOGI REPRODUKSI DAN KEBIASAAN MAKAN IKAN GEROT-GEROT (Pomadasys kaakan) DI PERAIRAN LAUT JAWA ……………………………………………………………….……..…. 151 Putu Roni Graha Persada, I Gusti Ayu Dian Indraswari, Prawira A.R.P. Tampubolon dan Nyoman Dati Pertami. NISBAH KELAMIN DAN VIVIPARITAS IKAN PEDANG (Xiphoporus hellerii) DI DANAU BUYAN, BULELENG, BALI ……………………………………………………………………………….……….. 165 Reza Alnanda dan Prihatiningsih. HASIL TANGKAPAN DAN DINAMIKA POPULASI IKAN LIDAH PASIR (Cynoglos susarel) DI PERAIRAN CILACAP ……………………………………………………………………………………………. 173 Rulliyanti Meilanur, Zairion dan Mennofatria Boer. ASPEK BIOLOGI REPRODUKSI IKAN SEMAR (Menema culata Bloch and Schneider, 1801) DI TELUK PALABUHANRATU, SUKABUMI, JAWA BARAT ………………………………... 187 Salomo Juliko Tambunan, Zairion, Isdradjad Setyobudiandi, Agus Alim Hakim, Ali Mashar, Achmad Fahrudin dan Yusli Wardiatno. DINAMIKA POPULASI IKAN LIDAH LUMPUR (Cynoglossus bilineatusLacepède, 1802) DI PERAIRAN LAMPUNG TIMUR …….....…………………………………………………………………….. 197 Savitri Bayu Pradani, Setijanto, Siti Rukayah dan Erie Kolya Nasution. TINGKAT FITNESS POPULASI WADER PARI (Rasbora argyrotaenia, blkr) DI PERAIRAN WADUK SEMPOR DAN SUNGAI SAMPANG, KEBUMEN ………...... ………………. 213 Sri Endah Purnamaningtyas dan Amula Nurfiarini. KEBIASAAN MAKAN DAN LUAS RELUNG BEBERAPA JENISIKAN DI DANAU LINDUNG KELILING DI KABUPATEN KAPUAS HULU, KALIMANTAN BARAT …………………………….. 233 Ticah Yosiana, Rahmat Kurnia dan Zairion. PENDUGAAN PERTUMBUHAN DAN MORTALITAS IKAN KURAU (Polynemus dubius Bleeker, 1854) DI TELUK PALABUHANRATU, SUKABUMI, JAWA BARAT ………………….. 241 Titin Herawati, Adhardiansyahdan Rizki Nugraha Saputra. POLA PERTUMBUHAN DAN KEBIASAAN MAKAN IKAN SEREN (Diplocheilicthys pleurotaenia) DI WADUK JATIGEDE KABUPATEN SUMEDANG, JAWA BARAT ……………. 251 Tiya Amelda Utami, Mennofatria Boer dan Zairion. PERTUMBUHAN DAN MORTALITAS IKAN SEMAR (Menema culata Bloch and 265 Schneider, 1801) DI TELUK PALABUHANRATU, SUKABUMI, JAWA BARAT ………………..

Bidang Biogeografi dan Ekologi

ADI NOMAN SUSANTO, SUPYAN. STRUKTUR POPULASI IKAN MADIDIHANG (Thunnus albacares) YANG DIDARATKAN DI PULAU TERNATE………………………………………………………………..……………………………… 277 Agus Arifin Sentosa, Dimas Angga Hedianto.

TINGKAT TROFIK HIU DAN PARI YANG TERTANGKAP DI PERAIRAN SEKITAR NUSA TENGGARA……………………………………………………………………………………………………...………. 285 Asfie Maidie. HABITAT IKAN GURAMI KALOBULUNGAN (Osphronemus septemfasciatus Roberts, 1992) DI SUNGAI KEBURAU, KABUPATEN BULUNGAN, KALIMANTAN UTARA ………..... 295

x | JILID I

SEMINAR NASIONAL IKAN KE-10

Astri Suryandari, Masayu Rahmia Anwar Putri, dan Riswanto. STRUKTUR KOMUNITAS JUVENILE IKAN PADA EKOSISTEM MANGROVE DI PESISIR KABUPATEN PANGANDARAN, JAWA BARAT …………………………………………………………… 307 Dimas Angga Hedianto, Agus Arifin Sentosa, Andika Luky Setiyo, Hendrawan, dan Arip Rahman.

KARAKTERISTIK BIOLOGI IKAN OSKAR HITAM (Mayaheros urophthalmus, Günther 1862) DI WADUK IR. H. DJUANDA ………………………………………………………………….……….. 319 Gunawan Pratama Yoga, dan Silvi Nursodiyanti. TOKSISITAS AMMONIA TERHADAP BENIH IKAN SIDAT (Anguilla bicolor) ………………... 335 Husain Latuconsina, Tahir Tuasikal, dan Iwan Wali.

STRUKTUR KOMUNITAS IKAN MANGROVE PULAU TATUMBU TELUK KOTANIA SERAM BAGIAN BARAT MALUKU ………………………………………………………………………...... 345 Melta Rini Fahmi, Ruby Vidia Kusumah, dan Rendy Ginanjar. STUDI KOMPARASI BIOEKOLOGI, KERAGAMAN DAN DISTRIBUSI IKAN HIAS DI LAHAN GAMBUT CAGAR BIOSFERE BUKIT-BATU PROPINSI …………………………… 359 Nanda R. Prasetiawan. KEANEKARAGAMAN IKAN PADA TIDEPOOLS DI PULAU WANGI-WANGI, SULAWESI TENGGARA………………………………………………………………………………………………………...……. 375 Nurhayati.

KARAKTERISTIK ARUS DAN PENGARUHNYA PADA POTENSI PERIKANAN DI PERAIRAN PANTAI TELUK PRIGI, TRENGGALEK JAWA TIMUR...... 387 Septia Ananingtyas, Darmarini, Tri Prartono, Kadarwan Soewardi, M. Zainuri, M.A.Syahir, dan Yusli Wardiatno. KEBIASAAN MAKANAN BEBERAPA JENIS IKAN DI PERAIRAN LUBUK DAMAR, TAMIANG …………………………………………………………………………………...... 395 Surya Risuana, Yunaldi, Eveline Kurniati, dan Saleh Lalu. MONITORING POPULASI BANGGAI CARDINAL FISH(Pterapogon kauderni) DI KABUPATEN BANGGAI KEPULAUAN DAN BANGGAI LAUT ……………………………………….. 405 Widiya Asti, Lenny S. Syafei, Sujono, dan Dinno Sudinno. IKTIOFAUNA DI WADUK JATIGEDE KABUPATEN SUMEDANG PROVINSI JAWA BARAT ……………………………………………………………………………………………………………………………….. 411

DAFTAR ISI | xi

PHYLOGENETIC ANALYSIS OF BARAU AND SASAU FISH (HAMPALA:CYPRINIDAE} FROIU WESTSUMATRA TAKES AND RIVERS BASED ON CYTOCHROME-bGENE

rAnarisis f,ogenetik iiT,i:,fiixxifi::rT.xtr*i"?:lilixi:lfi' danau dan sungai

Dewi Imelda Roesmar): ,Djong l{on Tjonglt, nyt, Rabbani Aidilll 1)Andalas University, Padang, West , Indonesia

deu- j roesma @:j,r;hott"rr:in ri der,..,ir*esma@sci,unand.ar:.id

Abstract

Barau atrd Sasau fisl-r are the local names of Hantpala macrolepidoro [Kuhl & Van Hasselt, 1BZ3) and Hampala sp. [Cyprinidae] respectively. They are ciistinguished basecl on the presence or absence of dark band between the dorsal and the pelvic fins. A total of 540 base pairs (bp) of the cytochrome b gene were analyzed fron.r 23 individuals of Hampala fi-sh from four lakes and fonr rivers in to determine their taxonomic relationship. Phylogenetic tree was construct using the MEGA 6 software. The results shor,r,ed the low genetic divergence (0-O.Zok) between inter and intra popuiations of H. macrolepidota and Hampala sp. Hence, its divergences indicated that Barau and Sasau are the sanre species belong to H. macrolepidota.

Ke).words: cyprinidae, genetic distance, taxonomic relationship

Abstrak

Barau dan Sasau adalah nama local dari masing-masing Hampala macrolepidofafKuhl & Van Hasselt, 1823J dan Hampala sp. (Cyprinidae).Keduanya dibedakan berdasarkan ada atau tidaknya pita gelap antara sirip punggung dan sirip perut. Sebanyak 540 pasangan basa [bpJ gen sitokron, b dianalisis dari 23 individu ikan Hampala dari empat danau dan empat sungai di Sumatera Barat untuk menentul

Kata kunci: cyprinidae, hubungan taksonomi, jarak genetik

Introduction Hampala (Subfamily CyprininaeJ is one of the freshwater fish, widely distributed in Southeast Asia included Indonesia. Species of the Hampala having characteristics of the dark band between the dorsal fin and pelvic fins which is become vague in the larger fish. The color pattern on the species is distinguishable between adults with juverliles and vary at different locations. Their coloration in the body and morphological characteristic which showed much geographical variation make them became interesting (Kottelat et al. L993, Doi & Taki, 1994, Ryan & Esa, 2006; and Makmur et al. 2014J. Currently, there are seven described species ofHampala from southeast Asia have been reported [Ryan & Esa, 2a0q. one of them was H. macrolepidota [Valenciennes) which is the rvidest spread [Roberts 1989J. Their distribution includes in rivers, lakes, swamps, and reservoirs as reported by Ryan & Esa, Qa}Q; sulaiman & Mayden, (2012); Intan er al. (za1^3); Makmur et at.(201,4J ancl

PHYLOGENETIC ANALYSIS OF BARAU ..... 1 I

J.:"-.r-.: ri rr'. ll01t,l.There are several local names for H. macrolepidota for exanrp,e_s Bot'ou in lakes and rivers in West Sumatra [Salsabila, {7987); Roesma (2013), Abaro in Lake Siais and the adjoining rivers in Northwestern Sumatra [Roesma et a\.2016). In Ranau Lake, H. Macrolepidota recognized with three different local names based on the diff'erences in size. They are Kemencut for the small size, Arongan fbr the medium and Sebarou for the large size [Makmur et a1.201,4). ' Tltere is atrother Hampala can be found in Maninjau and Singkarak lakes, Hampala sp. which the local name is Sasau [Salsabila, 1987; Roesma, 2013.). At tl.ie satne size, Barau and Sasau differ in the dark band they have. Barau have a dark band betrveen dorsal fins and pelvrc fins and based on Kottelat et al. {19931 named as H. macrolepidota, while Sasau i-ias not. To deternrine the relationships of H. macrolepidota [BarauJ and Hampala sp [SasauJ we choose the DNA sequencingas one of the molecular tecirniques that liave been applied widely inphylogenetic studies. Cytochrome b genemitochonclrial DNA perhaps to be the best-studied DNA segment and widely used for fishes phylogenetic studies. Cytochroure b sequences have slorvly evolving sites which cait use to an investigation of deeper relationsl-rips and species identification in fish taxonorny studies [Berrrardi et aLZAA3, Manggio et o1.2005; and Wu et a\.2014).

Materials and methods A total of 23 individuals consist of l-B individuals of H. macrolepidota (BarauJ and five individuals of Hampala sp. (Sasau) werecaughtfromfour lakes and four rivers in West Sumatra (Figure 1.J. From each of population we used one to three individuals with assigning a number code on the label of the sample. San-iples tissuewere collected in 1.5 ml eppendorf tubes containing 960/o ethanol. The DNA isolation was following the procedure genome DNA mini kit. The DNA amplification was done with the PCR machine SensoQuest. The process of DNA an-rplification was done using 25 prlreaction volumes containing of 5 pl isolate DNA, 12.5 pIPCR supermix solution [containing Tris HCI pH 8.4, KCl, MgClZ, dGTP, dATP, dTTP, dCTP, Taq DNA polymerase, stabilizers), 3.5 prlDDHz},2 plforward primer [5' CGA TTC TTYGCN TTC CAY TTC YT 3'J and 2 prlreverse primer (5' CCT CCR ATC TTC CGA TTA CAA GAC 3'), I

I

Legend

* Ajr Tiryiq, firbaBah lah* 'r.,. Batas! Ii{dffi fihfi q 8i&*{ $nsff{r Ri}'rf 6 63[!fq Ordbi]in Ri],irr * Iluksl,4u*a. &rdni*j"! LSks i1. $lmpang ftsnian? rran Amfek, Oialss lniie ,i SflSrr*Ii tE*e Y Tat&sil&1}. Xia{B}["rkr ' t{unro Plfi#rl, si*tl*riik li*e t Paagtat Uan#. !iha\{ah l-i!a( * Fa6ingaafdnr &nqkaraii fn !* . Taspo&q Eiseri l"tarhlpq

{J r&*t Sunut e l;,:l; *emtm l*an,l

Figure 1. Map of sampling locations of H. macrolepidota and Hampala sp.

The temperature of preliminary denaturation was 95oC for 4minutes, denaturationwas 94oC for 1 minute, annealing was 53,C for 1 minute and elongation was 72oC for Zminutes. The process were follow by a final extension period at 72oC for 7 minutes. The process run for 36 cycles of PCR and the sample stored at temperature 4"C. Conformationof PCR product was done on 20/o agarose gelelectrophoresis. DNA fragments were extracted from the gel using QIA quik PCR Purification Kit [QiagenJ and used for DNA sequencingin MacroGen USA DNA Sequencing Laboratory.The result of DNA sequences were determined using DNA sequencing analysis software and assembled using DNA STAR program [Burland, 2000). The similarities of Hampala DNA sequences were compared to DNA sequence data fromNCBI GenBankh,[fp;1!fu]gst-ngbi, nlm.nih.gov/Blast[Table 1). All of DNA sequenceswere aligned using Clustal X ver. ]..81 software program [Thompson et al. 1-997J. Results of alignment was edited using Bioedit program [Hall 1999). DNAwas translated into amino acid using online program [DNA to Protein in SilicoJ.Haplotype and nucleotide diversity were calculated using DNA SP ver. 5.10 fRozas, 2003). The phylogenetic tree was constructed with four methods [ML/NI/ME/MP) using MEGA 6.0 software program fTamura Z0L1).

PHYLOGENETIC ANALYSIS OF BARAU ..... 3 Tablel.The List of Hampala species and other species [Cytochrome b sequences) from NCBI Genbank Familv Genus Species Code Location Source H, Pasco & Veran, 1 Crprinidae Hampala macrolepidota 1Q3461,42 Laos 2072 H. Kunming, Yr,rnnan, ? macrolepidota KC696545 China Luo ef aI.201.3 H. Mengna, Yunnan 3 macrolepidota HM536790 China Yanget a\.2070 H. Liu and Liu, 4 macrolepidota KF670B1B Hubei, China 2013 H. 5 macrolepidota AP011186 Japan Miya,2009 6 H. dispar KC631297 China Yang et a|.201"3 7 H. dispar KP71,2166 Myanmar Yanget al.2015 B Capoeta C. damascina JF79B3L0 Turkey Levin ef a\.2075 9 C. mauricii 1F798325 Turkey Levin et a\.2075 10 C. barroisi 1F798279 Turkey Levin ef a\.2015 Meraner et al. 11, Barbus B. barbus KC465925 Italia 2073 Markova ef a1. 1-2 B. rebeli GQ302803 Albania 2070 Bounerba er aL 13 B. carpathicus HG798332 Slovakia 2A15 Guo, Tong ef aL 14 Tor T. douronensis F12L1162 China 2009 Whiteley, et a1. 15 Danio D. rerio 1N234356 2071

Result and discussion PHYLOGENETIC ANALYSIS OF BARAU Result A total of 540 base pairs (bp) partial sequencesof cytochrome b from 38 individuals Hampalawere aligned.Twenty three sequences are new, originated from four lakes and four rivers in West Sumatra.The other 15 sequences were obtained from NCBI Genbank. The average value of total nucleotide composition was G 1L.90/o, A32.7o/o, C 29.5o/o and T Z9.9ok.There were 323 bp out of 540 bp [59.81%) were conserved sites, 217 bp (40.19o/o) were variable sitesof which1{T bp (67.74o/oJ were parsimony informative sites. In total, 13 haplotypes were detected in all nucleotidesequences: two haplotypes fone each) for H. macrolepidota and Hampala sp.from West Sumatra and 11 haplotypes for sequences from genbank NCBI. Number of haplotype among population H. macrolepidotafrom West Sumatra shown in fTable. 2). The most common and dominant Hampala haplotypes in West Sumatra was haplotype 0z [HOz) which present in all populations except Batang Sinamar River and Batang 0mbilin River 1. Overall, the nucleotide diversity was low in all population where the Pi was 0.07455 and haplotype diversity Hd was 0.690 with variance was 0.00673 t 0.082.

4 | Dewi Imelda Roesma et a1.. T

Table 2. Number of Hampala Haplotypes in West Sumatra No. Species Location Haplotype -H, I Batang 1 ^ macrolepidota H01

?H. Batang Sinamar River - macrolepidota H01 Paninggahan, H02 "H,' macrolepidota Singkarak Lake .H. Muaro piirgai, 4' H02 macrolepidota Singkarak Lake 2 5 Hampala sp. Singkarak lake 3 HOZ

o.H. Singl

oH. Batang Onlbilin River 2 " macrolepidota H02 9 Hampala sp. Singkarak lake 1 H02 10 Hampala sp. Singkarak lake 2 H02 H. Muaro pingai, 1I H02 macroleptdota Singkarak Lake i H' Tampang River, 1) H02 macrolepidota Maninjau 1 H' Tampang River, 1)I J H02 macrolepidota Maninjau 2 H, Muko-Muko, Maninjau tlL H02 macrolepidota Lake 2 Teluk Dalant, Diatas 15 Hampala sp. H02 Lake H. Ib Diatas Lake 1 H02 macroleptdota 4n H' Air Tawar, Dibawah 1t H02 macrolepidota Lake 2 H' 18 Batang Ombilin River 3 H02 macrolepidota H' Air Tawar, Dibawah 1.,L ) H02 macrolepidota Lake 3 H', 2A Diatas Lake 2 H02 macroleptdota 21, Hampala sp. Batang Agam River H02 H. Pangkal Danau, ?? H02 macrolepidota Dibawah Lake 12 H' Air Tawar, Dibawah LJ H02 macrolepMota Lake 1

The relationships amongthe samples from all population are presented in Mltree analysis I Figure. 2J withlO00boostrap value. The ME, NJ and MP treeanalysis showed an identical tree topology to ML tree with small differences in bootstrap confidence levels at each node.The phylogenetic analysis described the monophyletic status among

PHYLOGENETIC ANALYSIS OF BARAU ..... 5 Hampala species with high bootstrap support 99/99/96199. From the phl,logenetic tree obtaineci, all oi tree methocis separate aii of tire samples into two groups [two clustersJ. The first cluster consist of Hampala species from Asia which dir-icec into trvo subclusters. First subcluster consist of Hampala from West Sunrarra and H. macrolepidota formother regions in Asia. The second subcluster coflsist of H. dispar and H. macrolepidota fromJapan. The second cluster isloaded with the species members of the other genus Capoeta and Barbusas synonim of Hampala, Tor and Donio as an oLltgroup. Pairm,ise genetic distances among intra and inter populationof H. Macrolepidofa[Barau] in West Slrmatra \ /as 0.01%-0.2o/o, intra and inter populatiotrofHampala sp. (Sasau) rnas 0.070 and between H. macrolepidota(Barau) andHampala sp. [SasauJ was 0.0o/o-0.Zok [the table of genetic distance not show,ed]. Thearralysis revealed a very low genetic divergencebetween H. macrolepidotaand Hampala sp. [0.0%-0.20/o).The genetic distances of Hampala from West Surnatra and H. macrolepidola fromother region in Asiauzere ranging between 2.6ak-2.8c/0, and 12.04/o-13.470 with other Hampala species in the second subcluster. The second cluster wlrich is consist of Capoeta and Barbus showed the genetic divergencelS.0ck-23.60/o with the species in the first cluster.ln the IUCN Red list of threatened species[Allen, 2017),listed tlie Capoeta as sinonym of Hampala. However tlie high genetic distances between thenr [16.40/o-22.40/o) not supported Capoeta as sinonym of Hampala and indicated belong them in different genus. ,*' il&',6'i'tua'liirrt{i ii'"$'h'ki I r k?r?o,:ri.!r ?:1g*l ui.riL, o,f*f it.: t,."e ux"., 1.r"1,"",r' ". lr. .Nrsgx9*a t;*r.1,4r,r1ry e!3 idrrt 0,.i:* i,r.1 1!,ri...tdi?, iarizi',nti,lrt!i!a 3 -Y.r.*Biir6 ni1r.4.]atirn k,r, i I l& *dn(!4rk t, iivs, oarsrirtn+t i!, a,Jr.ak *-&_ii!^t.rI/ ;4,r1 cs:^'4- i i,-Fr:b!p ier i t.'F.614urr ..,oo***o d$,ii! iAtr r | "- "**orr,ro ('4r' i*' Pkr'&er.r,rrord { ?4r. r r, ? - ?p ic\4@ d 1.4!*.s turo,. M,4,.)Nr : I l. -*e*," *"riryx.$€ils ut,: l,'@.o'1,.r-r{Jsd*, r"ru*ru,-, 'I l*-*.-* I lr..r*-vzor. *u"aeo,,.e-e' : i" ",ad;d#a et. vn..*Btun!' r+r w*fl I l--"wat",q."'-,. :J' l".,*a*sh$i,/,,,e] I I ln^.**a-""*3.,ni%Ir'tryi*,'*,p! tI ttI lr.Fudtd,tro?,.'ryr6\ritp..id+ I t 1," **,*6,r" o3r'%,r,vq$r ...... :" '" "' i _.ra,:lv., !31^i%5I . r{ro' I v."1ta i I ,n, , I I I l- ---"r"r-**, I t !!--}nCiJE --i-*',r"Fann{ErftrQ.8rnr4..fia!EPhh.c{'F4'& I .",.... I l .... | -vz.r;"dsa,4ra' , I $q..q "n d t I $,y.s:jl- .,Mr.4rB@d tuk I #*Jlf:J Le*o',!tu?!n:' I 1 t''- '-- *'kiq k'da ru*'f a i: r,r,l wnsb&s'tea, 1' t+at, ,.+t rt6"r vr+il:i i__1-- " ,. r[d\.^rL.-. ra€ir?"r gD\p i I -.*.----,,-"*. r#Er.i^*r6 ^#

t*

Figure 2. Phylogenetic tree [ML) of Hampala based on cytochrome b gene with bootstrap value 1000 [ME/NJ/ML/MP]

6 | Dewi Imelda Roesma eta1.. I

Discussion

The base compositionsT+A is higher than C+Gfor all vertebrate classes[Nei & Kumar, 2000J. The Nucleotide sequence of cytochrome b with the A + T rich (58.60%) higher than G+C (47,40o/o). That value almostsimilar to those previouslyreported for Hampala fish cytochromeb sequences fRyan & Esa, 2006).Transition to transversion bases (Ts; TvJ ratio were 3.82 and transitional substitutions rarere detected more commonly than transversi onal. According to Kartavtsev [2011J,based on cytochrome b gene of mitochondrial DNA in vertebrates, the sequence divergence species in population was about 1.38 t 0.30o/o; on subspecies, semi-species, and sibling species level was about 5.10 t 0.9lo/o; on level the different species in a single genus was about 10.31 t 0.93 o/o and the ievel of different genus in a single family was about 17.86 x 1.360/o. The value of genetic divergences betweenH. macrolepidota and Hampala sp. showed the low genetic diversity (0.0o/o-0.2o/o). Based on Kartavtsev [2011J, the value of genetic distance showed the difference on populations level in a single species. The other side, from lraplotype analysis the H. macrolepidofa [BarauJ and Hampala sp. [SasauJ sharing the same haplotype with low haplotypediversity Hd. was 0.316. The phylogenetic analy5i5 does not support the separation ofH. macrolepidotaand Hampala sp. intodifferent species.Their genetic distance were0.0%o- 0.Zo/o.H. macrolepidota in West Sumatra and H. macrolepidota from other region in Asia showthe close relationship (2.60/o-2.80/o). Overall, the low genetic distance of H. macrolepidota from all regions ir-rdicated that the geography distance does not affect the appearance of genetic differences, The result in line with Ryar-r & Esa [2006) research, which reported that intra or inter populations ofH. macrolepidota in Southern Peninsular Malaysia, Southern and Central Sarawakhave low genetic divergence (0.1o/o-1-o/o). One of the possible reasolts could be Makmur et al., (201,4) also reported thatmorphologically, there are three different local name of H. macrolepidota from Ranau Lake, South Sumatra but molecular study confirm it is only one species.Moleculer study has helped to clarify the taxonimy status of Hampala in West Sumatra. Recently, species identification has been done by combining the morphological and moleculer data to examine the relationship belong to species and resolved the status especially cryptic species. From the samples collections in the field, H. macrolepidota have a smaller size than Hampala sp. and H. macrolepidota have the dark cross band [stretched vertically from dorsal fins to pelvic fins) which not found in Hampala sp. The grouping between H. macrolepidota (Barau) and Hampala sp. [SasauJ were based on the present it, coulcln't as clraracter which distinguish as different species. Taki & Kawamoto (1977), explained the dark band of H. macrolepidofa will disappear in the large adult fish. The Irigh ability of adaptatioir H. macrolepidota in West Sumatra caused the variation in morphology without any majorgenetic divergence. However, in same case,the different of ecological habitats also influence to appeared the variation in

PHYLOGENETIC ANALYSIS OF BARAIJ ,,,.,7 genetic. In study of Capoeta damascia species group, pareian&Esmaeili, 2077), with combined the morphoiogicai and moleculer characters has been coniirm taxonomy status and the present of new species in group. The high diversity estimated cause thedifferent of ecological habitats, isolation geographywhich effect to the low gene flow.According to Ramos & Kirkpatrick (7997), the presence of gene flow from a population may be inhabits peripheral populations for reaching ti{e adaptive with local habitat. The disruption of gene flow may can result difTerence of evololutionary, which may leadto speciation. The low genetic variation of H. macrolepidota appeared the worries because the least concern status of H. microlepidota in IUCN 2A11. Furthermore, H. ntocrolepidofaincluded in commercial and local fisheries until the high ol catched might be disturbing the stability of population in the long term. Status clarification of Barau and Sasau impact to efforts the conserve this species with appropriately. fPaquin & Hedin, 2004; Lillywhite& Lee,2011) described the clarificatior-r of taxonomic status was helpful in managing the populations with appropriately, in establishing regulation of cxploitation in population and protected those species. Therefore, this study has been eliminated the confuse on taxonomic status of Barau and Sasau and the relationship belong them in lakes and rivers in West Sumatra.

Conclusion The results showed the low genetic divergence (0-0.2o/o) between inter and intra populations of H. macrolepidota and Hampala sp. indicated that Barau and Sasau are the sanre species belong lo H. macrolepidota.

Acknowledgments To the Head of Department and Member of Genetics and Biomolecular Laboratory Department of Biology FMIPA Andalas University.

References Allen DJ. 201,1. Hampala macrolepidofa. In IUCN 2011. The IUCN Red List of ThreatenedSpecies Version 201,L.http://vwvw.iucnredlist.org.Downloaded on 11 November 201,7. Bernardi G, Findley L, Olivares AR. 2003. Vicariance And Dispersal Across Baja California In Disjunct Marine Fish Populations. Eyolu tion,57l7): 7599-1,609. Burland, T. G. 2000. DNASTAR's Lasergene Sequence Analysis Software. Methods Mol Biol,1.32:7L-9L Doi A, Taki Y. 1994. A new Cyprinid fish, Hampala salweenensrs, from the Mae Pae River System, Salween Basin, Thailand. /a panese Journal of Ichthyology,4}: 405-41,2. GuoB, TongC,HeS. 2009.Sox genes evolution in closely related young tetraploid

cyp rinidfislies a nd th ei r diploi d relative. G e n e,439 (1,-2) : 1"02 - lt2

8 lDewi Imelda Roesma etal I

Hall, TA. 1999. BioEdit: A user friendly biological sequence alignment editor and analysis program fbr windows 95i9SiiiT. liucieic Acid Symposium Series, 41: 95-98. Intan KZ, christianusA, Amin SMN, Muhamad HM. 2013.Breeding and Embryonic Development of Hampala macrolepidota (Van Hasselt and Kuhl, 1823)Asian Journal ofAnimaland Veterinary Advqnces, B(z)t 347-t4T Kartavtsev, YP. 2011.Divergence at cyt-b and co-l mtDNA genes on different taxonomiclevels and genetics of speciatron in . Mitochondrial DNA,22(3): 55-65 KottelatM, Whitten AJ, Kartikasari SN, Wirdjoatmodjo S. 1993. Freshwater fishes of Western Indonesiaand Sulawesi. Periplus Edition [HKJ in Collaboration rvith'f]re Environment Rep. of Indonesia. LevinBA, Freyhofl, Lajb'nerz, Pereas, AbdoliA,GaffarogluM, ozr:lugM, Rubenyall{R, SalnikovVB, Doadriol. 201,2. Phylogenetic relationships of the algae scraping cyprinid genuscapoeta [Teleostei: cyprinidae). Mol. phylogenet. Evot, 62 (r): 542-549 LiuM, LiuS. 2013. Yangtze Rirrer Fisheries Research Instituteof Chinese Academy of Fishery Science, Wuirau, Hubei.Chuta Lillyl,'rhi1s K, Lee D. 2011. Automated fish taxonomy using evolution constructed features. In: Bebis G, BoyleR, Parvin B, KoracinD, Fowlkes C,Wang S, Choi MI{, Mantler S, Schulze J, Acevedo D, Muelier K, Papka M. [Eds.].Advances in visuai Computing, Lecture Notes in ComputerScience. Spring er, 6938: 541-SS0. LuoJ, wangJ, wuxY, cherrZM, YuezP, Maw, chensY.2013. Molecular phylogeny of European and African Barbus and their WestAsian relatives in the Cyprininae fTeleostei: ) andorogenesis of thc Qinghai-Tibetan Plateau. MaggioT, AndaloroF, HemidaF, ArculeoM. 2005. A Molecular Analysis of Some Eastern Atlantic Grouper from the Epinephelus and Mycteroperca Genus.rlourn al of ExperimentalMarine Biology and Ecology,3Z1: 83-92. Makmur S, ArfiatiD, BintoroG, EkawatiAW.201,4. Morphological, meristic characteristics and mtDNA analysis of Hampala Fish (Hampala macrolepidota Kuhl & Van Hasselt 1823J from Ranau Lake, Indonesia. Journat of Biodiversity and Environmentsl Sciences ABES),5(2):447 - 455. MarkovaS, SandaR, CrivelliA, ShumkaS, WilsonlF,VukicJ, BerrebiP,KotlikP. 2010.Nuclear and mitochondriai DNA sequence data reveal the evolutionaryhistory of Barbus [CyprinidaeJ in the ancient lake systems of the Balkans.Mol. Phytogenet.Evol, 55 [2):4BB-500 MeranerA, VenturiA, FicetolaGF, RossiS, CandiottoA, GandolfiA.2013. Massive invasion of exotic Barbus barbus and introgressivehybridization with endemic Barbus plebejus in Northern Italy:wl.rere, how and why?Mol. Ecol, ZZ (27): 5295-53L2. Miya,M. 2A09. Whole mitochondrial genome sequences in Cypriniformes. NaturalHistory Museum and Institute, Chiba. Japan

PHYLOGENETIC ANALYSIS OF BARAU ..... 9 Nei M & Kumar S. 2000. Moiecular Evolution and Phylogenetics, Oxford University Press, New York. PaquinP, HedinM. 2004. The power and perils of 'molecular taxonomy': a case study of eyeless and endangered Cicurina [Araneae: Dictynidae) fromTexas caves. Mol. Ecol, L3:3239-3255 PascoVE, VeranM.Z0l2Bleeker was right: Revision of the gerlus Cyclocheilichthys

[BleekerlB59) and resurrection of the EJenLrs Anematichthys [Bleeker 1859), based on morphological and molecular data of Southeast AsianCyprininae [Teleostei, Cypriniformes). Zootaxa, 3586 : 41-54 Ramos GG,Kirkpatrick M. 1997. Genetic Models of Adaptation and Gene FIon, inPeripheral Population s.Ev olu tion,5 1 [1) : 2L-'28 Roberts TR, 1989. THe freshwater fishes of Western Borneo (Kalimantan Barat, Indonesia).Mem. Calif. Acad. Sci, 14:210 Roesma, DI. 2013. Evaluasi Keanekaragaman Spesies Ikan Danau Maninjau. Prosiding

Semirata F MI PA U niv ersitas Lampung.Lampung Roesnra DI, Chornelia A, Mursyd A, Kamsi M. 2016. Short Communication: Fish Diversity Of The Batang System, South Tapanuli, .

B i o div ersito s,17 (2) : 628 - 63 4 Rozas ], Sanchez DJC, Messeguer X, Rozas R. 2003. DnaSP, DNA polymorphism analyses by coalescent and other meth ods. Bioinformatics,l.9: 2496-2497 Ryan JRJ,EsaYB. 2005. Phylogenetic Analysis of Hampala Fishes [Subfamily Cyprininae) in Malaysia Inferred from Partial Mitochondrial Cytochrome b DNA Sequences. Zoological Science Journal, 23(!0): 893 - 901. Salsabila A. 1,987. Sumber Daya Ikan Danau Singkarak. Prosiding Seminar IWVindu

FMI PA U niv ersitas An d al as.P adang Sulaiman ZH, MaydenRL. 2012. Cypriniformes of Borneo [, OtophysiJ: An Extraordinary Fauna for Integrated Studies on Diversity, Systematics, Evolution, Ecology, and Conservation. Zootaxa, 3586: 359-37 6 Taki Y,KawamotoA. 1,977 . Differentiation of the Cyprini ds, Hampala macrolepidota and H. dispar. Japanese Journal of lchthyology,24 (1):61.-65 Tamura K Stecher G, PetersonD, FilipskiA, Kumar S. 201,1,. MEGA6: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distauce, and Maximum Parsimony Methods. Mol. Biol. Evol,28 (L0):2731,-2739. Thompson |D, Gibson TJ, Plewniak F, feanmougin F, Higgins DG. 1,997. Tire Clustal X windows interface: flexible strategies for rnultiple sequence alignrnent aided by quality analysis tools. Nucle ad Acids Research,24: 487 6-4882. Yangl, MaydenRl, SadoT, HeS, SaitohK,MiyaM. 2010. Molecular phylogeny of the fishes traditionally referred toCyprinini sensu stricto [Teleostei: Cypriniformes). Zool. Sci,39 [6): 527-550

10 | Dewi Imelda Roesma ef a1.. I

Yangl, Mayden,Rl, LaudetV,Viriotl. 2013.Stability versus diversity of pharyngeal dentition during theevoiutionary radiation of two related clades of the subfamilyCyprininae [Teleostei: Cypriniformes). Unpublished Yangl, SadoT, Vincent HM, PascoVE, ArunachalamM,LiJ, WangX, Freyhofl, SaitohK, SimonsAM, MiyaM, HeS, MaydenRl. 2015. Phylogeny and polyploidy: Resolving the classification of cyprinine fishes [Teleostei: Cyptiniformes). Mol. Phylogenet. Evol,BSC:97 -It6 WhiteleyAR, BhatA, Martins,EP, Mayden,RL, ArunachalamM, UusiHS, AhmedAT, ShresthaJ, ClarkM, StempleD,BernatchezL. 2011.Population genomics of wild and laboratory zebrafish (Danio rerio).Mol. Ecol, 2A {20): 4259-a27 6 Wu M, Robinson iE, Joiner WJ. 2014. SLEEPLESS Is a Bifunctional Regulator of Excitability and Cholinergic Synaptic Transmission. Curr. Biol. 24(6): 621--629. Zareian H, Esmaeili HR., Gholamhosseini A, |aposhvili B, Mu, fit O, zulug, Mayden RL. 20L7 . Diversity, Mitochondrial Phylogeny, And Ichthyogeography Of The Capoeta Capoeta Complex [Teleostei: CyprinidaeJ . Hydrobiologia

PHYLOGENETIC ANALYSIS OF BARAU ..... 11