Original Layout- All Part.Pmd

Total Page:16

File Type:pdf, Size:1020Kb

Original Layout- All Part.Pmd Distribution and Ecology of Some Important Riverine Fish Species of the Mekong River Basin Mekong River Commission Distribution and Ecology of Some Important Riverine Fish Species of the Mekong River Basin A.F. Poulsen, K.G. Hortle, J. Valbo-Jorgensen, S. Chan, C.K.Chhuon, S. Viravong, K. Bouakhamvongsa, U. Suntornratana, N. Yoorong, T.T. Nguyen, and B.Q. Tran. Edited by K.G. Hortle, S.J. Booth and T.A.M. Visser MRC 2004 1 Distribution and Ecology of Some Important Riverine Fish Species of the Mekong River Basin Published in Phnom Penh in May 2004 by the Mekong River Commission. This document should be cited as: Poulsen, A.F., K.G. Hortle, J. Valbo-Jorgensen, S. Chan, C.K.Chhuon, S. Viravong, K. Bouakhamvongsa, U. Suntornratana, N. Yoorong, T.T. Nguyen and B.Q. Tran. 2004. Distribution and Ecology of Some Important Riverine Fish Species of the Mekong River Basin. MRC Technical Paper No. 10. ISSN: 1683-1489 Acknowledgments This report was prepared with financial assistance from the Government of Denmark (through Danida) under the auspices of the Assessment of Mekong Fisheries Component (AMCF) of the Mekong River Fisheries Programme, and other sources as acknowledged. The AMCF is based in national research centres, whose staff were primarily responsible for the fieldwork summarised in this report. The ongoing managerial, administrative and technical support from these centres for the MRC Fisheries Programme is greatly appreciated. The centres are: Living Aquatic Resources Research Centre, PO Box 9108, Vientiane, Lao PDR. Department of Fisheries, 186 Norodom Blvd, PO Box 582, Phnom Penh, Cambodia. Udon Thani Inland Fisheries Research and Develoment Centre, Suppakij-Junya Rd., Amphur Muang, Udon Thani, 41000, Thailand. Research Institute for Aquaculture No. 2, 116 Nguyen Dinh Chieu St., District 1, Ho Chi Minh City, Viet Nam. Copyright: Mekong River Commission 184 Fa Ngoum Road, Unit 18 Ban Sithane Neua, Sikhottabong District Vientiane 01000 Lao PDR P.O. Box 6101 Vientiane, Lao PDR Email: [email protected] Editors: K.G. Hortle, S.J. Booth and T.A.M. Visser Series Editor: Delia Paul Photos: Walter J. Rainboth, Tyson R. Roberts, Chavalit Vidthayanon, Zeb Hogan, Joseph G. Garrison, and Kent G. Hortle Design and Layout: Boonruang Song-ngam The opinions and interpretations expressed within are those of the authors and do not necessarily reflect the views of the Mekong River Commission. 2 Distribution and Ecology of Some Important Riverine Fish Species of the Mekong River Basin Table of Contents Summary .....................................................................................................................................................5 Introduction ............................................................................................................................................ 15 Fish Migration ........................................................................................................................................ 16 Migration Systems................................................................................................................................. 18 Future Directions .................................................................................................................................. 19 Species information ............................................................................................................................... 20 Aaptosyax grypus Rainboth, 1991 ..................................................................................................... 22 Bagarius yarrelli (Sykes, 1839) ......................................................................................................... 24 Bangana behri (Fowler, 1937) ........................................................................................................... 26 Boesemania microlepis (Bleeker, 1858-59) ....................................................................................... 29 Botia modesta Bleeker, 1865 .............................................................................................................. 31 Catlocarpio siamensis Boulenger, 1898 ............................................................................................ 34 Chitala blanci (d’Aubenton, 1965) .................................................................................................... 37 Chitala ornata (Gray, 1831) .............................................................................................................. 39 Cirrhinus microlepis Sauvage, 1878 .................................................................................................. 41 Cirrhinus siamensis (Sauvage, 1881) and C. lobatus (Smith, 1945) ................................................ 44 Cyclocheilichthys enoplos (Bleeker, 1850) ...................................................................................... 47 Hampala dispar Smith, 1934 ............................................................................................................. 49 Hampala macrolepidota (Valenciennes, 1842) ................................................................................. 51 Helicophagus waandersii Bleeker, 1858 .......................................................................................... 53 Hemibagrus filamentus (Fang & Chaux, 1949) ................................................................................ 55 Labeo chrysophekadion (Bleeker, 1850) ......................................................................................... 58 Lycothrissa crocodilus (Bleeker, 1851) ............................................................................................ 60 Mekongina erythrospila Fowler, 1937 .............................................................................................. 62 Micronema apogon (Bleeker, 1851) and M. bleekeri (Günther, 1864) ............................................ 64 Notopterus notopterus (Pallas, 1769) ............................................................................................... 67 Osteochilus hasseltii (Valenciennes, 1842) ....................................................................................... 69 Pangasianodon gigas Chevey, 1930................................................................................................. 71 Pangasianodon hypophthalmus (Sauvage, 1878)............................................................................ 74 Pangasius bocourti Sauvage, 1880 ................................................................................................... 77 Pangasius conchophilus Roberts & Vidthayanon, 1991 .................................................................. 80 Pangasius krempfi Fang & Chaux, 1949........................................................................................... 82 Pangasius mekongensis Gustiano, Teugels and Pouyaud, 2003 ....................................................... 86 Pangasius larnaudii Bocourt, 1866 .................................................................................................. 88 Pangasius pleurotaenia Sauvage, 1878 ............................................................................................ 91 Pangasius elongatus Pouyaud, Gustiano and Teugels, 2002............................................................. 93 Pangasius macronema Bleeker, 1851 ............................................................................................... 95 Pangasius sanitwongsei Smith, 1931 ................................................................................................ 98 Paralaubuca typus Bleeker, 1865 ................................................................................................... 101 Probarbus jullieni Sauvage, 1880 and P. labeamajor Roberts, 1992 ........................................... 104 Puntioplites falcifer Smith, 1929 ..................................................................................................... 108 Tenualosa thibaudeaui (Durand, 1940) .......................................................................................... 110 Wallago attu (Bloch and Schneider, 1801) ....................................................................................... 113 References............................................................................................................................................ 115 3 Distribution and Ecology of Some Important Riverine Fish Species of the Mekong River Basin 4 Distribution and Ecology of Some Important Riverine Fish Species of the Mekong River Basin Summary The fishery of the Mekong River is one of the largest and most significant in the world, and most of the production is based on migratory river fishes. An earlier report provided an overview of the general patterns of fish migrations and their significance for management. This complementary report provides more detailed information on 40 key species which are significant in the Mekong River fishery. For each species we provide notes on distribution, feeding, size, population structure, critical habitats, life cycle and its importance in fisheries. The information presented is mainly from surveys carried out throughout the lower Mekong Basin over the period 1995-2001 by fisheries agencies in each country, coordinated by the MRC Fisheries Programme and funded by Danida. The report also references other relevant published information. Fish migrations of the Mekong fall within three broad “systems”, that is general
Recommended publications
  • Aliens; a Catastrophe for Native Fresh Water Fish Diversity in Pakistan
    The Journal of Animal and Plant Sciences, 21(2 Suppl.): 2011, Page: 435-440 ISSN: 1018-7081 ALIENS; A CATASTROPHE FOR NATIVE FRESH WATER FISH DIVERSITY IN PAKISTAN A. M. Khan, Z. Ali, S. Y. Shelly* Z. Ahmad** and M. R. Mirza** Department of Zoology, University of the Punjab, Lahore *Department of Fisheries, Government of Punjab, Munawan, Lahore. Department of Zoology, Government College University, Lahore Corresponding author e-mail: [email protected] ABSTRACT Pakistan has introduced several alien exotic fish species e.g. grass carp (Ctenopharyngodon idella), bighead carp, (Hypophthalmichthys nobilis), silver carp, (Hypophthalmichthys molitrix), common carp (Cyprinus carpio), gold fish (Carassius auratus), and three species of tilapia (Oreochromis aureus, Oreochromis mossambicus, Oreochromis niloticus) in warm waters along with two trout species: the rainbow trout (Onchorynchus mykiss) and the brown trout (Salmo trutta fario) in colder regions for specific purposes like sport fishing, yield enhancement and biological control of aquatic weeds and mosquitoes. The exotic species are becoming invasive in the freshwater biomes of the Punjab and other provinces of Pakistan by reason of their potent reproductive potential and feeding competitions with the native freshwater fish fauna. Resultantly the native fish species viz; Channa marulius, Wallago attu, Rita rita, Sperata sarwari, Gibelion catla, Cirrhinus mrigala and Labeo rohita, which are of economic value are under threat. Key words: Exotic, invasions, freshwater, fish fauna, Pakistan. wild, 421 (35 %) are reported as not established and 177 INTRODUCTION (15 %) with unknown establishment (Fish base, 2003). In Asia, there have been 406 introduction There are more than 186 freshwater fish species records, 176 (43.3 %) are reported as having been described from freshwater bodies of Pakistan.
    [Show full text]
  • 2019 ASEAN-FEN 9Th International Fisheries Symposium BOOK of ABSTRACTS
    2019 ASEAN-FEN 9th International Fisheries Symposium BOOK OF ABSTRACTS A New Horizon in Fisheries and Aquaculture Through Education, Research and Innovation 18-21 November 2019 Seri Pacific Hotel Kuala Lumpur Malaysia Contents Oral Session Location… .................................................................... 1 Poster Session ...................................................................................... 2 Special Session… ................................................................................ 3 Special Session 1: ....................................................................... 4 Special Session 2: ..................................................................... 10 Special Session 3: ..................................................................... 16 Oral Presentation… ......................................................................... 26 Session 1: Fisheries Biology and Resource Management 1 ………………………………………………………………….…...27 Session 2: Fisheries Biology and Resource Management 2 …………………………………………………………...........….…62 Session 3: Nutrition and Feed........................................................ 107 Session 4: Aquatic Animal Health ................................................ 146 Session 5: Fisheries Socio-economies, Gender, Extension and Education… ..................................................................................... 196 Session 6: Information Technology and Engineering .................. 213 Session 7: Postharvest, Fish Products and Food Safety… ......... 219 Session
    [Show full text]
  • Sample Text Template
    FLOODPLAIN RIVER FOOD WEBS IN THE LOWER MEKONG BASIN A Dissertation by CHOULY OU Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Kirk O. Winemiller Committee Members, Masami Fujiwara Thomas D. Olszewski Daniel L. Roelke Head of Department, Michael Masser December 2013 Major Subject: Wildlife and Fisheries Sciences Copyright 2013 Chouly Ou ABSTRACT The Mekong River is one of the world’s most important rivers in terms of its size, economic importance, cultural significance, productivity, and biodiversity. The Mekong River’s fisheries and biodiversity are threatened by major hydropower development and over-exploitation. Knowledge of river food web ecology is essential for management of the impacts created by anthropogenic activities on plant and animal populations and ecosystems. In the present study, I surveyed four tropical rivers in Cambodia within the Mekong River Basin. I examined the basal production sources supporting fish biomass in the four rivers during the dry and wet seasons and explored the relationship between trophic position and body size of fish at various taxonomic levels, among local species assemblages, and across trophic guilds. I used stable isotopes of carbon and nitrogen to estimate fish trophic levels and the principal primary production sources supporting fishes. My study provides evidence that food web dynamics in tropical rivers undergo significant seasonal shifts and emphasizes that river food webs are altered by dams and flow regulation. Seston and benthic algae were the most important production sources supporting fish biomass during the dry season, and riparian macrophytes appeared to be the most important production source supporting fishes during the wet season.
    [Show full text]
  • Aremu SO, Et Al. Putting the Spotlight on Opisthorchiasis: the Dread of the Western Siberian Copyright© Aremu SO, Et Al
    Public Health Open Access MEDWIN PUBLISHERS ISSN: 2578-5001 Committed to Create Value for researchers Putting the Spotlight on Opisthorchiasis: The Dread of the Western Siberian Region Aremu SO1,3*, Zephaniah HS2, Onifade EO3, Fatoke B1 and Bademosi O4 Review Article 1Faculty of General Medicine, Siberian State Medical University, Tomsk, Russian Federation Volume 4 Issue 1 2Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, Nigeria Received Date: February 17, 2020 3Department of Biological Science, Federal University of Agriculture, Makurdi Benue State, Published Date: March 10, 2020 Nigeria DOI: 10.23880/phoa-16000151 4Department of Public Health, University College Dublin, Ireland *Corresponding author: Stephen Olaide Aremu, Faculty of General Medicine, Siberian State Medical University, Tomsk, Russian Federation, Email: [email protected] Abstract Introduction: Opisthorchiasis is no doubt one of the most neglected infectious disease inspite of its huge medical importance in some parts of the World. The past decade have seen a resurgence of interests in research relating to this public health issue, however there is still a lot to be done. Social Model: Not many models have been explored in Western Siberia to deal with the opisthorchiasis epidemic when compared to the different models that have been used for other regions affected by similar disease. Life Cycle: The complex life cycle of Opisthorchis felineus prevalent among the aboriginal population of the Western Siberian because of their habit of eating raw or undercooked fresh has humans and other feline species as definitive host and is really Diagnosis and Treatment: Diagnosis involve the use of stool microscopy, other methods such as mAb ELISA, LAMP and so on water fish (Cyprinidae) which are intermediate host of the parasite.
    [Show full text]
  • Linnaeus at Home
    NATURE-BASED ACTIVITIES FOR PARENTS LINNAEUS 1 AT HOME A GuiDE TO EXPLORING NATURE WITH CHILDREN Acknowledgements Written by Joe Burton Inspired by Carl Linnaeus With thanks to editors and reviewers: LINNAEUS Lyn Baber, Melissa Balzano, Jane Banham, Sarah Black, Isabelle Charmantier, Mark Chase, Maarten Christenhusz, Alex Davey, Gareth Dauley, AT HOME Zia Forrai, Jon Hale, Simon Hiscock, Alice ter Meulen, Lynn Parker, Elizabeth Rollinson, James Rosindell, Daryl Stenvoll-Wells, Ross Ziegelmeier Share your explorations @LinneanLearning #LinnaeusAtHome Facing page: Carl Linnaeus paper doll, illustrated in 1953. © Linnean Society of London 2019 All rights reserved. No part of this publication may be reproduced, stored in a retrival system or trasmitted in any form or by any means without the prior consent of the copyright owner. www.linnean.org/learning “If you do not know Introduction the names of things, the knowledge of them is Who was Carl Linnaeus? Contents Pitfall traps 5 lost too” Carl Linnaeus was one of the most influential scientists in the world, - Carl Linnaeus A bust of ‘The Young Linnaeus’ by but you might not know a lot about him. Thanks to Linnaeus, we Bug hunting 9 Anthony Smith (2007). have a naming system for all species so that we can understand how different species are related and can start to learn about the origins Plant hunting 13 of life on Earth. Pond dipping 17 As a young man, Linnaeus would study the animals, plants, Bird feeders 21 minerals and habitats around him. By watching the natural world, he began to understand that all living things are adapted to their Squirrel feeders 25 environments and that they can be grouped together by their characteristics (like animals with backbones, or plants that produce Friendly spaces 29 spores).
    [Show full text]
  • Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version
    Designation date: 23/06/99 Ramsar Site no. 999 Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. Dr. Srey Sunleang, DD MM YY Director, Department of Wetlands and Coastal Zones, Ministry of Environment, #48 Preah Sihanouk Blvd., Tonle Bassac, Designation date Site Reference Number Chamkar Morn, Phnom Penh, Cambodia Tel: (855) 77-333-456 Fax: (855)-23-721-073 E-mail: [email protected] 2.
    [Show full text]
  • RESEARCH ARTICLE a Large Scale Study of the Epidemiology and Risk
    DOI:10.22034/APJCP.2017.18.10.2853 Epidemiology of Opisthorchis viverrini in Udon Thani RESEARCH ARTICLE A Large Scale Study of the Epidemiology and Risk Factors for the Carcinogenic Liver Fluke Opisthorchis viverrini in Udon Thani Province, Thailand Suksanti Prakobwong1,2*, Apiporn Suwannatrai3, Achara Sancomerang4, Suwit Chaipibool5, Ngampis Siriwechtumrong6 Abstract Opisthorchis viverrini infection and cholangiocarcinoma are serious problems in South East Asia. This study aimed to find the prevalence of opisthorchiasis in various hosts in Udon Thani Province. Total fecal samples were collected from 14,766 participants. The epidemiological data collected and analysed included prevalence and intensity of infection. Odds ratios (OR) were calculated to determine the associations between cross sectional data and to predict possible risk factors. The prevalence of O. viverrini infection in Udon Thani Province averaged 15.3% (eggs per gram (epg.) = 48.9 and range; 12-1,320), with differences between villages (range; 3.8%-79.8%). An age-dependence for infection was observed to increase from ages 25 to 50 years and then decrease for older participants. A univariate analysis identified risk parameters including age (p = 0.040; OR = 3.9 (95% CI = 1.2-7.5)), education (p<0.0001; OR = 7.3 (95% CI = 1.8-21.6)) and eating habits (p = 0.032; OR = 1.6 (95% CI = 0.5-3.7)). Interestingly, most participants were not aware of treatments such as praziquantel (p< 0.0001; OR = 3.5 (95% CI = 1.4-11.6)), had no history of parasitic treatment (p = 0.486; OR = 1.5 (95% CI = 0.5-3.5)) and had eaten raw fish (p = 0.04; OR = 7.4 (95% CI = 1.5-18.6)).
    [Show full text]
  • Scale Morphologies of Freshwater Fishes at Tembat Forest Reserve, Terengganu, Malaysia (Morfologi Sisik Ikan Air Tawar Di Hutan Simpan Tembat, Terengganu, Malaysia)
    Sains Malaysiana 46(9)(2017): 1429–1439 http://dx.doi.org/10.17576/jsm-2017-4609-11 Scale Morphologies of Freshwater Fishes at Tembat Forest Reserve, Terengganu, Malaysia (Morfologi Sisik Ikan Air Tawar di Hutan Simpan Tembat, Terengganu, Malaysia) FARAH AYUNI FARINORDIN*, WAN SERIBANI WAN NILAM, SHAHRIL MOD HUSIN, ABDULLAH SAMAT & SHUKOR MD. NOR ABSTRACT Scales are calcium carbonate and collagen-contained structures embedded within the fish epidermis and useful for species identification. This study aimed to describe morphological characteristics of scales and use the differences to prepare keys to species. Fishes were sampled from selected rivers of Tembat Forest Reserve, Hulu Terengganu. Specimens caught were from 3 families (Cyprinidae, Channidae, Nandidae) and 17 species. Each species was represented by ten individuals (size ranges 2.5 - 50 cm TL). The scales were removed, soaked in H2O2 (0.5%), NH3 (0.3%), DH2O and mounted between a pair of glass slides for digital photographing. The morphological descriptions were based on types of scales, distinctiveness of radii arrangement at the anterior field, radii cover, radii distribution, overall shape, focus position and focus pattern. Keys to species were constructed based on these scale morphological characters described. Measurements of scale total length (L), total width (W), rostral field length (L1) and caudal field length (L2) of the scales were taken using Image J software. The inter-specific variation among scales was indicated by L1/L, L2/L, L1/L2 and W/L indices through multiple comparison tests (ANOVA). It was found that all 17 species showed significant differences with at least one other species in all four indices.
    [Show full text]
  • Overview of the Key Fish Species and Their Biology in Himalayan Rivers in Nepal Tek Bahadur Gurung, Arun Baidya, Gopal Lamsal, Nita Pradhan
    Overview of the key fish species and their biology in Himalayan Rivers in Nepal Tek Bahadur Gurung, Arun Baidya, Gopal Lamsal, Nita Pradhan Regional Meeting of Fish Experts 29-30 April, 2018, Hotel Yak and Yeti Organized by Kathmandu, Nepal 1 Nepal is endowed with 232 fish species, 217 indigenous in 6000 rivers, the river basins extending to China, Nepal & India in 3 river basins & 1 river system 2 Species Richness Low High mount Moderate Mid hills Flood plains Rich Cool water fish (not permanently in cold or warm waters), most life history strategies (12 to 29oC), Cold water species (7-20oC) Warm water (15 to 32oC) 3 The Key Fish Species of Himalayan Rivers Key fish species are those : • Rare, endangered, threatened RET Species in Nepal Himalaya species as per IUCN criteria • Endemic species Endemic species reported • Exhibiting Habitat Diversity Number of species at altitudinal and migratory Pathways basis and migratory pathways • Spawning Biology Ex-situ conservation • Conservation Biology In-situ co-managing conservation Most important biotic and abiotic factors of a river • Water flow • Substrate 210 cross dam projects in different rivers • Light (NEA 2013): • Temperature • 84 in operation, • Water chemistry • 34 under construction, • Bacteria • 92 proposed • Underwater plants • Invertebrates • Fish • Birds ….. and the communities Location of Cross Dams Source: ADB 2014 Flows, Fish Species & Livelihood : Generalised Scenario et al 2016al et Gurung Source : Source 6 General features of the Himalayan Rivers • Himalayan rivers have
    [Show full text]
  • Family-Sisoridae-Overview-PDF.Pdf
    FAMILY Sisoridae Bleeker, 1858 - sisorid catfishes SUBFAMILY Sisorinae Bleeker, 1858 - sisorid catfishes [=Sisorichthyoidei, Bagarina, Nangrina] GENUS Ayarnangra Roberts, 2001 - sisorid catfishes Species Ayarnangra estuarius Roberts, 2001 - Irrawaddy ayarnangra GENUS Bagarius Bleeker, 1853 - sisorid catfishes Species Bagarius bagarius (Hamilton, 1822) - goonch, dwarf goonch [=buchanani, platespogon] Species Bagarius rutilus Ng & Kottelat, 2000 - Red River goonch Species Bagarius suchus Roberts, 1983 - crocodile catfish Species Bagarius yarrelli (Sykes, 1839) - goonch, giant devil catfish [=carnaticus, lica, nieuwenhuisii] GENUS Caelatoglanis Ng & Kottelat, 2005 - sisorid catfishes Species Caelatoglanis zonatus Ng & Kottelat, 2005 - Chon Son catfish GENUS Conta Hora, 1950 - sisorid catfishes Species Conta conta (Hamilton, 1822) - Mahamanda River catfish [=elongata] Species Conta pectinata Ng, 2005 - Dibrugarh catfish GENUS Erethistes Muller & Troschel, 1849 - sisorid catfishes [=Hara, Laguvia] Species Erethistes filamentosus (Blyth, 1860) - Megathat Chaung catfish [=maesotensis] Species Erethistes hara (McClelland, 1843) - Hooghly River catfish [=asperus, buchanani, saharsai, serratus] Species Erethistes horai (Misra, 1976) - Terai catfish Species Erethistes jerdoni (Day, 1870) - Sylhet catfish Species Erethistes koladynensis (Anganthoibi & Vishwanath, 2009) - Koladyne River catfish Species Erethistes longissimus (Ng & Kottelat, 2007) - Mogaung catfish Species Erethistes mesembrinus (Ng & Kottelat, 2007) - Langkatuek catfish Species Erethistes
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Fish Composition in Dong Nai Biosphere Reserve in Vietnam
    30 Nong Lam University, Ho Chi Minh City Fish composition in Dong Nai biosphere reserve in Vietnam Tam T. Nguyen∗, Loi N. Nguyen, Bao Q. Lam, Tru C. Huynh, Dang H. Nguyen, Nam B. Nguyen, Tien D. Mai, & Thuong P. Nguyen Faculty of Fisheries, Nong Lam University, Ho Chi Minh City, Vietnam ARTICLE INFO ABSTRACT Research Paper Dong Nai biosphere reserve (DNBR) is well known for its high level of biodiversity and of global meaningful ecosystem. The fauna includes Received: September 03, 2019 84 species of mammals belonging to 28 families, 10 orders; 407 bird Revised: October 07, 2019 species; 141 reptile and amphibian species; 175 fish species; 2,017 Accepted: November 21, 2019 insect species. The fish fauna of DNBR maintains many rare and endangered fish species recorded in the Vietnam red book and inter- national union for conservation of nature red list (IUCN's red list) Keywords such as Scleropages formosus and many other rare fish species, such as Morulius chrysophekadion, Chitala ornata, Probarbus jullieni, Cy- clocheilichthys enoplos. This study was aimed to identify fish com- Dong Nai biosphere reserve position distributed in DNBR. After the sampling period (01/2019 Endanger to 08/2019), a total of 114 fish species belonging to 11 orders and Fish biodiversity 28 families were recorded in DNBR. There were 09 species of fish on Species compositions the list of rare and endangered fish species of Ministry of Agriculture and Rural Development of Vietnam, 3 species (Chitala ornata, Cos- mochilus harmandi and Hemibagus filamentus) on the Vietnam red ∗Corresponding author list book; 01 species (Ompok bimaculatus) on the IUCN's red list, 11 exotic species, 78 commercial species and 13 species having potential Nguyen Thanh Tam as aquarium fish.
    [Show full text]