Movement Anatomy of the Gluteal Region and Thigh of the Giant Anteater Myrmecophaga Tridactyla (Myrmecophagidae: Pilosa)1

Total Page:16

File Type:pdf, Size:1020Kb

Movement Anatomy of the Gluteal Region and Thigh of the Giant Anteater Myrmecophaga Tridactyla (Myrmecophagidae: Pilosa)1 Pesq. Vet. Bras. 36(6):539-544, junho 2016 Movement anatomy of the gluteal region and thigh of the giant anteater Myrmecophaga tridactyla (Myrmecophagidae: Pilosa)1 Priscilla Rosa Queiroz Ribeiro2*, André Luiz Quagliatto Santos2, Lucas de Assis Ribeiro2, Tharlianne Alici Martins de Souza2, Daniela Cristina Silva Borges2, Rogério Rodrigues de Souza2 and Saulo Gonçalves Pereira2 ABSTRACT.- Ribeiro P.R.Q., Santos A.L.Q., Ribeiro L.A., Souza T.A.M., Borges D.C.S., Souza R.R. & Pereira S.G. Movement anatomy of the gluteal region and thigh of the giant anteater Myrmecophaga tridactyla (Myrmecophagidae: Pilosa). Pesquisa Veterinária Brasileira 36(6):539-5442016. Laboratory for Teaching and Research on Wild Animals (LAPAS), Brazil. E-mail: [email protected] FederalLocomotion University reveals of Uberlândia, the displacement Rua Piauí and s/n, behavior Umuarama, manner Uberlândia, of the species MG in38405-317, their dai- ly needs. According to different needs of the several species, different locomotor patterns are adopted. The shapes and attachment points of muscles are important determinants of the movements performed and consequently, the locomotion and motion patterns of living beings. It was aimed to associate anatomical, kinesiology and biomechanics aspects of the gluteal region and thigh of the giant anteater to its moving characteristics and locomotor habits. It was used three specimens of Myrmecophaga tridactyla, settled in formaldehyde - patternsaqueous solutionof movement at 10% and and locomotion subsequently, of animals, dissected were using analyzed usual andtechniques discussed in gross in light ana of literature.tomy. The morphologicalAll muscles of characteristicsthe gluteal region of the and gluteal thigh regionof giant and anteater thigh thatshow influence parallel thear- joint which the interpotent type biolever act. These morphological characteristics indicate rangement of the muscular fibers, being flat or fusiform. These muscles are formed in the a greater predominance of amplitude and movement speed at the expense of strength. On andthe othershows hand, the need features of future such realization as osteometric of more index detailed and the studies observation in this subject. of giant anteater motion indicate the opposite, what reflects this animal lack of expertise in locomotor habits INDEX TERMS: Locomotion, kinesiology, biomechanics, giant anteater, Myrmecophaga tridactyla, Pilosa. RESUMO.- [Anatomia do movimento da região glútea e e movimentação dos seres vivos. Objetivou-se associar as- coxa de Myrmecophaga tridactyla tamanduá-bandeira pectos anatômicos, cinesiológicos e biomecânicos da região (Myrmecophagidae: pilosa).] A locomoção revela o modo de deslocamento e comportamento das espécies nas suas de movimentação e hábitos locomotores. Utilizaram-se três necessidades diárias. De acordo com as diferentes neces- espécimesglútea e coxa de doMyrmecophaga tamanduá bandeira tridactyla às suas características sidades das diversas espécies, diferentes padrões loco- - dos usando as técnicas usuais em anatomia, fixados macroscópica. em solução músculos são importantes determinantes dos movimentos aquosa de formaldeído a 10% e posteriormente, disseca realizadosmotores são e, adotados.por conseguinte, As formas dos e padrões pontos dede fixaçãolocomoção dos As características morfológicas da região glútea e coxa que influenciam os padrões de movimento e locomoção dos animais foram analisadas e discutidas à luz da literatura. 1 - Todos os músculos da região glútea e coxa do tamanduá 2 Received on December 8, 2015. culares, sendo planos ou fusiformes. Esses músculos for- Laboratory for Teaching and Research on Wild Animals (LAPAS), Fed- bandeira apresentam disposição paralela das fibras mus Accepted for publication on March 17, 2016. - mam nas articulações sobre as quais agem bioalavancas *Correspondingeral University ofauthor: Uberlândia [email protected] (UFU), Rua Piauí, s/n, Umuarama, Uber indicam maior predominância de amplitude e velocidade lândia, MG 38405-317, Brazil. Master’s research supported by FAPEMIG. do tipo interpotente. Essas características morfológicas 539 Priscilla Rosa Queiroz Ribeiro et al. 540 de movimento em detrimento da força. Por outro lado, ca- performance of biological roles, such as obtaining food, de- da movimentação do tamanduá bandeira indicam o oposto, fenseand, consequently, and locomotion. it reflects on the functionality on the racterísticas como os índices osteométricos e a observação The shapes and attachment points of the muscles in the aos hábitos locomotores e sinaliza a necessidade da reali- bones are important determinants of movements perfor- zaçãoo que refletefutura dea falta estudos de especialização mais detalhados desse a esse animal respeito. quanto med in the different joints and therefore are determinants TERMOS DE INDEXAÇÃO: Locomoção, cinesiologia, biomecânica, of the locomotion and motion patterns of living beings. So, tamanduá-bandeira, Myrmecophaga tridactyla, Pilosa. knowing motion anatomy aspects, as well as kinesiology INTRODUCTION shape and arrangement, points of muscles origin and in- sertion,and basic biolever biomechanics types, strength aspects, armssuch andas muscular resistance fibers and The giant anteater belongs to Myrmecophagidae family that mechanical advantage of body segments, becomes crucial has three subspecies, and they are found in southeastern to understanding the animal movement. This article aimed to associate the anatomical, kinesiology and biomechanics silent and peaceful nature, in the wild, they are always alo- aspects of the gluteal region and thigh of giant anteater to Mexico, Central and South America (Nowak 1999). Solitary, its moving characteristics and locomotor habits. captivity they accept living together. Giant anteaters have ne, except in mating season or mother offspring, while in anatomical, behavioral and physiological adaptations con- MATERIALS AND METHODS cerned to feeding, which is consisted of ants, termites and It was used three male adult specimens of their eggs, and the larvae of beetles. They have long skull, Myrmecophaga tridac- tyla - tube like and long muzzle, relatively small eyes and ears, a lections of Laboratory for Teaching and Research on Wild Animals very long portable tongue, developed salivary glands and (LAPAS), Linnaeus from (1758) Federal that University belong to of the Uberlândia didactic and (UFU) scientific and from col the Laboratory of Anatomy of Federal University of Goiás Campus Specie of the Pilosa order, the giant anteater is listed as Catalão (UFG). This study was approved by the Ethics Committee they have no teeth (Medri 2003). - national Union for Conservation of Nature and Natural Re- a potentially vulnerableMyrmecophaga animal to extinction tridactyla by the Inter on AnimalThe animals use of used UFU were(Protocol settled 039/11) in formaldehyde and it is in aqueous accordance so- threat is mainly due to destruction of habitats in order to with Normative Instruction 03/2015 of IBAMA. - sources (IUCN 2011). extinction taining the same concentration of solution. Their preparation for analysislution at followed10% and the then anatomical preserved conventional immersed in techniques opaque vats propo con- giveLocomotion place to pastures reveals and the monocultures, displacement fires,and poachingbehavior The basic kinesiology and biomechanics aspects observed mannerand roadkill of the (Takami species et in al their 1998). daily needs such as feeding, weresed by the Rodrigues form and (2005). fascicular arrangement of the muscles of glute- al region and thigh, and the set up biolever systems in the hip and to the different needs of the several species, different loco- - mating and escape (Densmore 1983). This way, according ment and locomotion patterns of the animals were analyzed and - discussedknee joints. in The accordance influences with of thethese proposals characteristics of Tortora in the & Grabomove- motor patterns are adopted. According to Oliveira (2001) structuralthe Myrmecophagidae features related do not to varioushave expertise types of about adaptation, the lo wski (2010) for these characteristics. suchcomotor as terrestrial, habit. Instead, climbing they and show digging. a mix Theof anatomical giant anteater and RESULTS AND DISCUSSION The giant anteater gluteal region consists of these muscles, nodes of the hands joints on the ground. When it feels in - walks with clenched fists and with the lateral portion and fundus, m. gemelli, m. quadrates femoral and m. obturator - m. gluteus superficiallis, m. gluteus medius, m. gluteus pro werfuldanger, claws. its natural reaction is to flee, gallopping somewhat tensor fasciae latae, m. biceps femoris, m. semitendinosus, disorderly, fighting only if forced, when then it uses its po- m.internus semimembranosus, (Table 1 and Figurem. abductor 1). The cruris thigh caudalis, muscles m.are gra m.- tor system are responsible for the locomotion diversity ob- cillis, m. pectineus, m. quadriceps femoris, mm. brevis lon- Toledo (1998) states that the variations of the locomo- gus and magnus adductors and m. sartorius (Table 2 and logical changes are related to the limbs mechanical ability Figure 2). served in modern mammals. For Oliveira (2001) morpho Table 1. Attachment points of the gluteal region muscles of giant anteater Muscle Origin Insertion M. Gluteus medius Gluteal surface of ilium and iliac crest. Greater trochanter of the femur. M. Gluteus profundussuperficiallis IliumLateral body. sacral crest, crest.
Recommended publications
  • Hip Extensor Mechanics and the Evolution of Walking and Climbing Capabilities in Humans, Apes, and Fossil Hominins
    Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins Elaine E. Kozmaa,b,1, Nicole M. Webba,b,c, William E. H. Harcourt-Smitha,b,c,d, David A. Raichlene, Kristiaan D’Aoûtf,g, Mary H. Brownh, Emma M. Finestonea,b, Stephen R. Rossh, Peter Aertsg, and Herman Pontzera,b,i,j,1 aGraduate Center, City University of New York, New York, NY 10016; bNew York Consortium in Evolutionary Primatology, New York, NY 10024; cDepartment of Anthropology, Lehman College, New York, NY 10468; dDivision of Paleontology, American Museum of Natural History, New York, NY 10024; eSchool of Anthropology, University of Arizona, Tucson, AZ 85721; fInstitute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom; gDepartment of Biology, University of Antwerp, 2610 Antwerp, Belgium; hLester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614; iDepartment of Anthropology, Hunter College, New York, NY 10065; and jDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708 Edited by Carol V. Ward, University of Missouri-Columbia, Columbia, MO, and accepted by Editorial Board Member C. O. Lovejoy March 1, 2018 (received for review September 10, 2017) The evolutionary emergence of humans’ remarkably economical their effects on climbing performance or tested whether these walking gait remains a focus of research and debate, but experi- traits constrain walking and running performance. mentally validated approaches linking locomotor
    [Show full text]
  • Rehabilitation of Soft Tissue Injuries of the Hip and Pelvis T
    Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2014 Rehabilitation of soft tissue injuries of the hip and pelvis T. F. Tyler Northwell Health T. Fukunaga Hofstra Northwell School of Medicine J. Gellert Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Recommended Citation Tyler TF, Fukunaga T, Gellert J. Rehabilitation of soft tissue injuries of the hip and pelvis. 2014 Jan 01; 9(6):Article 1396 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/1396. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. INVITED CLINICAL COMMENTARY REHABILITATION OF SOFT TISSUE INJURIES OF THE HIP AND PELVIS Timothy F. Tyler MS, PT, ATC1 Takumi Fukunaga DPT, ATC, CSCS1 Joshua Gellert DPT IJSPT ABSTRACT Soft tissue injuries of the hip and pelvis are common among athletes and can result in significant time loss from sports participation. Rehabilitation of athletes with injuries such as adductor strain, iliopsoas syn- drome, and gluteal tendinopathy starts with identification of known risk factors for injury and comprehen- sive evaluation of the entire kinetic chain. Complex anatomy and overlapping pathologies often make it difficult to determine the primary cause of the pain and dysfunction. The purpose of this clinical commen- tary is to present an impairment-based, stepwise progression in evaluation and treatment of several com- mon soft tissue injuries of the hip and pelvis.
    [Show full text]
  • All About Glutes 1 Table of Contents
    All About Glutes 1 Table of Contents Are You Training Your Glutes the Wrong Way? 3 • Anatomy of the Glutes 4 • Functions of the Glutes at the Hip 4 • The Shortcoming of Most Training Programs 5 • Progression and Preventing Knee Valgus 6 • Simple Solution 6 How to Identify and Correct Tight Hip Flexors 8 • What Exactly Are Tight Hip Flexors? 9 • The Hip Flexor Muscle Group 9 • Signs You Have Tight Hip Flexors 10 • What Causes Hip Tightness 10 • Stretches to Loosen up Tight Hip Flexors 10 • Exercises to Strengthen Hip Flexors 11 Pain in the Buttocks When Sitting? Tips to Prevent and Manage 12 Piriformis Syndrome • What is Piriformis Syndrome? 13 • How Does Piriformis Syndrome Happen? 13 • Special Considerations with Clients 14 • Prevention and Pain Management 14 How Do I Build the Perfect Glutes? 16 • Can’t I Just Squat and Lunge? 17 • Your Best Bets to Target the Glutes 18 • Don’t Forget the Legs 18 • Train the Glutes SPECIFICALLY 19 TABLE OF CONTENTS 800.545.4772 WWW.ISSAONLINE.EDU 2 Are You Training Your Glutes the Wrong Way? 800.545.4772 WWW.ISSAONLINE.EDU 3 UNIT ONE These days, the glutes get a lot of attention, and it’s well deserved. When you build and strengthen your glutes in the right way, they not only make your body look better, but they also increase your performance and can diminish knee pain. The problem is most people aren’t taking the best approach to training for the highest level of glute development. Anatomy of the Glutes Let’s start with a little anatomy.
    [Show full text]
  • 11/1 Welcome to Our Unit on the Organs of Action
    LEGS & ARMS UNIT MODULE 1 1 Welcome to Beyond Trigger Point Seminars Legs and Arms Unit Module 1 on the Quadriceps, Adductors & Hamstrings. In this unit we will be exploring myofascial pain syndromes (MPS) of the upper and lower extremities. Like the heart to the circulation system, the legs and arms are our body’s organs of action. Because a majority of our pain clients are presenting with problems in the low back and neck regions, therapists, I’ve noticed, are often focused on only treating these regions. In this unit, you will become more familiar with the many common pain diagnoses of the legs and arms frequently unrecognized as originating from trigger points (TrPs). We will consider the holding patterns down below which are affecting the alignment up above. We may be treating condition specific, but we will also be looking at the entire structure as well. Specifically, by the end of your online studies, you will have a greater understanding of tennis and golfer’s elbow, carpel tunnel syndrome, heal spurs, plantar fasciitis, shin splints, and runner’s and jumper’s knees to innumerate just a few diagnoses we will encounter. Before we get started, let’s do a little housekeeping. If you haven’t already listened to the free introductory lecture, it is available at www.AskCathyCohen.com. Though I try reviewing one or two basic concepts of myofascial pain syndromes with each module, by listening to the intro lecture and filling in its study guide, you’ll maximize your learning. What also helps is setting aside four 60 to 90 minute slots in your appointment book to complete this unit.
    [Show full text]
  • Effects of a Gluteal Muscles Specific Exercise Program on the Vertical
    International Journal of Environmental Research and Public Health Article Effects of a Gluteal Muscles Specific Exercise Program on the Vertical Jump Tomás Gallego-Izquierdo 1, Gerardo Vidal-Aragón 2, Pedro Calderón-Corrales 2, Álvaro Acuña 2, Alexander Achalandabaso-Ochoa 3,* , Agustín Aibar-Almazán 3 , Antonio Martínez-Amat 3 and Daniel Pecos-Martín 1 1 Physiotherapy and Pain Group, Department of Physical Therapy, University of Alcala, 28801 Madrid, Spain; [email protected] (T.G.-I.); [email protected] (D.P.-M.) 2 Physical Therapist, Department of Physical Therapy, University of Alcala, 28801 Madrid, Spain; [email protected] (G.V.-A.); pedrocalderon.fi[email protected] (P.C.-C.); [email protected] (Á.A.) 3 Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain.; [email protected] (A.A.-A.); [email protected] (A.M.-A.) * Correspondence: [email protected]; Tel.: +34-953213651 Received: 9 June 2020; Accepted: 23 July 2020; Published: 27 July 2020 Abstract: The vertical jump is a complex movement where many factors are involved in the final result. Currently, how a specific exercise program for gluteal muscles can affect the vertical jump is unknown. So, the aim of this study was to examine the effect of a specific exercise program for the gluteal muscles on a vertical jump. Forty-nine amateur athletes completed an 8-week program. The experimental group received a specific gluteal muscle training program in addition to their regular training routine, whereas the control group received their regular training routine. Jump height, flight time, speed and power were assessed (baseline, postintervention, and 4-week follow-up).
    [Show full text]
  • Clinical Anatomy of the Lower Extremity
    Государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Department of Operative Surgery and Topographic Anatomy Clinical anatomy of the lower extremity Teaching aid Иркутск ИГМУ 2016 УДК [617.58 + 611.728](075.8) ББК 54.578.4я73. К 49 Recommended by faculty methodological council of medical department of SBEI HE ISMU The Ministry of Health of The Russian Federation as a training manual for independent work of foreign students from medical faculty, faculty of pediatrics, faculty of dentistry, protocol № 01.02.2016. Authors: G.I. Songolov - associate professor, Head of Department of Operative Surgery and Topographic Anatomy, PhD, MD SBEI HE ISMU The Ministry of Health of The Russian Federation. O. P.Galeeva - associate professor of Department of Operative Surgery and Topographic Anatomy, MD, PhD SBEI HE ISMU The Ministry of Health of The Russian Federation. A.A. Yudin - assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU The Ministry of Health of The Russian Federation. S. N. Redkov – assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU THE Ministry of Health of The Russian Federation. Reviewers: E.V. Gvildis - head of department of foreign languages with the course of the Latin and Russian as foreign languages of SBEI HE ISMU The Ministry of Health of The Russian Federation, PhD, L.V. Sorokina - associate Professor of Department of Anesthesiology and Reanimation at ISMU, PhD, MD Songolov G.I K49 Clinical anatomy of lower extremity: teaching aid / Songolov G.I, Galeeva O.P, Redkov S.N, Yudin, A.A.; State budget educational institution of higher education of the Ministry of Health and Social Development of the Russian Federation; "Irkutsk State Medical University" of the Ministry of Health and Social Development of the Russian Federation Irkutsk ISMU, 2016, 45 p.
    [Show full text]
  • The Absence of Piriformis Muscle, Combined Muscular Fusion, and Neurovascular Variation in the Gluteal Region
    Autopsy Case Report The absence of piriformis muscle, combined muscular fusion, and neurovascular variation in the gluteal region Matheus Coelho Leal1 , João Gabriel Alexander1 , Eduardo Henrique Beber1 , Josemberg da Silva Baptista1 How to cite: Leal MC, Alexander JG, Beber EH, Baptista JS. The absence of piriformis muscle, combined muscular fusion, and neuro-vascular variation in the gluteal region. Autops Case Rep [Internet]. 2021;11:e2020239. https://doi.org/10.4322/ acr.2020.239 ABSTRACT The gluteal region contains important neurovascular and muscular structures with diverse clinical and surgical implications. This paper aims to describe and discuss the clinical importance of a unique variation involving not only the piriformis, gluteus medius, gluteus minimus, obturator internus, and superior gemellus muscles, but also the superior gluteal neurovascular bundle, and sciatic nerve. A routine dissection of a right hemipelvis and its gluteal region of a male cadaver fixed in 10% formalin was performed. During dissection, it was observed a rare presentation of the absence of the piriformis muscle, associated with a tendon fusion between gluteus and obturator internus, and a fusion between gluteus minimus and superior gemellus muscles, along with an unusual topography with the sciatic nerve, which passed through these group of fused muscles. This rare variation stands out with clinical manifestations that are not fully established. Knowing this anatomy is essential to avoid surgical iatrogeny. Keywords Anatomic Variation; Anatomy; Buttocks; Muscle; Piriformis Muscle Syndrome. INTRODUCTION The gluteal region contains important Over the years, these variations have been neurovascular and muscular structures that may classified and distributed into different groups. impose diverse clinical and surgical approaches.
    [Show full text]
  • Anterior and Medial Thigh
    Objectives • Define the boundaries of the femoral triangle and adductor canal and locate and identify the contents of the triangle and canal. • Identify the anterior and medial osteofascial compartments of the thigh. • Differentiate the muscles contained in each compartment with respect to their attachments, actions, nerve and blood supply. Anterior and Medial Thigh • After removing the skin from the anterior thigh, you can identify the cutaneous nerves and veins of the thigh and the fascia lata. The fascia lata is a dense layer of deep fascia surrounding the large muscles of the thigh. The great saphenous vein reaches the femoral vein by passing through a weakened part of this fascia called the fossa ovalis which has a sharp margin called the falciform margin. Cutaneous Vessels • superficial epigastric artery and vein a. supplies the lower abdominal wall b. artery is a branch of the femoral artery c. vein empties into the greater saphenous vein • superficial circumflex iliac artery and vein a. supplies the upper lateral aspect of the thigh b. artery is a branch of the femoral c. vein empties into the greater saphenous vein • superficial and deep external pudendal arteries and veins a. supplies external genitalia above b. artery is a branch of the femoral artery c. vein empties into the greater saphenous vein • greater saphenous vein a. begins and passes anterior to the medial malleolus of the tibia, up the medial side of the lower leg b. passes a palm’s breadth from the patella at the knee c. ascends the thigh to the saphenous opening in the fascia lata to empty into the femoral vein d.
    [Show full text]
  • Thigh Muscles
    Lecture 14 THIGH MUSCLES ANTERIOR and Medial COMPARTMENT BY Dr Farooq Khan Aurakzai PMC Dated: 03.08.2021 INTRODUCTION What are the muscle compartments? The limbs can be divided into segments. If these segments are cut transversely, it is apparent that they are divided into multiple sections. These are called fascial compartments, and are formed by tough connective tissue septa. Compartments are groupings of muscles, nerves, and blood vessels in your arms and legs. INTRODUCTION to the thigh Muscles The musculature of the thigh can be split into three sections by intermuscular septas in to; Anterior compartment Medial compartment and Posterior compartment. Each compartment has a distinct innervation and function. • The Anterior compartment muscle are the flexors of hip and extensors of knee. • The Medial compartment muscle are adductors of thigh. • The Posterior compartment muscle are extensor of hip and flexors of knee. Anterior Muscles of thigh The muscles in the anterior compartment of the thigh are innervated by the femoral nerve (L2-L4), and as a general rule, act to extend the leg at the knee joint. There are three major muscles in the anterior thigh –: • The pectineus, • Sartorius and • Quadriceps femoris. In addition to these, the end of the iliopsoas muscle passes into the anterior compartment. ANTERIOR COMPARTMENT MUSCLE 1. SARTORIUS Is a long strap like and the most superficial muscle of the thigh descends obliquely Is making one of the tendon of Pes anserinus . In the upper 1/3 of the thigh the med margin of it makes the lat margin of Femoral triangle. Origin: Anterior superior iliac spine.
    [Show full text]
  • Iliopsoas Muscle Injury in Dogs
    Revised January 2014 3 CE Credits Iliopsoas Muscle Injury in Dogs Quentin Cabon, DMV, IPSAV Centre Vétérinaire DMV Montréal, Quebec Christian Bolliger, Dr.med.vet, DACVS, DECVS Central Victoria Veterinary Hospital Victoria, British Columbia Abstract: The iliopsoas muscle is formed by the psoas major and iliacus muscles. Due to its length and diameter, the iliopsoas muscle is an important flexor and stabilizer of the hip joint and the vertebral column. Traumatic acute and chronic myopathies of the iliopsoas muscle are commonly diagnosed by digital palpation during the orthopedic examination. Clinical presentations range from gait abnormalities, lameness, and decreased hip joint extension to irreversible fibrotic contracture of the muscle. Rehabilitation of canine patients has to consider the inciting cause, the severity of pathology, and the presence of muscular imbalances. ontrary to human literature, few veterinary articles have been Box 2. Main Functions of the Iliopsoas Muscle published about traumatic iliopsoas muscle pathology.1–6 This is likely due to failure to diagnose the condition and the • Flexion of the hip joint C 5 presence of concomitant orthopedic problems. In our experience, repetitive microtrauma of the iliopsoas muscle in association with • Adduction and external rotation of the femur other orthopedic or neurologic pathologies is the most common • Core stabilization: clinical presentation. —Flexion and stabilization of the lumbar spine when the hindlimb is fixed Understanding applied anatomy is critical in diagnosing mus- —Caudal traction on the trunk when the hindlimb is in extension cular problems in canine patients (BOX 1 and BOX 2; FIGURE 1 and FIGURE 2). Pathophysiology of Muscular Injuries Box 1.
    [Show full text]
  • The Greater Trochanter Triangle
    Occasional piece Br J Sports Med: first published as 10.1136/bjsm.2007.042325 on 19 November 2008. Downloaded from The greater trochanter triangle; a pathoanatomic approach to the diagnosis of chronic, proximal, lateral, lower pain in athletes E C Falvey,1 A Franklyn-Miller,1 P R McCrory2 1 Centre for Health, Exercise and ABSTRACT THE GREATER TROCHANTER TRIANGLE Sports Medicine, School of Chronic pain experienced in the proximal, lateral, lower The specific anatomical landmarks and borders of Physiotherapy, Faculty of Medicine, Dentistry and Health limb may arise from the femoro-acetabular joint, from the the greater trochanter triangle are set out in fig 1. Sciences The University of muscles and tendons that act upon it, from any of the Melbourne, Victoria 3010 structures that traverse the area, and from more remote Australia and Olympic Park structures such as the lumbar spine. Sports Medicine Centre, The aetiology of pathology in this area is not confined to Olympic Boulevard, Melbourne 3004, Australia; 2 Centre for either trauma or overuse. As a result many different Health, Exercise and Sports sporting activities may have a causal role. Medicine University of Without a clear clinical/pathological diagnosis, the Melbourne, Australia subsequent management of chronic groin pain is difficult. Correspondence to: The combination of complex anatomy, variability of Eanna C Falvey, Centre for presentation and the non-specific nature of the signs and Health, Exercise and Sports symptoms makes the diagnostic process problematic. Medicine, School of Physiotherapy, Faculty of The paper proposes a novel educational model based on Medicine, Dentistry and Health pathoanatomic concepts.
    [Show full text]
  • The Human Gluteus Maximus and Its Role in Running
    The Human Gluteus Maximus and its Role in Running The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lieberman, Daniel E., David A. Raichlen, Herman Pontzer, Dennis M. Bramble, and Elizabeth Cutright-Smith. 2006. The human gluteus maximus and its role in running. Journal of Experimental Biology 209: 2143-2155. Published Version doi:10.1242/jeb.02255 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3743645 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 2143 The Journal of Experimental Biology 209, 2143-2155 Published by The Company of Biologists 2006 doi:10.1242/jeb.02255 The human gluteus maximus and its role in running Daniel E. Lieberman1,*, David A. Raichlen1, Herman Pontzer1, Dennis M. Bramble2 and Elizabeth Cutright-Smith3 1Department of Anthropology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA, 2Department of Biology, University of Utah, Salt Lake City, UT 84112, USA and 3Department of Anthropology, University of Arizona, 1009 E. South Campus Drive PO Box 210030, Tucson, AZ 85721, USA *Author for correspondence (e-mail: [email protected]) Accepted 5 April 2006 Summary The human gluteus maximus is a distinctive muscle in side and to decelerate the swing leg; contractions of the terms of size, anatomy and function compared to apes and stance-side gluteus maximus may also help to control other non-human primates.
    [Show full text]