Chapter 9 the Hip Joint and Pelvic Girdle

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 9 the Hip Joint and Pelvic Girdle The Hip Joint and Pelvic Girdle • Hip joint (acetabular femoral) – relatively stable due to • bony architecture Chapter 9 • strong ligaments • large supportive muscles The Hip Joint and Pelvic Girdle – functions in weight bearing & locomotion • enhanced significantly by its wide range of Manual of Structural Kinesiology motion • ability to run, cross-over cut, side-step cut, R.T. Floyd, EdD, ATC, CSCS jump, & many other directional changes © 2007 McGraw-Hill Higher Education. All rights reserved. 9-1 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-2 Bones Bones • Ball & socket joint – Sacrum – Head of femur connecting • extension of spinal column with acetabulum of pelvic with 5 fused vertebrae girdle • extending inferiorly is the coccyx – Pelvic girdle • Pelvic bone - divided into 3 • right & left pelvic bone areas joined together posteriorly by sacrum – Upper two fifths = ilium • pelvic bones are ilium, – Posterior & lower two fifths = ischium, & pubis ischium – Femur – Anterior & lower one fifth = pubis • longest bone in body © 2007 McGraw-Hill Higher Education. All rights reserved. 9-3 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-4 Bones Bones • Bony landmarks • Bony landmarks – Anterior pelvis - origin – Lateral pelvis - for hip flexors origin for hip • tensor fasciae latae - abductors anterior iliac crest • gluteus medius & • sartorius - anterior minimus - just superior iliac spine below iliac crest • rectus femoris - anterior inferior iliac spine © 2007 McGraw-Hill Higher Education. All rights reserved. 9-5 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-6 1 Bones Bones • Bony landmarks • Bony landmarks – Medially - origin for – Posteriorly – origin for hip hip adductors extensors • adductor magnus, • gluteus maximus - adductor longus, posterior iliac crest & adductor brevis, posterior sacrum & coccyx pectineus, & gracilis - – Posteroinferiorly - origin pubis & its inferior for hip extensors ramus • hamstrings - ischial tuberosity © 2007 McGraw-Hill Higher Education. All rights reserved. 9-7 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-8 Bones Bones • Bony landmarks • Bony landmarks – Proximal thigh - insertion for short – Patella – insertion for all 4 muscles of hip quadriceps muscles • gluteal muscles & most of the six deep external rotators - greater – Proximal tibia or fibula – insertion trochanter for remainder of hip muscles • iliopsoas - lesser trochanter • sartorius, gracilis, & semitendinosus - upper anteromedial tibial surface – Proximal thigh - origin for 3 knee just below medial condyle after extensors crossing knee posteromedially • three vasti muscles of quadriceps – • semimembranosus - posteromedially anteriorly on medial tibial condyle • hip adductors - linea aspera © 2007 McGraw-Hill Higher Education. All rights reserved. 9-9 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-10 Bones Joints • Bony landmarks • Anteriorly – Proximal tibia or fibula – insertion – Two pelvic bones join to form for remainder of hip muscles symphysis pubis, amphiarthrodial • biceps femoris – laterally, primarily on fibula head with some fibers • Posteriorly attaching on lateral tibial condyle – Sacrum is between the 2 pelvic • iliotibial tract of tensor fasciae latae – bones & forms the sacroiliac anterolaterally on Gerdy’s tubercle of joints tibia – Strong ligaments unite these bones to form rigid, slightly movable joints © 2007 McGraw-Hill Higher Education. All rights reserved. 9-11 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-12 2 Joints Joints • Large & heavy bones covered by thick, • Jogging & running result in faster heavy muscles movements & greater range of • Very minimal oscillating-type movements movement occur in sacroiliac joints, as in walking • Pelvic rotation increases the length of • Body movements usually involve entire stride in running; in kicking it results in a pelvic girdle & hip joints greater distance or more speed to the • In walking, hip flexion & extension occur kick with pelvic girdle rotation, forward in hip flexion & backward in hip extension © 2007 McGraw-Hill Higher Education. All rights reserved. 9-13 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-14 Joints Joints • Acetabulofemoral joint - most mobile • Acetabulofemoral joint joints of body (except glenohumeral) – Iliofemoral or Y – Multiaxial arrangement ligament – located – Bony architecture provides stability anteriorly, prevents hyperextension • relatively few hip joint subluxations & dislocations – Pubofemoral ligament - – Enarthrodial-type joint located anteromedially & inferiorly, limits – Femoral head inserting into acetabulum excessive extension & – Reinforced by extremely strong & dense abduction ligamentous capsule, especially anteriorly © 2007 McGraw-Hill Higher Education. All rights reserved. 9-15 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-16 Joints Joints • Acetabulofemoral joint • Some disagreement – Teres ligament - attaches about exact possible from deep in acetabulum to a range of each depression in femoral head, slightly limits adduction movement in hip joint – Ischiofemoral ligament – – 0 to 130 degrees of located posteriorly, extends flexion from ischium to trochanteric – 0 to 30 degrees of fossa of femur, limits internal rotation extension © 2007 McGraw-Hill Higher Education. All rights reserved. 9-17 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-18 3 Joints Joints – 0 to 35 degrees of abduction – 0 to 45 degrees of internal rotation – 0 to 30 degrees of adduction – 0 to 50 degrees of external rotation © 2007 McGraw-Hill Higher Education. All rights reserved. 9-19 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-20 Joints Joints Motions accompanying pelvic rotation • Pelvic girdle moves back & forth within Pelvic Rotation Lumbar Spine Right Hip Left Hip 3 planes for a total of 6 different Motion Motion Motion movements Anterior rotation Extension Flexion Flexion – All pelvic girdle rotation results from motion Posterior rotation Flexion Extension Extension Right lateral Right lateral at one or more locations Adduction Abduction rotation flexion • right hip Left lateral rotation Left lateral flexion Abduction Adduction • left hip Right transverse Left transverse Internal External • lumbar spine rotation rotation rotation rotation Left transverse Right transverse External Internal rotation rotation rotation rotation © 2007 McGraw-Hill Higher Education. All rights reserved. 9-21 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-22 Movements Movements • Anterior & posterior pelvic rotation • Hip flexion – sagittal or anteroposterior plane – movement of femur straight anteriorly toward • Right & left lateral rotation pelvis – lateral or frontal plane • Hip extension • Right transverse (clockwise) rotation & – movement of the femur left transverse (counterclockwise) straight posteriorly away rotation from the pelvis; sometimes referred to as – horizontal or transverse plane of motion hyperextension © 2007 McGraw-Hill Higher Education. All rights reserved. 9-23 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-24 4 Movements Movements • Hip abduction • Hip external rotation – movement of femur – rotary movement of femur laterally to side away from laterally around its midline longitudinal axis away from midline; lateral rotation • Hip adduction • Hip internal rotation – movement of femur – rotary movement of femur medially toward midline medially around its longitudinal axis toward to midline; medial rotation © 2007 McGraw-Hill Higher Education. All rights reserved. 9-25 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-26 Movements Movements • Hip diagonal abduction • Anterior pelvic rotation – movement of femur in a – anterior movement of upper diagonal plane away from pelvis; iliac crest tilts forward in midline of body a sagittal plane; anterior tilt • Hip diagonal adduction • Posterior pelvic rotation – movement of femur in a – posterior movement of upper diagonal plane toward pelvis; iliac crest tilts backward midline of body in a sagittal plane; posterior tilt © 2007 McGraw-Hill Higher Education. All rights reserved. 9-27 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-28 Movements Movements • Left lateral pelvic rotation • Left transverse pelvic rotation – in frontal plane left pelvis moves inferiorly – in horizontal plane pelvis rotates to in relation to right pelvis; either left pelvis body's left; right iliac crest moves rotates downward or right pelvis rotates anteriorly in relation to left iliac upward; left lateral tilt crest, which moves posteriorly • Right lateral pelvic rotation • Right transverse pelvic rotation – in frontal plane right pelvis moves inferiorly – in horizontal plane pelvis rotates to in relation to left pelvis; either right pelvis body's right; left iliac crest moves rotates downward or left pelvis rotates anteriorly in relation to right iliac upward; right lateral tilt crest, which moves posteriorly © 2007 McGraw-Hill Higher Education. All rights reserved. 9-29 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-30 5 Muscles Muscles • Seven two-joint muscles have one action • Muscles involved in hip & pelvic girdle at hip & another at knee motions depend largely on direction of movement and position of body in relation to earth & gravitational forces • Body part that moves most will be the part least stabilized – Standing on both feet & contracting hip flexors, the trunk & pelvis rotate anteriorly – Lying
Recommended publications
  • Minimally Invasive Surgical Treatment Using 'Iliac Pillar' Screw for Isolated
    European Journal of Trauma and Emergency Surgery (2019) 45:213–219 https://doi.org/10.1007/s00068-018-1046-0 ORIGINAL ARTICLE Minimally invasive surgical treatment using ‘iliac pillar’ screw for isolated iliac wing fractures in geriatric patients: a new challenge Weon‑Yoo Kim1,2 · Se‑Won Lee1,3 · Ki‑Won Kim1,3 · Soon‑Yong Kwon1,4 · Yeon‑Ho Choi5 Received: 1 May 2018 / Accepted: 29 October 2018 / Published online: 1 November 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Purpose There have been no prior case series of isolated iliac wing fracture (IIWF) due to low-energy trauma in geriatric patients in the literature. The aim of this study was to describe the characteristics of IIWF in geriatric patients, and to pre- sent a case series of IIWF in geriatric patients who underwent our minimally invasive screw fixation technique named ‘iliac pillar screw fixation’. Materials and methods We retrospectively reviewed six geriatric patients over 65 years old who had isolated iliac wing fracture treated with minimally invasive screw fixation technique between January 2006 and April 2016. Results Six geriatric patients received iliac pillar screw fixation for acute IIWFs. The incidence of IIWFs was approximately 3.5% of geriatric patients with any pelvic bone fractures. The main fracture line exists in common; it extends from a point between the anterosuperior iliac spine and the anteroinferior iliac spine to a point located at the dorsal 1/3 of the iliac crest whether fracture was comminuted or not. Regarding the Koval walking ability, patients who underwent iliac pillar screw fixation technique tended to regain their pre-injury walking including one patient in a previously bedridden state.
    [Show full text]
  • The Anatomy of the Posterolateral Aspect of the Rabbit Knee
    Journal of Orthopaedic Research ELSEVIER Journal of Orthopaedic Research 2 I (2003) 723-729 www.elsevier.com/locate/orthres The anatomy of the posterolateral aspect of the rabbit knee Joshua A. Crum, Robert F. LaPrade *, Fred A. Wentorf Dc~~ur/niiviiof Orthopuer/ic Surgery. Unicrrsity o/ Minnesotu. MMC 492, 420 Dcluwur-c Si. S. E., Minnwpoli,s, MN 55455, tiSA Accepted 14 November 2002 Abstract The purpose of this study was to determine the anatomy of the posterolateral aspect of the rabbit knee to serve as a basis for future in vitro and in vivo posterolateral knee biomechanical and injury studies. Twelve nonpaired fresh-frozen New Zealand white rabbit knees were dissected to determine the anatomy of the posterolateral corner. The following main structures were consistently identified in the rabbit posterolateral knee: the gastrocnemius muscles, biceps femoris muscle, popliteus muscle and tendon, fibular collateral ligament, posterior capsule, ligament of Wrisberg, and posterior meniscotibial ligament. The fibular collateral ligament was within the joint capsule and attached to the femur at the lateral epi- condyle and to the fibula at the midportion of the fibular head. The popliteus muscle attached to the medial edge of the posterior tibia and ascended proximally to give rise to the popliteus tendon, which inserted on the proximal aspect of the popliteal sulcus just anterior to the fibular collateral ligament. The biceps femoris had no attachment to the fibula and attached to the anterior com- partment fascia of the leg. This study increased our understanding of these structures and their relationships to comparative anatomy in the human knee.
    [Show full text]
  • Pelvic Anatomyanatomy
    PelvicPelvic AnatomyAnatomy RobertRobert E.E. Gutman,Gutman, MDMD ObjectivesObjectives UnderstandUnderstand pelvicpelvic anatomyanatomy Organs and structures of the female pelvis Vascular Supply Neurologic supply Pelvic and retroperitoneal contents and spaces Bony structures Connective tissue (fascia, ligaments) Pelvic floor and abdominal musculature DescribeDescribe functionalfunctional anatomyanatomy andand relevantrelevant pathophysiologypathophysiology Pelvic support Urinary continence Fecal continence AbdominalAbdominal WallWall RectusRectus FasciaFascia LayersLayers WhatWhat areare thethe layerslayers ofof thethe rectusrectus fasciafascia AboveAbove thethe arcuatearcuate line?line? BelowBelow thethe arcuatearcuate line?line? MedianMedial umbilicalumbilical fold Lateralligaments umbilical & folds folds BonyBony AnatomyAnatomy andand LigamentsLigaments BonyBony PelvisPelvis TheThe bonybony pelvispelvis isis comprisedcomprised ofof 22 innominateinnominate bones,bones, thethe sacrum,sacrum, andand thethe coccyx.coccyx. WhatWhat 33 piecespieces fusefuse toto makemake thethe InnominateInnominate bone?bone? PubisPubis IschiumIschium IliumIlium ClinicalClinical PelvimetryPelvimetry WhichWhich measurementsmeasurements thatthat cancan bebe mademade onon exam?exam? InletInlet DiagonalDiagonal ConjugateConjugate MidplaneMidplane InterspinousInterspinous diameterdiameter OutletOutlet TransverseTransverse diameterdiameter ((intertuberousintertuberous)) andand APAP diameterdiameter ((symphysissymphysis toto coccyx)coccyx)
    [Show full text]
  • Rectus Femoris to Gracilis Transfer with Fractional Lengthening of the Vasti Muscles: Surgical Technique
    Rectus Femoris to Gracilis Transfer with Fractional Lengthening of the Vasti Muscles: Surgical Technique Surena Namdari, MD1 Stiff knee gait is often seen in patients with upper motor neuron injury. It describes a gait pattern with relative loss Stephan G. Pill, MD, MSPT1 of sagittal knee motion. This aberrant gait interferes with foot clearance during swing, often leading to inefficient Mary Ann Keenan1 compensatory mechanisms and ambulatory dysfunction. At our institution, we have been performing distal rectus 1 Department of Orthopaedic Surgery, femoris transfers and fractional lengthening of the vasti muscles in adult patients. The purpose of this paper was to University of Pennsylvania, describe our unique surgical technique. Philadelphia, PA Stiff knee gait describes a gait pattern with allows for a more secure fixation of the rectus a relative loss of sagittal plane knee motion, femoris tendon, places the knee flexion force which interferes with foot clearance during more posterior to the knee axis of rotation, and swing1. It may be seen in patients with upper also treats the increased activity of the vasti motor neuron (UMN) injury, such as stroke or muscles during early swing. traumatic brain injury (TBI), and is commonly seen in children with cerebral palsy (CP) after Surgical Technique hamstring lengthening surgery. Stiff knee gait The patient is positioned supine on the is thought to result from abnormal timing of the operating table, and a pneumatic tourniquet rectus femoris muscle. Instead of its normal brief is applied. A longitudinal incision measuring action from terminal swing into midstance and approximately 10 cm is made on distal anterior again in pre-swing, the rectus femoris in patients thigh over the distal rectus femoris.
    [Show full text]
  • Systematic Approach to the Interpretation of Pelvis and Hip
    Volume 37 • Number 26 December 31, 2014 Systematic Approach to the Interpretation of Pelvis and Hip Radiographs: How to Avoid Common Diagnostic Errors Through a Checklist Approach MAJ Matthew Minor, MD, and COL (Ret) Liem T. Bui-Mansfi eld, MD After participating in this activity, the diagnostic radiologist will be better able to identify the anatomical landmarks of the pelvis and hip on radiography, and become familiar with a systematic approach to the radiographic interpretation of the hip and pelvis using a checklist approach. initial imaging examination for the evaluation of hip or CME Category: General Radiology Subcategory: Musculoskeletal pelvic pain should be radiography. In addition to the com- Modality: Radiography plex anatomy of the pelvis and hip, subtle imaging fi ndings often indicating signifi cant pathology can be challenging to the veteran radiologist and even more perplexing to the Key Words: Pelvis and Hip Anatomy, Radiographic Checklist novice radiologist given the paradigm shift in radiology residency education. Radiography of the pelvis and hip is a commonly ordered examination in daily clinical practice. Therefore, it is impor- tant for diagnostic radiologists to be profi cient with its inter- The initial imaging examination for the evaluation pretation. The objective of this article is to present a simple of hip or pelvic pain should be radiography. but thorough method for accurate radiographic evaluation of the pelvis and hip. With the advent of cross-sectional imaging, a shift in residency training from radiography to CT and MR imag- Systematic Approach to the Interpretation of Pelvis ing has occurred; and as a result, the art of radiographic and Hip Radiographs interpretation has suffered dramatically.
    [Show full text]
  • Femur Pelvis HIP JOINT Femoral Head in Acetabulum Acetabular
    Anatomy of the Hip Joint Overview The hip joint is one of the largest weight-bearing HIP JOINT joints in the body. This ball-and-socket joint allows the leg to move and rotate while keeping the body Femoral head in stable and balanced. Let's take a closer look at the acetabulum main parts of the hip joint's anatomy. Pelvis Bones Two bones meet at the hip joint, the femur and the pelvis. The femur, commonly called the "thighbone," is the longest and heaviest bone of the body. At the top of the femur, positioned on the femoral neck, is the femoral head. This is the "ball" of the hip joint. The other part of the joint – the Femur "socket" – is found in the pelvis. The pelvis is a bone made of three sections: the ilium, the ischium and the pubis. The socket is located where these three sections fuse. The proper name of the socket is the "acetabulum." The head of the femur fits tightly into this cup-shaped cavity. Articular Cartilage The femoral head and the acetabulum are covered Acetabular with a layer of articular cartilage. This tough, smooth tissue protects the bones. It allows them to labrum glide smoothly against each other as the ball moves in the socket. Soft Tissues Several soft tissue structures work together to hold the femoral head securely in place. The acetabulum is surrounded by a ring of cartilage called the "acetabular labrum." This deepens the socket and helps keep the ball from slipping out of alignment. It also acts as a shock absorber.
    [Show full text]
  • Applied Anatomy of the Hip RICARDO A
    Applied Anatomy of the Hip RICARDO A. FERNANDEZ, MHS, PT, OCS, CSCS • Northwestern University The hip joint is more than just a ball-and- bones fuse in adults to form the easily recog- socket joint. It supports the weight of the nized “hip” bone. The pelvis, meaning bowl head, arms, and trunk, and it is the primary in Latin, is composed of three structures: the joint that distributes the forces between the innominates, the sacrum, and the coccyx pelvis and lower extremities.1 This joint is (Figure 1). formed from the articu- The ilium has a large flare, or iliac crest, Key PointsPoints lation of the proximal superiorly, with the easily palpable anterior femur with the innomi- superior iliac spine (ASIS) anterior with the The hip joint is structurally composed of nate at the acetabulum. anterior inferior iliac spine (AIIS) just inferior strong ligamentous and capsular compo- The joint is considered to it. Posteriorly, the crest of the ilium ends nents. important because it to form the posterior superior iliac spine can affect the spine and (PSIS). With respect to surface anatomy, Postural alignment of the bones and joints pelvis proximally and the PSIS is often marked as a dimple in the of the hip plays a role in determining the femur and patella skin. Clinicians attempting to identify pelvic functional gait patterns and forces associ- distally. The biomechan- or hip subluxations, leg-length discrepancies, ated with various supporting structures. ics of this joint are often or postural faults during examinations use There is a relationship between the hip misunderstood, and the these landmarks.
    [Show full text]
  • Intramuscular Neural Distribution of the Sartorius Muscles: Treating Spasticity with Botulinum Neurotoxin
    Intramuscular Neural Distribution of the Sartorius Muscles: Treating Spasticity With Botulinum Neurotoxin Kyu-Ho Yi Yonsei University Ji-Hyun Lee Yonsei University Kyle Seo Modelo Clinic Hee-Jin Kim ( [email protected] ) Yonsei University Research Article Keywords: botulinum neurotoxin, spasticity, sartorius muscle, Sihler’s staining Posted Date: January 6th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-129928/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/14 Abstract This study aimed to detect the idyllic locations for botulinum neurotoxin injection by analyzing the intramuscular neural distributions of the sartorius muscles. A altered Sihler’s staining was conducted on sartorius muscles (15 specimens). The nerve entry points and intramuscular arborization areas were measured as a percentage of the total distance from the most prominent point of the anterior superior iliac spine (0%) to the medial femoral epicondyle (100%). Intramuscular neural distribution were densely detected at 20–40% and 60–80% for the sartorius muscles. The result suggests that the treatment of sartorius muscle spasticity requires botulinum neurotoxin injections in particular locations. These locations, corresponding to the locations of maximum arborization, are suggested as the most safest and effective points for botulinum neurotoxin injection. Introduction Spasticity is a main contributor to functional loss in patients with impaired central nervous system, such as in stroke, cerebral palsy, multiple sclerosis, traumatic brain injury, spinal cord injury, and others 1. Sartorius muscle, as a hip and knee exor, is one of the commonly involved muscles, and long-lasting spasticity of the muscle results in abnormalities secondary to muscle hyperactivity, affecting lower levels of functions, such as impairment of gait.
    [Show full text]
  • Evaluation and Treatment of Selected Sacral Somatic Dysfunctions
    Evaluation and Treatment of Selected Sacral Somatic Dysfunctions Using Direct and HVLA Techniques including Counterstrain and Muscle Energy AND Counterstrain Treatment of the Pelvis and Sacrum F. P. Wedel, D.O. Associate Adjunct Professor in Osteopathic Principles and Practice A.T. Still University School of Osteopathic Medicine in Arizona, and private practice in Family Medicine in Tucson, Arizona Learning Objectives HOURS 1 AND 2 Review the following diagnostic and treatment techniques related to sacral torsion Lumbosacral spring test Sacral palpation Seated flexion test HOURS 3 AND 4 Counterstrain treatments of various low back pathologies Sacral Techniques Covered : 1. Prone, direct, muscle energy, for sacral rotation on both same and opposite axes 2. HVLA treatment for sacral rotation on both same and opposite axes 3. Counterstain treatment of sacral tender points and of sacral torsion Counterstrain Multifidi and Rotatores : UP5L Gluteii – maximus: HFO-SI, HI, P 3L- P 4L ,medius, minimus Piriformis Background and Basis The 4 Osteopathic Tenets (Principles) 1. The body is a unit; the person is a unit of body, mind, and spirit. 2. Structure and function are reciprocally inter-related. 3. The body is capable of self- regulation, self-healing, and health maintenance. 4. Rational treatment is based upon an understanding of these basic principles. Somatic Dysfunction - Defined • “Impaired or altered function of related components of the somatic (body framework) system: • Skeletal, arthrodial, and myofascial structures, • And… • Related vascular, lymphatic, and neural elements” Treatment Options for Somatic Dysfunctions All somatic dysfunctions have a restrictive barrier which are considered “pathologic” This restriction inhibits movement in one direction which causes asymmetry within the joint: The goal of osteopathic treament is to eliminate the restrictive barrier thus restoring symmetry….
    [Show full text]
  • Surgical Approaches to Fractures of the Acetabulum and Pelvis Joel M
    Surgical Approaches to Fractures of the Acetabulum and Pelvis Joel M. Matta, M.D. Sponsored by Mizuho OSI APPROACHES TO THE The table will also stably position the ACETABULUM limb in a number of different positions. No one surgical approach is applicable for all acetabulum fractures. KOCHER-LANGENBECK After examination of the plain films as well as the CT scan the surgeon should APPROACH be knowledgeable of the precise anatomy of the fracture he or she is The Kocher-Langenbeck approach is dealing with. A surgical approach will primarily an approach to the posterior be selected with the expectation that column of the Acetabulum. There is the entire reduction and fixation can excellent exposure of the be performed through the surgical retroacetabular surface from the approach. A precise knowledge of the ischial tuberosity to the inferior portion capabilities of each surgical approach of the iliac wing. The quadrilateral is also necessary. In order to maximize surface is accessible by palpation the capabilities of each surgical through the greater or lesser sciatic approach it is advantageous to operate notch. A less effective though often the patient on the PROfx® Pelvic very useful approach to the anterior Reconstruction Orthopedic Fracture column is available by manipulation Table which can apply traction in a through the greater sciatic notch or by distal and/or lateral direction during intra-articular manipulation through the operation. the Acetabulum (Figure 1). Figure 2. Fractures operated through the Kocher-Langenbeck approach. Figure 3. Positioning of the patient on the PROfx® surgical table for operations through the Kocher-Lagenbeck approach.
    [Show full text]
  • Repair of Rectus Femoris Rupture with LARS Ligament
    BMJ Case Reports: first published as 10.1136/bcr.06.2011.4359 on 20 March 2012. Downloaded from Novel treatment (new drug/intervention; established drug/procedure in new situation) Repair of rectus femoris rupture with LARS ligament Clare Taylor, Rathan Yarlagadda, Jonathan Keenan Trauma and Orthopaedics Department, Derriford Hospital, Plymouth, UK Correspondence to Miss Clare Taylor, [email protected] Summary The rectus femoris muscle is the most frequently involved quadriceps muscle in strain pathologies. The majority of quadriceps muscle belly injuries can be successfully treated conservatively and even signifi cant tears in the less active and older population, non-operative management is a reasonable option. The authors report the delayed presentation of a 17-year-old male who sustained an injury to his rectus femoris muscle belly while playing football. This young patient did not recover the functional outcome required to get back to running and participating in sport despite 15 months of physiotherapy and non-operative management. Operative treatment using the ligament augmentation and reconstruction system ligament to augment Kessler repair allowed immediate full passive fl exion of the knee and an early graduated physiotherapy programme. Our patient was able to return to running and his previous level of sport without any restrictions. BACKGROUND confi rmed a tear (at least grade 2) in the proximal musculo- The rectus femoris muscle is the most frequently involved tendinous junction of the rectus femoris. The patient had quadriceps muscle in strain pathologies,1 2 principally pain and weakness in the thigh and had been unable to because of its two joint function and high percentage of return to any sport.
    [Show full text]
  • 11/1 Welcome to Our Unit on the Organs of Action
    LEGS & ARMS UNIT MODULE 1 1 Welcome to Beyond Trigger Point Seminars Legs and Arms Unit Module 1 on the Quadriceps, Adductors & Hamstrings. In this unit we will be exploring myofascial pain syndromes (MPS) of the upper and lower extremities. Like the heart to the circulation system, the legs and arms are our body’s organs of action. Because a majority of our pain clients are presenting with problems in the low back and neck regions, therapists, I’ve noticed, are often focused on only treating these regions. In this unit, you will become more familiar with the many common pain diagnoses of the legs and arms frequently unrecognized as originating from trigger points (TrPs). We will consider the holding patterns down below which are affecting the alignment up above. We may be treating condition specific, but we will also be looking at the entire structure as well. Specifically, by the end of your online studies, you will have a greater understanding of tennis and golfer’s elbow, carpel tunnel syndrome, heal spurs, plantar fasciitis, shin splints, and runner’s and jumper’s knees to innumerate just a few diagnoses we will encounter. Before we get started, let’s do a little housekeeping. If you haven’t already listened to the free introductory lecture, it is available at www.AskCathyCohen.com. Though I try reviewing one or two basic concepts of myofascial pain syndromes with each module, by listening to the intro lecture and filling in its study guide, you’ll maximize your learning. What also helps is setting aside four 60 to 90 minute slots in your appointment book to complete this unit.
    [Show full text]