Evaluation and Treatment of Selected Sacral Somatic Dysfunctions

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation and Treatment of Selected Sacral Somatic Dysfunctions Evaluation and Treatment of Selected Sacral Somatic Dysfunctions Using Direct and HVLA Techniques including Counterstrain and Muscle Energy AND Counterstrain Treatment of the Pelvis and Sacrum F. P. Wedel, D.O. Associate Adjunct Professor in Osteopathic Principles and Practice A.T. Still University School of Osteopathic Medicine in Arizona, and private practice in Family Medicine in Tucson, Arizona Learning Objectives HOURS 1 AND 2 Review the following diagnostic and treatment techniques related to sacral torsion Lumbosacral spring test Sacral palpation Seated flexion test HOURS 3 AND 4 Counterstrain treatments of various low back pathologies Sacral Techniques Covered : 1. Prone, direct, muscle energy, for sacral rotation on both same and opposite axes 2. HVLA treatment for sacral rotation on both same and opposite axes 3. Counterstain treatment of sacral tender points and of sacral torsion Counterstrain Multifidi and Rotatores : UP5L Gluteii – maximus: HFO-SI, HI, P 3L- P 4L ,medius, minimus Piriformis Background and Basis The 4 Osteopathic Tenets (Principles) 1. The body is a unit; the person is a unit of body, mind, and spirit. 2. Structure and function are reciprocally inter-related. 3. The body is capable of self- regulation, self-healing, and health maintenance. 4. Rational treatment is based upon an understanding of these basic principles. Somatic Dysfunction - Defined • “Impaired or altered function of related components of the somatic (body framework) system: • Skeletal, arthrodial, and myofascial structures, • And… • Related vascular, lymphatic, and neural elements” Treatment Options for Somatic Dysfunctions All somatic dysfunctions have a restrictive barrier which are considered “pathologic” This restriction inhibits movement in one direction which causes asymmetry within the joint: The goal of osteopathic treament is to eliminate the restrictive barrier thus restoring symmetry…. Somatic Dysfunction: CHARACTERISTICS “The acronym TART is used to remember the abnormal changes that accompany somatic dysfunction. (Tenderness by itself is not always an indication of somatic dysfunction): •Tissue texture changes •Asymmetry •Restricted range of motion •Tenderness Kimberly Manual, chapter 3 Treatment Methodologies Indirect – movement away from the barrier and more functional than structural Cranial-sacral Counterstrain Balanced ligamentous tension (BLT) Facilitated Positional Release Direct – engagement of the restrictive barrier and movement through it and to it by using the body part as a lever Muscle Energy and MFR HVLA Chapman’s and Lymphatics SACRAL STRUCTURE,LIGAMENTS AND MUSCLES THE SACRUM Means “sacred” because of its density it is the last bone to decay and because it protects the reproductive system Forces on the sacrum Angle of the sacroiliac joint “wedges” the sacrum in an anterior direction Prevents posterior movement Dorsal (posterior) sacroiliac ligaments much stronger than anterior sacroiliac ligaments Purpose: counteract significant pelvic forces pushing apex posteriorly. Major Pelvic Ligaments Iliolumbar from ilia to 5 th lumbar vertebrae Sacrospinous Sacrum to spine of the ischium Sacrotuberous Sacrum to ischial tuberosity Sacroiliac Ligament Covers much of the sacroiliac joint, ant & post Iliolumbar ligaments Stabilizes the 5th (4th) Lumbar vertebrae to the ilia Sacrotuberous Sacrospinous ligament ligament Iliolumbar lig Sacrospinous Sacrotuberous Ligament Runs from lower sacral tubercles to ischial tuberosity Gluteus maximus attachment Tendon of the biceps femoris attachment Connects with fascia of the pelvis from sacrum to ischial tuberosity stabilizes anterior motion Both Sacrospinous & Sacrotuberous stabilize to prevent posterior - superior rotation of the sacral apex around a transverse axis Sacroiliac Ligament Sacroiliac actually three ligaments Anterior or ventral sacroiliac from 3rd sacral segment to lateral preauricular sulcus interosseous sacroiliac massive bond between the upper parts of the joint dorsal sacroiliac Partly covers the interosseous, from lateral sacral crest to PSIS and internal iliac crest. Ventral/Anterior Sacroiliac interosseous Posterior sacroiliac Pelvic muscle attachments from above. Attach to Sacrum Erector Spinae Iliocostalis Longissimus Spinalis Multifidus Attach to Innominates Obliques (internal, external, transverse) Quadratus Lumborum Posterior Muscles Erector Spinae (sacrospinalis and iliocostalis) SACRAL ANATOMICAL AXES Transverse axis Superior : the cranial&primary respiratory mechanism creates motion around this axis Middle : sacral base anterior and posterior (FB/BB) occur around this axis Inferior : the innominates rotate around this axis SACRAL MOTION Respiratory motion: inhalation sacral base moves posteriorly (counter-nutates) Respiratory exhalation: sacral base moves anteriorly (nutates) Inherent (craniosacral)motion: ***Craniosacral flexion-base rotates posteriorly (counter- nutates) Craniosacral extension-base rotates anteriorly (nutates) SACRAL PHYSIOLOGIC AXES • Oblique : both left and right oblique axes are named for the superior pole • Sagittal : includes both mid-sagittal and an infinite number of parasagittal axes • Horizontal : functional axis of sacral flexion/extension occur around this axis (analogous to the middle transverse axis above) (footnote on functional anatomy) Why are the Oblique Axes so significant? They are the Axes of Walking . The walking cycle as it applies to our discussion 1. From a standing ( neutral ) position, when you take a step forward, your weight is shifted onto one lower extremity. 2. This induces spinal column SB to the weight bearing side, and pins the upper pole of the sacrum on the side of the SB. 3. As the free lower extremity swings forward, it carries the free pole of the sacrum anterior, creating rotation of the sacrum about the Oblique Axis, towards the weight bearing extremity. Ex.: RL on LOA RR on ROA Bottom Line: You form Oblique Axes with every step you take! The other aspect of the walking cycle is the movement of the torso. 1. From a standing ( neutra l) position, as you step forward, note how your body compensates. What does your torso do? 2. Answer: Rotates towards the moving lower extremity (ie.: away from the weight bearing lower extremity). Bottom Line: Your spine (most notably Lumbar spine) rotates in the opposite direction of the sacrum in a neutral moving situation. TESTS To make a Sacral Diagnosis you will need to know the following: Static (Pure) Landmarks Sacral base - Ant/ Post ILA -Ant/Post ASIS & PSIS -Sup./Inf. Pubes -Sup./Inf & Ant./Post Mixed Landmarks Sacral Sulcus - Deep/Shallow STL -Tight/ Loose/ Equal Motion Testing Spring test L5 Sacrum •Record Positive Right, Positive Left, or Negative Test Spring Test 1. Find sacral base 2. Place heel of hand over Lumbosacral junction 3. Spring in an Anterior motion 4. Results: a. Positive test = If there is NO springing allowed = Non-neutral condition (AKA Backward torsion ) b. Negative test = If there is springing allowed = Neutral condition. Prone Landmarks Sacral Base Judge whether the tip of the thumb is more anterior on one side than the tip of the thumb on the other side. Can also bring index fingers over onto sacral base and take measurement on the lateralized side. Record which base is anterior. Sacral Sulcus Depth Palpable groove just medial to PSIS. Space between sacral spines and lateral sacral crest. Place thumbs in inferior border of PSIS. Move ½-1” up and medial to PSIS. Push thumb tips on sacral base. Pads of thumbs are on ilium and tips on sacral base. Measure the depth of each sacral sulcus relative to opposite sulcus? Record even, deep, or shallow, comparing one side to the other. Both sides may be shallow or deep as well. Inferior Lateral Angle 1. Place flat of hand over sacrum near its caudal end and identify the coccyx. 2. Thumbs approximately 1” apart. Place thumbs in gluteal area about 1” caudal and on each side of coccyx. 3. Push thumbs cephalad until pads rest on inferior margin of ILA. Take a reading on the lateralized side: Inferior or superior? Possibly even? 4. Move thumbs approximately 1” cephalad from the inferior margin of the ILAs and place the pads of the thumbs over the posterior surface of the ILAs near the apex of the sacrum. 5. Use moderate equal pressure & judge if one side is more anterior or posterior than the other one or are they equal? Record on the lateralized side. 1. Place thumbs on the inferior margin of ILA. 2. Move thumbs inferiorly and laterally from the ILA bilaterally, palpating for the sacrotuberous ligament. 3. Ligament will be found between the ILA and Sacrotuberous the ischial tuberosity on each side. Ligament 4. Press thumbs anteriorly, superiorly, and 45-50 degrees laterally to check the tension on the sacrotuberous ligaments. 5. Are they equal in tension or is one tighter or looser than the other? Note which side is looser and which is tighter, relative to the other side. L5 Locate L5 transverse processes, bilaterally Place thumbs over L5 transverse processes, bilaterally Note relative positions of L5 transverse processes bilaterally Which is anterior? Which is posterior? What is the preference of motion at L5 for Rotation? Record the Rotation of L5, Right, Left, or No Rotation L5 rotates to the opposite side of sacrum and side bends to same side as the sacral axis motion Motion Tests for Sacral Diagnosis ASIS Compression Test Have the patient lie supine. The patient is then asked
Recommended publications
  • Minimally Invasive Surgical Treatment Using 'Iliac Pillar' Screw for Isolated
    European Journal of Trauma and Emergency Surgery (2019) 45:213–219 https://doi.org/10.1007/s00068-018-1046-0 ORIGINAL ARTICLE Minimally invasive surgical treatment using ‘iliac pillar’ screw for isolated iliac wing fractures in geriatric patients: a new challenge Weon‑Yoo Kim1,2 · Se‑Won Lee1,3 · Ki‑Won Kim1,3 · Soon‑Yong Kwon1,4 · Yeon‑Ho Choi5 Received: 1 May 2018 / Accepted: 29 October 2018 / Published online: 1 November 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Purpose There have been no prior case series of isolated iliac wing fracture (IIWF) due to low-energy trauma in geriatric patients in the literature. The aim of this study was to describe the characteristics of IIWF in geriatric patients, and to pre- sent a case series of IIWF in geriatric patients who underwent our minimally invasive screw fixation technique named ‘iliac pillar screw fixation’. Materials and methods We retrospectively reviewed six geriatric patients over 65 years old who had isolated iliac wing fracture treated with minimally invasive screw fixation technique between January 2006 and April 2016. Results Six geriatric patients received iliac pillar screw fixation for acute IIWFs. The incidence of IIWFs was approximately 3.5% of geriatric patients with any pelvic bone fractures. The main fracture line exists in common; it extends from a point between the anterosuperior iliac spine and the anteroinferior iliac spine to a point located at the dorsal 1/3 of the iliac crest whether fracture was comminuted or not. Regarding the Koval walking ability, patients who underwent iliac pillar screw fixation technique tended to regain their pre-injury walking including one patient in a previously bedridden state.
    [Show full text]
  • Copyrighted Material
    C01 10/31/2017 11:23:53 Page 1 1 1 The Normal Anatomy of the Neck David Bainbridge Introduction component’ of the neck is a common site of pathology, and the diverse forms of neck The neck is a common derived characteristic disease reflect the sometimes complex and of land vertebrates, not shared by their aquatic conflicting regional variations and functional ancestors. In fish, the thoracic fin girdle, the constraints so evident in this region [2]. precursor of the scapula, coracoid and clavi- Unlike the abdomen and thorax, there is no cle, is frequently fused to the caudal aspect of coelomic cavity in the neck, yet its ventral part the skull. In contrast, as vertebrates emerged is taken up by a relatively small ‘visceral on to the dry land, the forelimb separated from compartment’, containing the larynx, trachea, the head and the intervening vertebrae speci- oesophagus and many important vessels, alised to form a relatively mobile region – the nerves and endocrine glands. However, I neck – to allow the head to be freely steered in will not review these structures, as they do many directions. not represent an extension of the equine ‘back’ With the exception of the tail, the neck in the same way that the more dorsal locomo- remains the most mobile region of the spinal tor region does. column in modern-day horses. It permits a wide range of sagittal plane flexion and exten- sion to allow alternating periods of grazing Cervical Vertebrae 3–7 and predator surveillance, as well as frontal plane flexion to allow the horizon to be scan- Almost all mammals, including the horse, ned, and rotational movement to allow possess seven cervical vertebrae, C1 to C7 nuisance insects to be flicked off.
    [Show full text]
  • Pelvic Anatomyanatomy
    PelvicPelvic AnatomyAnatomy RobertRobert E.E. Gutman,Gutman, MDMD ObjectivesObjectives UnderstandUnderstand pelvicpelvic anatomyanatomy Organs and structures of the female pelvis Vascular Supply Neurologic supply Pelvic and retroperitoneal contents and spaces Bony structures Connective tissue (fascia, ligaments) Pelvic floor and abdominal musculature DescribeDescribe functionalfunctional anatomyanatomy andand relevantrelevant pathophysiologypathophysiology Pelvic support Urinary continence Fecal continence AbdominalAbdominal WallWall RectusRectus FasciaFascia LayersLayers WhatWhat areare thethe layerslayers ofof thethe rectusrectus fasciafascia AboveAbove thethe arcuatearcuate line?line? BelowBelow thethe arcuatearcuate line?line? MedianMedial umbilicalumbilical fold Lateralligaments umbilical & folds folds BonyBony AnatomyAnatomy andand LigamentsLigaments BonyBony PelvisPelvis TheThe bonybony pelvispelvis isis comprisedcomprised ofof 22 innominateinnominate bones,bones, thethe sacrum,sacrum, andand thethe coccyx.coccyx. WhatWhat 33 piecespieces fusefuse toto makemake thethe InnominateInnominate bone?bone? PubisPubis IschiumIschium IliumIlium ClinicalClinical PelvimetryPelvimetry WhichWhich measurementsmeasurements thatthat cancan bebe mademade onon exam?exam? InletInlet DiagonalDiagonal ConjugateConjugate MidplaneMidplane InterspinousInterspinous diameterdiameter OutletOutlet TransverseTransverse diameterdiameter ((intertuberousintertuberous)) andand APAP diameterdiameter ((symphysissymphysis toto coccyx)coccyx)
    [Show full text]
  • Applied Anatomy of the Hip RICARDO A
    Applied Anatomy of the Hip RICARDO A. FERNANDEZ, MHS, PT, OCS, CSCS • Northwestern University The hip joint is more than just a ball-and- bones fuse in adults to form the easily recog- socket joint. It supports the weight of the nized “hip” bone. The pelvis, meaning bowl head, arms, and trunk, and it is the primary in Latin, is composed of three structures: the joint that distributes the forces between the innominates, the sacrum, and the coccyx pelvis and lower extremities.1 This joint is (Figure 1). formed from the articu- The ilium has a large flare, or iliac crest, Key PointsPoints lation of the proximal superiorly, with the easily palpable anterior femur with the innomi- superior iliac spine (ASIS) anterior with the The hip joint is structurally composed of nate at the acetabulum. anterior inferior iliac spine (AIIS) just inferior strong ligamentous and capsular compo- The joint is considered to it. Posteriorly, the crest of the ilium ends nents. important because it to form the posterior superior iliac spine can affect the spine and (PSIS). With respect to surface anatomy, Postural alignment of the bones and joints pelvis proximally and the PSIS is often marked as a dimple in the of the hip plays a role in determining the femur and patella skin. Clinicians attempting to identify pelvic functional gait patterns and forces associ- distally. The biomechan- or hip subluxations, leg-length discrepancies, ated with various supporting structures. ics of this joint are often or postural faults during examinations use There is a relationship between the hip misunderstood, and the these landmarks.
    [Show full text]
  • Surgical Management of Pelvic Ewing's Sarcoma in Children and Adolescents
    ONCOLOGY LETTERS 14: 3917-3926, 2017 Surgical management of pelvic Ewing's sarcoma in children and adolescents HONGBIN FAN, ZHENG GUO, JUN FU, XIANGDONG LI, JING LI and ZHEN WANG Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China Received June 16, 2016; Accepted March 9, 2017 DOI: 10.3892/ol.2017.6677 Abstract. The present study describes a novel surgical strategy of life, with the median age at diagnosis ranging from 13 to used to treat immature pelvic Ewing's sarcoma (ES), one made 19 years (3). Pelvic ES accounted for 19.9% of cases in the possible owing to the intrinsic structure of the skeletally imma- Mayo Clinic series (4) and 21% in the chapter written by ture pelvis. A total of 12 children and adolescents with open Ginsberg et al (5), who discussed the principles and practice triradiate cartilage received limb-salvage surgeries following of ES. The numerous advances made in diagnostic imaging a diagnosis of pelvic ES. In total, 3 patients with iliac lesions and multimodality therapy over the past few decades mean (2 lesions with extension into the sacrum) received surgical that the overall 5-year survival rate of ES has increased from tumor excisions and allograft reconstructions. Another 10% in the 1970s (6) to 55-75% at the turn of the century (7). 8 patients with periacetabular lesions received trans-acetabular Studies have demonstrated that 5-year survival is improved osteotomies and allograft reconstructions. No reconstruction in patients treated with surgical resection and chemotherapy was performed on 1 patient following excision of a pubic lesion.
    [Show full text]
  • The Influence of the Rib Cage on the Static and Dynamic Stability
    www.nature.com/scientificreports OPEN The infuence of the rib cage on the static and dynamic stability responses of the scoliotic spine Shaowei Jia1,2, Liying Lin3, Hufei Yang2, Jie Fan2, Shunxin Zhang2 & Li Han3* The thoracic cage plays an important role in maintaining the stability of the thoracolumbar spine. In this study, the infuence of a rib cage on static and dynamic responses in normal and scoliotic spines was investigated. Four spinal fnite element (FE) models (T1–S), representing a normal spine with rib cage (N1), normal spine without rib cage (N2), a scoliotic spine with rib cage (S1) and a scoliotic spine without rib cage (S2), were established based on computed tomography (CT) images, and static, modal, and steady-state analyses were conducted. In S2, the Von Mises stress (VMS) was clearly decreased compared to S1 for four bending loadings. N2 and N1 showed a similar VMS to each other, and there was a signifcant increase in axial compression in N2 and S2 compared to N1 and S1, respectively. The U magnitude values of N2 and S2 were higher than in N1 and S1 for fve loadings, respectively. The resonant frequencies of N2 and S2 were lower than those in N1 and S1, respectively. In steady-state analysis, maximum amplitudes of vibration for N2 and S2 were signifcantly larger than N1 and S1, respectively. This study has revealed that the rib cage improves spinal stability in vibrating environments and contributes to stability in scoliotic spines under static and dynamic loadings. Scoliosis, a three-dimensional deformity, prevents healthy development.
    [Show full text]
  • Lab #23 Anal Triangle
    THE BONY PELVIS AND ANAL TRIANGLE (Grant's Dissector [16th Ed.] pp. 141-145) TODAY’S GOALS: 1. Identify relevant bony features/landmarks on skeletal materials or pelvic models. 2. Identify the sacrotuberous and sacrospinous ligaments. 3. Describe the organization and divisions of the perineum into two triangles: anal triangle and urogenital triangle 4. Dissect the ischiorectal (ischioanal) fossa and define its boundaries. 5. Identify the inferior rectal nerve and artery, the pudendal (Alcock’s) canal and the external anal sphincter. DISSECTION NOTES: The perineum is the diamond-shaped area between the upper thighs and below the inferior pelvic aperture and pelvic diaphragm. It is divided anatomically into 2 triangles: the anal triangle and the urogenital (UG) triangle (Dissector p. 142, Fig. 5.2). The anal triangle is bounded by the tip of the coccyx, sacrotuberous ligaments, and a line connecting the right and left ischial tuberosities. It contains the anal canal, which pierced the levator ani muscle portion of the pelvic diaphragm. The urogenital triangle is bounded by the ischiopubic rami to the inferior surface of the pubic symphysis and a line connecting the right and left ischial tuberosities. This triangular space contains the urogenital (UG) diaphragm that transmits the urethra (in male) and urethra and vagina (in female). A. Anal Triangle Turn the cadaver into the prone position. Make skin incisions as on page 144, Fig. 5.4 of the Dissector. Reflect skin and superficial fascia of the gluteal region in one flap to expose the large gluteus maximus muscle. This muscle has proximal attachments to the posteromedial surface of the ilium, posterior surfaces of the sacrum and coccyx, and the sacrotuberous ligament.
    [Show full text]
  • Approach to the Anterior Pelvis (Enneking Type III Resection) Bruno Fuchs, MD Phd & Franklin H.Sim, MD Indication 1
    Approach to the Anterior Pelvis (Enneking Type III Resection) Bruno Fuchs, MD PhD & Franklin H.Sim, MD Indication 1. Tumors of the pubis 2. part of internal and external hemipelvectomy 3. pelvic fractures Technique 1. Positioning: Type III resections involve the excision of a portion of the symphysis or the whole pubis from the pubic symphysis to the lateral margin of the obturator foramen. The best position for these patients is the lithotomy or supine position. The patient is widely prepared and draped in the lithotomy position with the affected leg free to allow manipulation during the procedure. This allows the hip to be flexed, adducted, and externally rotated to facilitate exposure. 2. Landmarks: One should palpate the ASIS, the symphysis with the pubic tubercles, and the ischial tuberosity. 3. Incision: The incision may be Pfannenstiel like with vertical limbs set laterally along the horizontal incision depending on whether the pubic bones on both sides are resected or not. Alternatively, if only one side is resected, a curved incision following the root of the thigh may be used. This incision begins below the inguinal ligament along the medial border of the femoral triangle and extends across the medial thigh a centimeter distal to the inguinal crease and perineum, to curve distally below the ischium several centimeters (Fig.1). 4. Full thickness flaps are raised so that the anterior inferior pubic ramus is shown in its entire length, from the pubic tubercle to the ischial spine. Laterally, the adductor muscles are visualized, cranially the pectineus muscle and the pubic tubercle with the insertion of the inguinal ligament (Fig.2).
    [Show full text]
  • Biomechanics of the Thoracic Spine - Development of a Method to Measure the Influence of the Rib Cage on Thoracic Spine Movement
    Universität Ulm Zentrum für Chirurgie Institut für Unfallchirurgische Forschung und Biomechanik Direktor: Prof. Dr. A. Ignatius Biomechanics of the Thoracic Spine - Development of a Method to Measure the Influence of the Rib Cage on Thoracic Spine Movement Dissertation zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Universität Ulm vorgelegt von: Konrad Appelt geboren in: Pforzheim 2012 Amtierender Dekan: Prof. Dr. Thomas Wirth 1. Berichterstatter: Prof. Dr. H.-J. Wilke 2. Berichterstatter: Prof. Dr. Tobias Böckers Tag der Promotion: 06.06.2013 Index List of abbreviations ......................................................................................IV 1 Introduction .............................................................................................. 1 1.1 Background ............................................................................................................. 1 1.2 State of Research .................................................................................................... 4 1.3 Objectives ............................................................................................................... 6 2 Material and methods .............................................................................. 7 2.1 Testing machines and devices ................................................................................. 7 2.1.1 Spine loading simulator ................................................................................... 7 2.1.2 Vicon – MX Motion Capture System
    [Show full text]
  • Alt Ekstremite Eklemleri
    The Lower Limb Sevda LAFCI FAHRİOĞLU, MD.PhD. The Lower Limb • The bones of the lower limb form the inferior part of the appendicular skeleton • the organ of locomotion • for bearing the weight of body – stronger and heavier than the upper limb • for maintaining equilibrium The Lower Limb • 4 parts: – The pelvic girdle (coxae) – The thigh – The leg (crus) – The foot (pes) The Lower Limb • The pelvic girdle: • formed by the hip bones (innominate bones-ossa coxae) • Connection: the skeleton of the lower limb to the vertebral column The Lower Limb • The thigh • the femur • connecting the hip and knee The Lower Limb • The leg • the tibia and fibula • connecting the knee and ankle The Lower Limb • The foot – distal part of the ankle – the tarsal bones, metatarsal bones, phalanges The Lower Limb • 4 parts: – The pelvic girdle – The thigh – The leg – The foot The pelvic girdle Hip • the area from the iliac crest to the thigh • the region between the iliac crest and the head of the femur • formed by the innominate bones-ossa coxae The hip bone os coxae • large and irregular shaped • consists of three bones in childhood: – ilium – ischium •fuse at 15-17 years •joined in adult – pubis The hip bone 1.The ilium • forms the superior 2/3 of the hip bone • has ala (wing), is fan-shaped • its body representing the handle • iliac crest: superior margin of ilium The hip bone the ilium • iliac crest – internal lip (labium internum) – external lips (labium externum) The hip bone the ilium • iliac crest end posteriorly “posterior superior iliac spine” at the level of the fourth lumbar vertebra bilat.* • iliac crest end anteriorly “anterior superior iliac spine – easily felt – visible if you are not fatty • *: it is important for lumbar puncture The hip bone the ilium • Tubercle of the crest is located 5cm posterior to the anterior superior iliac spine • ant.
    [Show full text]
  • Curvature of the Greater Sciatic Notch in Sexing the Human Pelvis HIDEO TAKAHASHI1*
    ANTHROPOLOGICAL SCIENCE Vol. 000, 000–000, 2006 Curvature of the greater sciatic notch in sexing the human pelvis HIDEO TAKAHASHI1* 1Department of Anatomy, Dokkyo University School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotuga-gun, Tochigi, 321-0293 Japan Received 11 November 2005; accepted 26 January 2006 Abstract The maximum curvature of the greater sciatic notch and two standardized indices were cal- culated for use in the sexing of human hip bones. This was done by means of quadratic regression of the contour points of the greater sciatic notch. The new variables are not directly affected by the osteo- metric landmarks (e.g. ischial spine, tubercle of the piriformis, and posterior inferior iliac spine) which determine the greatest width of the notch. These landmarks are, however, known to be ill-defined on occasion, but nevertheless have been used to derive the conventional depth-to-width index and angles of the sciatic notch. The curvature parameter and its new indices were applied to the sciatic notch of 164 Japanese hip bones of known sex (104 males and 61 females). The accuracy of the new variables in the determination of sex was assessed and compared with that of the conventional indices and angles of the sciatic notch. The best discriminating variable was found to be the posterior angle with an accu- racy of 91%. The new parameters of the present study that represent localized shape of the sharply curved edge of the notch diagnosed sex with an accuracy of 88%. In paleoanthropological or forensic cases, using the maximum curvature of the sciatic notch and its indices may be applicable to sexing the hip bones of specimens with postmortem damage.
    [Show full text]
  • Lab Manual Axial Skeleton Atla
    1 PRE-LAB EXERCISES When studying the skeletal system, the bones are often sorted into two broad categories: the axial skeleton and the appendicular skeleton. This lab focuses on the axial skeleton, which consists of the bones that form the axis of the body. The axial skeleton includes bones in the skull, vertebrae, and thoracic cage, as well as the auditory ossicles and hyoid bone. In addition to learning about all the bones of the axial skeleton, it is also important to identify some significant bone markings. Bone markings can have many shapes, including holes, round or sharp projections, and shallow or deep valleys, among others. These markings on the bones serve many purposes, including forming attachments to other bones or muscles and allowing passage of a blood vessel or nerve. It is helpful to understand the meanings of some of the more common bone marking terms. Before we get started, look up the definitions of these common bone marking terms: Canal: Condyle: Facet: Fissure: Foramen: (see Module 10.18 Foramina of Skull) Fossa: Margin: Process: Throughout this exercise, you will notice bold terms. This is meant to focus your attention on these important words. Make sure you pay attention to any bold words and know how to explain their definitions and/or where they are located. Use the following modules to guide your exploration of the axial skeleton. As you explore these bones in Visible Body’s app, also locate the bones and bone markings on any available charts, models, or specimens. You may also find it helpful to palpate bones on yourself or make drawings of the bones with the bone markings labeled.
    [Show full text]