Recommendation of the Best Site Based on the Distribution Pattern of Extramuscular and Intramusular Nerves for Gluteal Muscle Injection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hip Extensor Mechanics and the Evolution of Walking and Climbing Capabilities in Humans, Apes, and Fossil Hominins
Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins Elaine E. Kozmaa,b,1, Nicole M. Webba,b,c, William E. H. Harcourt-Smitha,b,c,d, David A. Raichlene, Kristiaan D’Aoûtf,g, Mary H. Brownh, Emma M. Finestonea,b, Stephen R. Rossh, Peter Aertsg, and Herman Pontzera,b,i,j,1 aGraduate Center, City University of New York, New York, NY 10016; bNew York Consortium in Evolutionary Primatology, New York, NY 10024; cDepartment of Anthropology, Lehman College, New York, NY 10468; dDivision of Paleontology, American Museum of Natural History, New York, NY 10024; eSchool of Anthropology, University of Arizona, Tucson, AZ 85721; fInstitute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom; gDepartment of Biology, University of Antwerp, 2610 Antwerp, Belgium; hLester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614; iDepartment of Anthropology, Hunter College, New York, NY 10065; and jDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708 Edited by Carol V. Ward, University of Missouri-Columbia, Columbia, MO, and accepted by Editorial Board Member C. O. Lovejoy March 1, 2018 (received for review September 10, 2017) The evolutionary emergence of humans’ remarkably economical their effects on climbing performance or tested whether these walking gait remains a focus of research and debate, but experi- traits constrain walking and running performance. mentally validated approaches linking locomotor -
Gluteal Region-II
Gluteal Region-II Dr Garima Sehgal Associate Professor King George’s Medical University UP, Lucknow Structures in the Gluteal region • Bones & joints • Ligaments Thickest muscle • Muscles • Vessels • Nerves Thickest nerve • Bursae Learning Objectives By the end of this teaching session Gluteal region –II all the MBBS 1st year students must be able to: • Enumerate the nerves of gluteal region • Write a short note on nerves of gluteal region • Describe the location & relations of sciatic nerve in gluteal region • Enumerate the arteries of gluteal region • Write a short note on arteries of gluteal region • Enumerate the arteries taking part in trochanteric and cruciate anastomosis • Write a short note on trochanteric and cruciate anastomosis • Enumerate the structures passing through greater sciatic foramen • Enumerate the structures passing through lesser sciatic foramen • Enumerate the bursae in relation to gluteus maximus • Enumerate the structures deep to gluteus maximus • Discuss applied anatomy Nerves of Gluteal region (all nerves in gluteal region are branches of sacral plexus) Superior gluteal nerve (L4,L5, S1) Inferior gluteal nerve (L5, S1, S2) FROM DORSAL DIVISIONS Perforating cutaneous nerve (S2,S3) Nerve to quadratus femoris (L4,L5, S1) Nerve to obturator internus (L5, S1, S2) FROM VENTRAL DIVISIONS Pudendal nerve (S2,S3,S4) Sciatic nerve (L4,L5,S1,S2,S3) Posterior cutaneous nerve of thigh FROM BOTH DORSAL &VENTRAL (S1,S2) & (S2,S3) DIVISIONS 1. Superior Gluteal nerve (L4,L5,S1- dorsal division) 1 • Enters through the greater 3 sciatic foramen • Above piriformis 2 • Runs forwards between gluteus medius & gluteus minimus • SUPPLIES: 1. Gluteus medius 2. Gluteus minimus 3. Tensor fasciae latae 2. -
Rehabilitation of Soft Tissue Injuries of the Hip and Pelvis T
Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2014 Rehabilitation of soft tissue injuries of the hip and pelvis T. F. Tyler Northwell Health T. Fukunaga Hofstra Northwell School of Medicine J. Gellert Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Recommended Citation Tyler TF, Fukunaga T, Gellert J. Rehabilitation of soft tissue injuries of the hip and pelvis. 2014 Jan 01; 9(6):Article 1396 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/1396. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. INVITED CLINICAL COMMENTARY REHABILITATION OF SOFT TISSUE INJURIES OF THE HIP AND PELVIS Timothy F. Tyler MS, PT, ATC1 Takumi Fukunaga DPT, ATC, CSCS1 Joshua Gellert DPT IJSPT ABSTRACT Soft tissue injuries of the hip and pelvis are common among athletes and can result in significant time loss from sports participation. Rehabilitation of athletes with injuries such as adductor strain, iliopsoas syn- drome, and gluteal tendinopathy starts with identification of known risk factors for injury and comprehen- sive evaluation of the entire kinetic chain. Complex anatomy and overlapping pathologies often make it difficult to determine the primary cause of the pain and dysfunction. The purpose of this clinical commen- tary is to present an impairment-based, stepwise progression in evaluation and treatment of several com- mon soft tissue injuries of the hip and pelvis. -
All About Glutes 1 Table of Contents
All About Glutes 1 Table of Contents Are You Training Your Glutes the Wrong Way? 3 • Anatomy of the Glutes 4 • Functions of the Glutes at the Hip 4 • The Shortcoming of Most Training Programs 5 • Progression and Preventing Knee Valgus 6 • Simple Solution 6 How to Identify and Correct Tight Hip Flexors 8 • What Exactly Are Tight Hip Flexors? 9 • The Hip Flexor Muscle Group 9 • Signs You Have Tight Hip Flexors 10 • What Causes Hip Tightness 10 • Stretches to Loosen up Tight Hip Flexors 10 • Exercises to Strengthen Hip Flexors 11 Pain in the Buttocks When Sitting? Tips to Prevent and Manage 12 Piriformis Syndrome • What is Piriformis Syndrome? 13 • How Does Piriformis Syndrome Happen? 13 • Special Considerations with Clients 14 • Prevention and Pain Management 14 How Do I Build the Perfect Glutes? 16 • Can’t I Just Squat and Lunge? 17 • Your Best Bets to Target the Glutes 18 • Don’t Forget the Legs 18 • Train the Glutes SPECIFICALLY 19 TABLE OF CONTENTS 800.545.4772 WWW.ISSAONLINE.EDU 2 Are You Training Your Glutes the Wrong Way? 800.545.4772 WWW.ISSAONLINE.EDU 3 UNIT ONE These days, the glutes get a lot of attention, and it’s well deserved. When you build and strengthen your glutes in the right way, they not only make your body look better, but they also increase your performance and can diminish knee pain. The problem is most people aren’t taking the best approach to training for the highest level of glute development. Anatomy of the Glutes Let’s start with a little anatomy. -
Importance of Iliopsoas and Erector Spinae Muscles in Predicting The
International Journal of Physiotherapy and Research, Int J Physiother Res 2014, Vol 2(5):681-88. ISSN 2321-1822 Original Article IMPORTANCE OF ILIOPSOAS AND ERECTOR SPINAE MUSCLES IN PREDICTING THE FUNCTIONAL COMPETENCE OF TRANSFEMORAL AMPUTEES Lajja K Rishi 1, Suraj Kumar *2, Sangeeta Lahiri 3, V.P. Sharma 4. 1 Master of Physiotherapy (student), National Institute for the Orthopaedically Handicapped, Kolkata, West Bengal, India. *2 HOD and Associate Professor, Department of Physiotherapy, UPRIMS&R, Saifai, Etawah, UP, India. 3 Physical Therapist (cardio-respiratory disorders & intensive care), India. 4 Professor, KGM Medical University, Lucknow, India. ABSTRACT Purpose: Muscle imbalance in transfemoral amputees impair physical mobility and activities of daily living. Aim of this study was to correlate the muscle imbalance with functional competence in transfemoral amputees. Methods: Thirty amputees were evaluated under inclusion criteria and randomly allocated into 2 groups. Group A received stretching(1 week) followed by strengthening(3 weeks) and in group B strengthening(3 weeks) were followed by stretching(1 week) . Phase I includes values after 1 week stretching program in group A and 3 weeks strengthening program in group B. Data were recorded at baseline, after phase I completion and end of treatment. Physical mobility was assessed by “Timed up and go” test. Results: Muscle imbalance and physical mobility improved significantly in both groups at the end of treatment. The correlation values of “Timed up and go” test with Iliopsoas and Erector spinae muscle showed significant improvement in both groups. Conclusion: Baseline measurements showed that Iliopsoas and Erector spinae muscles were tight whereas Gluteus maximus and Abdominal muscles were weak in transfemoral amputees. -
Effects of a Gluteal Muscles Specific Exercise Program on the Vertical
International Journal of Environmental Research and Public Health Article Effects of a Gluteal Muscles Specific Exercise Program on the Vertical Jump Tomás Gallego-Izquierdo 1, Gerardo Vidal-Aragón 2, Pedro Calderón-Corrales 2, Álvaro Acuña 2, Alexander Achalandabaso-Ochoa 3,* , Agustín Aibar-Almazán 3 , Antonio Martínez-Amat 3 and Daniel Pecos-Martín 1 1 Physiotherapy and Pain Group, Department of Physical Therapy, University of Alcala, 28801 Madrid, Spain; [email protected] (T.G.-I.); [email protected] (D.P.-M.) 2 Physical Therapist, Department of Physical Therapy, University of Alcala, 28801 Madrid, Spain; [email protected] (G.V.-A.); pedrocalderon.fi[email protected] (P.C.-C.); [email protected] (Á.A.) 3 Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain.; [email protected] (A.A.-A.); [email protected] (A.M.-A.) * Correspondence: [email protected]; Tel.: +34-953213651 Received: 9 June 2020; Accepted: 23 July 2020; Published: 27 July 2020 Abstract: The vertical jump is a complex movement where many factors are involved in the final result. Currently, how a specific exercise program for gluteal muscles can affect the vertical jump is unknown. So, the aim of this study was to examine the effect of a specific exercise program for the gluteal muscles on a vertical jump. Forty-nine amateur athletes completed an 8-week program. The experimental group received a specific gluteal muscle training program in addition to their regular training routine, whereas the control group received their regular training routine. Jump height, flight time, speed and power were assessed (baseline, postintervention, and 4-week follow-up). -
Download PDF File
Folia Morphol. Vol. 79, No. 1, pp. 1–14 DOI: 10.5603/FM.a2019.0047 R E V I E W A R T I C L E Copyright © 2020 Via Medica ISSN 0015–5659 journals.viamedica.pl Should Terminologia Anatomica be revised and extended? A critical literature review P.P. Chmielewski1, B. Strzelec2, 3 1Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland 2Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland 3Department and Clinic of Gastrointestinal and General Surgery, Wroclaw Medical University, Wroclaw, Poland [Received: 14 November 2018; Accepted: 31 December 2018] The first edition of the Terminologia Anatomica was published in 1998 by the Federative Committee for Anatomical Terminology, whereas the second edition was issued in 2011 by the Federative International Programme for Anatomical Terminologies. Since then many attempts have been made to revise and extend the official terminology as several inconsistencies have been noted. Moreover, numerous crucial terms were either omitted or deliberately excluded from the official terminology, like sulcus popliteus and diaphragma urogenitale, respec- tively. Furthermore, several synonyms are to be discarded. Notwithstanding the criticism, the use of the current version of terminology is strongly recommended. Although the Terminologia Anatomica is open to future expansion and revision, every change should be made after a thorough discussion of the historical context and scientific legitimacy of a given term. The anatomical nomenclature must be as simple as possible but also precise and coherent. It is generally accepted that hasty innovation ought not to be endorsed. -
Prezentacja Programu Powerpoint
Department of Human Anatomy. Medical University of Białystok Beata Klim Gluteal region It lies posterior to the pelvis between the level of the iliac crests and the inferior borders of the gluteus maximus muscles. The intergluteal (natal) cleft separates the buttocks from each other. The gluteal sulcus demarcates the inferior boundary of the buttock and the superior boundary of the thigh. Gluteal region The gluteal muscles (maximus, medius and minimus) form the bulk of the buttock. Pelvic girdle- muscles The anterior compartment: Psoas major Psoas minor Iliacus They are called - Iliopsoas Iliopsoas Proximal attachments: Psoas major- sides of T12-L5 vertebrae & discs between them; transverse processes of all lumbar vertebrae Psoas minor- sides of T12-L1 & intervertebral disc Iliacus- iliac crest, iliac fossa, ala of sacrum & anterior sacroiliac ligaments Iliopsoas Distal attachments: Psoas major- lesser trochanter of femur Psoas minor- pectineal line, iliopectineal eminence via iliopectineal arch Iliacus- tendon of psoas major, lesser trochanter, and femur distal to it Iliopsoas Innervation: Psoas major- ventral rami of lumbar nerves L1, L2, L3 Psoas minor- ventral rami of lumbar nerves L1, L2 Iliacus- femoral nerve L2, L3 Iliopsoas Main action: It is the chief flexor of the thigh, and when the thigh is fixed, it flexes the trunk on the hip. It is also a postural muscle that is active during standing by preventing hyperextension of the hip joint. The gluteal muscles The gluteal muscles consist of: Three large glutei (maximus, medius & minimus), which are mainly extensors and abductors of the thigh. A deeper group of smaller muscles (piriformis, obturator internus, obturator externus, gemelli and quadratus femoris), which are covered by the inferior part of the gluteus maximus. -
ACE's Essentials of Exercise Science for Fitness Professionals
ACE’s Essentials of Exercise Science for Fitness Professionals Chapter 3: Fundamentals of Applied Kinesiology Hip Flexors . There are 21 major muscles involved in the actions of the hip joint. – Actions of the hip joint include flexion, extension, internal rotation, external rotation, adduction, and abduction. – More than half of these muscles are involved in multiple actions. Anterior Hip Muscles: Hip Flexors . Active range of motion for hip flexion . Prime movers: iliopsoas, rectus femoris, sartorius, pectineus, and tensor fasciae latae – Act synergistically to cause hip flexion (e.g., “up” phase of a knee lift) – Act eccentrically to control hip extension (e.g., “down” phase of a knee lift) Hip Flexors: Considerations . Muscle origins and insertions impact muscular function. Iliopsoas – The psoas major and Sample Sample stretching exercise: minor originate in the strengthening low back and insert to the exercise: proximal femur, leading to poor mechanical leverage when used to raise and lower a straight leg. – The abdominals are not strong enough to balance the large force and keep the spine in neutral alignment. Hip Flexors: Considerations . Rectus femoris – Works at both the knee and hip, concentrically contracting to perform hip flexion and knee extension. – Sample strengthening exercise: standing straight-leg raise – Sample stretching exercise: iliopsoas lunge, bending the back knee . The sartorius is the longest muscle in the body. – It is also involved in hip abduction, adduction, and external rotation, and knee flexion and internal rotation. Tensor fascia latae (TFL) – IT band – Explosive hip flexion results in a highly developed TFL. Hip Internal and External Rotators . The hip internal rotators include the tensor fasciae latae, semitendinosus (slight), and semimembranosus (slight). -
Sacroiliac Joint Dysfunction and Piriformis Syndrome
Classic vs. Functional Movement Approach in Physical Therapy Setting Crista Jacobe-Mann, PT Nevada Physical Therapy UNR Sports Medicine Center Reno, NV 775-784-1999 [email protected] Lumbar Spine Intervertebral joints Facet joints Sacroiliac joint Anterior ligaments Posterior ligaments Pelvis Pubic symphysis Obturator foramen Greater sciatic foramen Sacrospinous ligament Lesser sciatic foramen Sacrotuberous ligament Hip Capsule Labrum Lumbar spine: flexion and extension ~30 total degrees of rotation L1-L5 Facet joints aligned in vertical/saggital plane SI joints 2-5 mm in all directions, passive movement, not caused by muscle activation Shock absorption/accepting load with initial contact during walking Hip Joints Extension 0-15 degrees 15% SI joint pain noted in chronic LBP patients Innervation: L2-S3 Classic signs and symptoms Lower back pain generally not above L5 transverse process Pain can radiate down posterior thigh to posterior knee joint, glutes, sacrum, iliac crest sciatic distribution Pain with static standing, bending forward, donning shoes/socks, crossing leg, rising from chair, rolling in bed Relief with continuous change in position Trochanteric Bursitis Piriformis Syndrome Myofascial Pain Lumbosacral Disc Herniation and Bulge Lumbosacral Facet Syndrome J. Travell suspects Si joint pain may causes piriformis guarding and lead to Piriformis syndrome… Tenderness to palpation of PSIS, lower erector spinae, quadratus lumborum and gluteal muscles Sometimes positive SLR Limited hip mobility -
Plastic Surgery and Modern Techniques Abulezz T
Plastic Surgery and Modern Techniques Abulezz T. Plast Surg Mod Tech 6: 147. Review Article DOI: 10.29011/2577-1701.100047 A Review of Recent Advances in Aesthetic Gluteoplasty and Buttock Contouring Tarek Abulezz* Department of plastic surgery, Faculty of Medicine, Sohag University, Sohag, Egypt *Corresponding author: Tarek Abulezz, Department of plastic surgery, Faculty of Medicine, Sohag University, Sohag, Egypt. Tel: +20-1003674340; Email: [email protected] Citation: Abulezz T (2019) A Review of Recent Advances in Aesthetic Gluteoplasty and Buttock Contouring. Plast Surg Mod Tech 6: 147. DOI: 10.29011/2577-1701.100047 Received Date: 20 June, 2019; Accepted Date: 03 July, 2019; Published Date: 11 July, 2019 Introduction Infragluteal fold: a horizontal crease arising from the median gluteal crease and runs laterally under the ischial tuberosity with a A well-developed buttock is a peculiar trait of the human, slight upward concavity. and not seen in the other primates [1]. The buttock is an extremely important area in woman’s sexuality and is considered a cornerstone Supragluteal fossettes: two hollows located on either side of the of female beauty. Although the concept of female beauty has medial sacral crest. They are formed by the posterior superior iliac changed over time, there are two constant items of femininity: spine and medially by the multifidus muscle. the breasts and the buttocks [2,3]. However, the parameters of V-shaped crease: two lines arising in the upper portion of the beautiful buttocks have varied according to time, culture, and gluteal crease toward the supragluteal fossettes. ethnicity [4,5]. Increasing number of patients are asking for esthetic improvement of their buttock profile or for correction of a Lumbar hyperlordosis is an additional feature that may deformity or irregularity. -
The Absence of Piriformis Muscle, Combined Muscular Fusion, and Neurovascular Variation in the Gluteal Region
Autopsy Case Report The absence of piriformis muscle, combined muscular fusion, and neurovascular variation in the gluteal region Matheus Coelho Leal1 , João Gabriel Alexander1 , Eduardo Henrique Beber1 , Josemberg da Silva Baptista1 How to cite: Leal MC, Alexander JG, Beber EH, Baptista JS. The absence of piriformis muscle, combined muscular fusion, and neuro-vascular variation in the gluteal region. Autops Case Rep [Internet]. 2021;11:e2020239. https://doi.org/10.4322/ acr.2020.239 ABSTRACT The gluteal region contains important neurovascular and muscular structures with diverse clinical and surgical implications. This paper aims to describe and discuss the clinical importance of a unique variation involving not only the piriformis, gluteus medius, gluteus minimus, obturator internus, and superior gemellus muscles, but also the superior gluteal neurovascular bundle, and sciatic nerve. A routine dissection of a right hemipelvis and its gluteal region of a male cadaver fixed in 10% formalin was performed. During dissection, it was observed a rare presentation of the absence of the piriformis muscle, associated with a tendon fusion between gluteus and obturator internus, and a fusion between gluteus minimus and superior gemellus muscles, along with an unusual topography with the sciatic nerve, which passed through these group of fused muscles. This rare variation stands out with clinical manifestations that are not fully established. Knowing this anatomy is essential to avoid surgical iatrogeny. Keywords Anatomic Variation; Anatomy; Buttocks; Muscle; Piriformis Muscle Syndrome. INTRODUCTION The gluteal region contains important Over the years, these variations have been neurovascular and muscular structures that may classified and distributed into different groups. impose diverse clinical and surgical approaches.