Readingsample
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gluteal Region-II
Gluteal Region-II Dr Garima Sehgal Associate Professor King George’s Medical University UP, Lucknow Structures in the Gluteal region • Bones & joints • Ligaments Thickest muscle • Muscles • Vessels • Nerves Thickest nerve • Bursae Learning Objectives By the end of this teaching session Gluteal region –II all the MBBS 1st year students must be able to: • Enumerate the nerves of gluteal region • Write a short note on nerves of gluteal region • Describe the location & relations of sciatic nerve in gluteal region • Enumerate the arteries of gluteal region • Write a short note on arteries of gluteal region • Enumerate the arteries taking part in trochanteric and cruciate anastomosis • Write a short note on trochanteric and cruciate anastomosis • Enumerate the structures passing through greater sciatic foramen • Enumerate the structures passing through lesser sciatic foramen • Enumerate the bursae in relation to gluteus maximus • Enumerate the structures deep to gluteus maximus • Discuss applied anatomy Nerves of Gluteal region (all nerves in gluteal region are branches of sacral plexus) Superior gluteal nerve (L4,L5, S1) Inferior gluteal nerve (L5, S1, S2) FROM DORSAL DIVISIONS Perforating cutaneous nerve (S2,S3) Nerve to quadratus femoris (L4,L5, S1) Nerve to obturator internus (L5, S1, S2) FROM VENTRAL DIVISIONS Pudendal nerve (S2,S3,S4) Sciatic nerve (L4,L5,S1,S2,S3) Posterior cutaneous nerve of thigh FROM BOTH DORSAL &VENTRAL (S1,S2) & (S2,S3) DIVISIONS 1. Superior Gluteal nerve (L4,L5,S1- dorsal division) 1 • Enters through the greater 3 sciatic foramen • Above piriformis 2 • Runs forwards between gluteus medius & gluteus minimus • SUPPLIES: 1. Gluteus medius 2. Gluteus minimus 3. Tensor fasciae latae 2. -
Anatomical Study of the Superior Cluneal Nerve and Its Estimation of Prevalence As a Cause of Lower Back Pain in a South African Population
Anatomical study of the superior cluneal nerve and its estimation of prevalence as a cause of lower back pain in a South African population by Leigh-Anne Loubser (10150804) Dissertation to be submitted in full fulfilment of the requirements for the degree Master of Science in Anatomy In the Faculty of Health Science University of Pretoria Supervisor: Prof AN Van Schoor1 Co-supervisor: Dr RP Raath2 1 Department of Anatomy, University of Pretoria 2 Netcare Jakaranda Hospital, Pretoria 2017 DECLARATION OF ORIGINALITY UNIVERSITY OF PRETORIA The Department of Anatomy places great emphasis upon integrity and ethical conduct in the preparation of all written work submitted for academic evaluation. While academic staff teach you about referencing techniques and how to avoid plagiarism, you too have a responsibility in this regard. If you are at any stage uncertain as to what is required, you should speak to your lecturer before any written work is submitted. You are guilty of plagiarism if you copy something from another author’s work (e.g. a book, an article, or a website) without acknowledging the source and pass it off as your own. In effect, you are stealing something that belongs to someone else. This is not only the case when you copy work word-for-word (verbatim), but also when you submit someone else’s work in a slightly altered form (paraphrase) or use a line of argument without acknowledging it. You are not allowed to use work previously produced by another student. You are also not allowed to let anybody copy your work with the intention of passing if off as his/her work. -
The Neuroanatomy of Female Pelvic Pain
Chapter 2 The Neuroanatomy of Female Pelvic Pain Frank H. Willard and Mark D. Schuenke Introduction The female pelvis is innervated through primary afferent fi bers that course in nerves related to both the somatic and autonomic nervous systems. The somatic pelvis includes the bony pelvis, its ligaments, and its surrounding skeletal muscle of the urogenital and anal triangles, whereas the visceral pelvis includes the endopelvic fascial lining of the levator ani and the organ systems that it surrounds such as the rectum, reproductive organs, and urinary bladder. Uncovering the origin of pelvic pain patterns created by the convergence of these two separate primary afferent fi ber systems – somatic and visceral – on common neuronal circuitry in the sacral and thoracolumbar spinal cord can be a very dif fi cult process. Diagnosing these blended somatovisceral pelvic pain patterns in the female is further complicated by the strong descending signals from the cerebrum and brainstem to the dorsal horn neurons that can signi fi cantly modulate the perception of pain. These descending systems are themselves signi fi cantly in fl uenced by both the physiological (such as hormonal) and psychological (such as emotional) states of the individual further distorting the intensity, quality, and localization of pain from the pelvis. The interpretation of pelvic pain patterns requires a sound knowledge of the innervation of somatic and visceral pelvic structures coupled with an understand- ing of the interactions occurring in the dorsal horn of the lower spinal cord as well as in the brainstem and forebrain. This review will examine the somatic and vis- ceral innervation of the major structures and organ systems in and around the female pelvis. -
Sacroiliac Joint Dysfunction and Piriformis Syndrome
Classic vs. Functional Movement Approach in Physical Therapy Setting Crista Jacobe-Mann, PT Nevada Physical Therapy UNR Sports Medicine Center Reno, NV 775-784-1999 [email protected] Lumbar Spine Intervertebral joints Facet joints Sacroiliac joint Anterior ligaments Posterior ligaments Pelvis Pubic symphysis Obturator foramen Greater sciatic foramen Sacrospinous ligament Lesser sciatic foramen Sacrotuberous ligament Hip Capsule Labrum Lumbar spine: flexion and extension ~30 total degrees of rotation L1-L5 Facet joints aligned in vertical/saggital plane SI joints 2-5 mm in all directions, passive movement, not caused by muscle activation Shock absorption/accepting load with initial contact during walking Hip Joints Extension 0-15 degrees 15% SI joint pain noted in chronic LBP patients Innervation: L2-S3 Classic signs and symptoms Lower back pain generally not above L5 transverse process Pain can radiate down posterior thigh to posterior knee joint, glutes, sacrum, iliac crest sciatic distribution Pain with static standing, bending forward, donning shoes/socks, crossing leg, rising from chair, rolling in bed Relief with continuous change in position Trochanteric Bursitis Piriformis Syndrome Myofascial Pain Lumbosacral Disc Herniation and Bulge Lumbosacral Facet Syndrome J. Travell suspects Si joint pain may causes piriformis guarding and lead to Piriformis syndrome… Tenderness to palpation of PSIS, lower erector spinae, quadratus lumborum and gluteal muscles Sometimes positive SLR Limited hip mobility -
SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej -
Gluteal Region and Back of Thigh Doctors Notes Notes/Extra Explanation Editing File Objectives
Color Code Important Gluteal Region and Back of Thigh Doctors Notes Notes/Extra explanation Editing File Objectives Know contents of gluteal region: Groups of Glutei muscles and small muscles (Lateral Rotators). Nerves & vessels. Foramina and structures passing through them as: 1-Greater Sciatic Foramen. 2-Lesser Sciatic Foramen. Back of thigh : Hamstring muscles. Movements of the lower limb Hip = Thigh Knee=Leg Foot=Ankle Flexion/Extension Flexion/Extension Flexion/Extension Rotation Adduction/Abduction Inversion/Eversion Contents Of Gluteal Region: Muscles / Nerves / Vessels 1- Muscles: • Glutei: 1. Gluteus maximus. 2. Gluteus medius. 3. Gluteus minimus. Abductors: • Group of small muscles (Lateral Rotators): 1. Gluteus medius. 2. Gluteus minimus. 1.Piriformis. Rotators: 2.Obturator internus 1. Obturator internus. 3.Superior gemellus 2. Quadratus femoris. 4.Inferior gemellus Extensor: 5.Quadratus femoris Gluteus maximus. Contents Of Gluteal Region: Muscles / Nerves / Vessels 2- Nerves (All from Sacral Plexus): 1. Sciatic nerve. 2. Superior gluteal nerve. 3. Inferior gluteal nerve. 4. Post. cutaneous nerve of thigh. 5. Nerve to obturator internus. 6. Nerve to quadratus femoris. 7. Pudendal nerve. Contents Of Gluteal Region: Muscles / Nerves / Vessels 3- VESSELS: (all from internal iliac vessels): 1. Superior gluteal 2. Inferior gluteal 3. Internal pudendal vessels. Greater sciatic foreamen: Greater sciatic notch of hip bone is transformed into foramen by: sacrotuberous (between the sacrum to ischial tuberosity) & sacrospinous (between the sacrum to ischial spine ) Structures passing through Greater sciatic foramen : Nerves: Vessels: Greater sciatic foramen Above 1. Superior gluteal nerves, 2. Superior gluteal piriformis vessels. Lesser sciatic foramen muscle. 3. Piriformis muscle. Belew 4. Inferior gluteal nerves 10. -
Intercostal, Ilioinguinal, and Iliohypogastric Nerve Transfers for Lower Limb Reinnervation After Spinal Cord Injury: an Anatomical Feasibility and Experimental Study
LABORATORY INVESTIGATION J Neurosurg Spine 30:268–278, 2019 Intercostal, ilioinguinal, and iliohypogastric nerve transfers for lower limb reinnervation after spinal cord injury: an anatomical feasibility and experimental study *Ahmed A. Toreih, MD,1 Asser A. Sallam, MD, PhD,1 Cherif M. Ibrahim, MD,2 Ahmed I. Maaty, MD,3 and Mohsen M. Hassan4 Departments of 1Orthopedic Surgery and Trauma and 3Physical Medicine, Rheumatology, and Rehabilitation, Suez Canal University Hospitals; 2Department of Anatomy, Suez Canal University; and 4Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt OBJECTIVE Spinal cord injury (SCI) has been investigated in various animal studies. One promising therapeutic ap- proach involves the transfer of peripheral nerves originating above the level of injury into those originating below the level of injury. The purpose of the present study was to evaluate the feasibility of nerve transfers for reinnervation of lower limbs in patients suffering SCI to restore some hip and knee functions, enabling them to independently stand or even step forward with assistive devices and thus improve their quality of life. METHODS The feasibility of transferring intercostal to gluteal nerves and the ilioinguinal and iliohypogastric nerves to femoral nerves was assessed in 5 cadavers. Then, lumbar cord hemitransection was performed below L1 in 20 dogs, followed by transfer of the 10th, 11th, and 12th intercostal and subcostal nerves to gluteal nerves and the ilioinguinal and iliohypogastric nerves to the femoral nerve in only 10 dogs (NT group). At 6 months, clinical and electrophysiological evaluations of the recipient nerves and their motor targets were performed. -
Appleton & Lange Review of Anatomy
0523-00 FM 07/15/02 15:30 Page i Sixth edition APPLETON & LANGE REVIEW OF ANATOMY Royce Lee Montgomery, PhD Professor Department of Cell and Developmental Biology School of Medicine University of North Carolina Chapel Hill, North Carolina Kurt Ogden Gilliland, PhD Department of Cell and Developmental Biology School of Medicine University of North Carolina Chapel Hill, North Carolina Appleton & Lange Reviews/McGraw-Hill Medical Publishing Division New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto 0523-00 FM 07/15/02 15:30 Page ii Appleton & Lange Review of Anatomy, Sixth Edition Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. Previous editions copyright © 1995, 1989, by Appleton & Lange; copyright © 1982, 1978, 1974, by Arco Publishing, Inc. 1 2 3 4 5 6 7 8 9 0 VNH VNH 0 9 8 7 6 5 4 3 2 ISBN: 0-07-137727-1 Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the stan- dards accepted at the time of publication. -
Gluteal Region and Back of the Thigh Anatomy Team 434
Gluteal Region and Back of the Thigh Anatomy Team 434 Color Index: If you have any complaint or ▪ Important Points suggestion please don’t ▪ Helping notes hesitate to contact us on: [email protected] ▪ Explanation OBJECTIVES ● Contents of gluteal region: ● Groups of Glutei muscles and small muscles (Lateral Rotators). ● Nerves & vessels. ● Foramina and structures passing through them as: 1-Greater Sciatic Foramen. 2-Lesser Sciatic Foramen. ● Back of thigh : Hamstring muscles. CONTENTS OF GLUTEAL REGION Muscles 1- Gluteui muscles (3): • Gluteus maximus. (extensor) • Gluteus minimus. (abductor) • Gluteus medius. (abductor) 2- Group of small muscles (lateral rotators) (5): from superior to inferior: • Piriformis. • Superior gemellus. • Obturator internus. • Inferior gemellus. • Quadratus femoris. CONTENTS OF GLUTEAL REGION (CONT.) Nerves (all from SACRAL PLEXUS): • Sciatic N. • Superior gluteal N. • Inferior gluteal N. • Posterior cutaneous N. of thigh. • N. to obturator internus. • N. to quadratus Vessels femoris. (all from INTERNAL ILIAC • Pudendal N. VESSELS): 1. Superior gluteal 2. Inferior gluteal 3. Internal pudendal vessels. Sciatic nerve is the largest nerve in the body. Greater sciatic foramen Structures passing through Greater foramen: Greater & lesser sciatic notch of -hippiriformis bone are muscle. transformed into foramen by sacrotuberous & Abovesacrospinous piriformis ligaments. M.: -superior gluteal nerve & vessels. Below piriformis M.: -inferior gluteal nerves & vessels. -sciatic N. -nerve to quadratus femoris. -posterior cutaneous nerve of thigh. -internal pudendal vessels Found in the -nerve to obturator internus. lesser sciatic foramen -pudendal N. Lesser sciatic foramen Structures passing through Lesser sciatic foramen: -internal pudendal vessels -nerve to obturator internus. -pudendal N. -tendon of obturator internus. Glutei Muscles (origins) Origin of glutei muscles: • gluteus minimus: Anterior part of the gluteal surface of ilium. -
Gluteal Region-I
Gluteal Region-I Dr Garima Sehgal Associate Professor King George’s Medical University UP, Lucknow Intramuscular (IM) gluteal injections are a commonly used method of administering medication within clinical medicine. Learning Objectives By the end of this teaching session on Gluteal region – I all the MBBS 1st year students must be able to: • Enumerate the boundaries of gluteal region • Enumerate the foramina of gluteal region • Describe the cutaneous innervation of gluteal region • Enumerate the structures in the gluteal region (bones, ligaments, muscles, vessels , nerves) • Describe the origin, insertion, nerve supply & actions of gluteal muscles • Name the key muscle of gluteal region • Describe the origin, insertion, nerve supply & actions of short muscles of the gluteal region • Discuss applied anatomy of muscles of gluteal region Gluteal region BOUNDARIES: Superior: Iliac crest S3 Inferior : Gluteal fold (lower limit of rounded buttock) Lateral : Line joining ASIS to front of greater trochanter Medial : natal cleft between buttocks Structures in the Gluteal region • Bones & joints • Ligaments Thickest muscle- • Muscles Gluteus maximus • Vessels • Nerves Thickest nerve Sciatic nerve • Bursae Bones & Joints of the gluteal region • Dorsal surface of sacrum • Coccyx • Gluteal surface of Ilium • Ischium (ischial tuberosity) • Upper end of femur • Posterior aspect of hip joint • Sacrococcygeal & sacroiliac joint Skeletal background features- Gluteal lines on hip bone Skeletal background features- Features on posterior surface of upper -
Anomalous Common Peroneal Nerve Supplying the Gluteus Maximus Muscle with High Division of Sciatic Nerve
CASE REPORT Anatomy Journal of Africa. 2015. Vol 4 (2): 551 - 554 ANOMALOUS COMMON PERONEAL NERVE SUPPLYING THE GLUTEUS MAXIMUS MUSCLE WITH HIGH DIVISION OF SCIATIC NERVE Rajakumari Rajendiran, Murugavel Manivasagam, Sudarshan Anandkumar CORRESPONDING ADDRESS: Rajakumari Rajendiran E1-3, Jerudong Park Country Club Housing, Jerudong Brunei Darussalam. E-mail id: [email protected] ABSTRACT On dissection of a 60-year-old adult male cadaver, a high division of the sciatic nerve was observed on the right side along with an accessory slip of the piriformis. In this case, the common peroneal nerve pierced through and the tibial nerve passed below the accessory slip of the piriformis. Additionally, there was an unusual finding in which the common peroneal nerve was found to innervate the gluteus maximus. This finding is of academic interest and clinical significance as this variation may contribute to clinical conditions such as piriformis syndrome and foot drop with injury to the gluteal region. Keywords: Sciatica, Common peroneal nerve, Gluteus maximus, Inferior gluteal nerve, variations. INTRODUCTION Sciatic nerve, the largest nerve of the body, is The common peroneal nerve divides into the derived from the anterior divisions of L4-S3 superficial and deep peroneal nerve at the neck spinal nerve roots and is nearly 2 cm wide at of the fibula. However, anomalous variations in its origin (Hollinshed, 1958). It divides into two the division pattern of the common peroneal terminal branches, namely the tibial (ventral nerve have been described with divisions divisions of ventral rami L4 to S3) and common occurring in the popliteal fossa before reaching peroneal nerve (dorsal divisions of ventral rami the fibular head (Moore and Dalley, 1999). -
Recommendation of the Best Site Based on the Distribution Pattern of Extramuscular and Intramusular Nerves for Gluteal Muscle Injection
Int. J. Morphol., 38(4):975-982, 2020. Recommendation of the Best Site Based on the Distribution Pattern of Extramuscular and Intramusular Nerves for Gluteal Muscle Injection Recomendación del Mejor Sitio para la Inyección del Músculo Glúteo Basado en el Patrón de Distribución de los Nervios Extramusculares e Intramusculares Junxi Wu1; Yanzhen Cai1; Ai Cao1; Yu Bi1; Xiangnan Hu2 & Shengbo Yang2 WU, J.; CAI, Y.; CAO, A.; BI, Y.; HU, X. & YANG, S. Recommendation of the best site based on the distribution pattern of extramuscular and intramuscular nerves for gluteal muscle injection. Int. J. Morphol., 38(4):975-982, 2020. SUMMARY: To reveal the extra- and intramuscular nerve distribution patterns of the gluteus maximus, medius, and minimus, and to provide guidance for gluteal muscle injection in order to avoid nerve injury. Ten adult and 10 child cadavers were used. The superior and inferior gluteal nerves innervating the gluteus maximus, medius, and minimus were dissected, exposed, and sutured in-situ on the muscle. The three gluteal muscles were removed, and the distribution patterns of the intramuscular nerves were revealed by modified Sihler’s nerve staining. The nerve distribution pattern was returned to the corresponding position in the body, and the patterns in the four quadrants of the buttock were analyzed. There were 3–12 extramuscular nerve branches of the gluteus maximus, medius, and minimus. After entering the muscle, these nerve branches arborized and anastomosed to form an arc-shaped, nerve-dense zone. The nerve distribution was most dense in the inferomedial region of the superolateral quadrant and the inferolateral region of the superomedial quadrant of the buttocks.