Ukranian Medical Stomatological Academy”

Total Page:16

File Type:pdf, Size:1020Kb

Ukranian Medical Stomatological Academy” MINISTRY OF PUBLIC HEALTH OF UKRAINE Higher State Educational Establishment of Ukraine “Ukranian Medical Stomatological Academy” "Approved" at the meeting of the Department of Human Anatomy «29»_08__2017 Minutes №1 Head of the Department Professor O.O. Sherstjuk ________________________ METHODICAL GUIDANCE for students' self-directed work at practical sessions (when preparing for and during the practical session) Academic subject Human Anatomy Module №3 «The heart. Vessels and nerves of the head, the neck, the trunk, extremities» Year of study І-II Faculty foreign students' training faculty, specialty «Medicine» Poltava – 2017 MINISTRY OF PUBLIC HEALTH OF UKRAINE Higher State Educational Establishment of Ukraine “Ukranian Medical Stomatological Academy” Department of Human Anatomy Composed by: N.L. Svinthythka, Associate Professor at the Department of Human Anatomy, PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy, PhD in Medicine, Associate Professor A.V. Pilugin, Associate Professor at the Department of Human Anatomy, PhD in Medicine, Associate Professor A.L. Katsenko, Lecturer at the Department of Human Anatomy Schedule of classes for students of foreign students' training faculty, specialty “Medicine” on module №3 "Heart. The vessels and nerves of the head, neck, trunk and extremities " № Topic hours 1 Anatomy of the heart: external structure, the cardiac chambers, wall 2 structure of the heart. 2 Anatomy of the heart: vessels and nerves of the heart, the conducting 2 system of the heart. 3 Circles of blood circulation. The pericardium. Topography of the heart. 2 4 The aorta. The branches of aortic arch. The common carotid artery. 2 The internal carotid artery. 5 The external carotid artery. 2 6 The subclavian artery. The axillary artery. 2 7 Blood supply of the brain and spinal cord. Anastomoses. Clinical 2 aspects. 8 Arteries of upper extremity. 2 9 Thoracic aorta. Parietal and paired visceral branches of abdominal 2 aorta. 10 Unpaired visceral branches of abdominal aorta. 2 11 Iliac arteries. Arteries of the thigh. 2 12 Arteries of lower extremity. 2 13 General characteristic of venous system. System of vena cava 2 superior. Veins of head and neck. 14 System of vena cava superior. Veins of upper extremities and chest. 2 15 System of vena cava inferior. Veins of lower extremities, pelvis and 2 abdominal cavity. 16 System of portal vein. Fetal circulation. 2 17 Immune system. Organs of haemopoesis. Central part of the immune 2 system. The red bone marrow. The thymus. 18 Peripheral part of the immune system. The lymph nodes. The spleen. 2 The tonsils. The lymphoid nodules. 19 Lymphatic vessels and nodes of the lower limb, pelvis and abdomen. 2 20 Lymphatic vessels and nodes of the head and neck. 2 21 Submodule on Cardiovascular system and immune system. Situational 2 problems. 22 General characteristics of the peripheral nervous system. The spinal 2 nerves. The posterior rami of the spinal nerves. The anterior rami of the spinal nerves. The cervical plexus. 23 The brachial plexus. 2 24 The intercostal nerves. The lumbar plexus. 2 25 The sacro-coccygeal plexus. 2 26 Cranial nerves. The origination, the general features, the featured 2 nuclei, the point of arise, the escape point, the related branches and the responsibility areas of the oculomotor, trochlear and abducent nerves. 27 The origination, the general features, the featured nuclei, the point of 2 arise, the escape point, the related branches and the responsibility areas of the trigeminal nerve. Nervous pathway of the trigeminal nerve. 28 The facial nerve. The intermediate nerve. The origination, the general 2 features, the featured nuclei, the point of arise, the escape point, the related branches and the responsibility areas. 29 The glossopharyngeal nerve. The related branches and the 2 responsibility areas. 30 The vagus nerve. The origination, the general features, the featured 2 nuclei, the point of arise, the escape point, the related branches and the responsibility areas. 31 The accessory, hypoglossal nerves. The related branches and the 2 responsibility areas. 32 Submodule on peripheral nervous system. The spinal and cranial 2 nerves. Situation problems. 33 Introduction in vegetative nervous system. Sympathetic part of 2 autonomic nervous system. 34 Parasympathetic part of autonomic nervous system. 2 35 Autonomic innervation of organs. Autonomic ganglions of head and 2 neck, pelvis, abdomen. 36 Synthetic classes: vascularization and innervation of the chest cavity, 2 abdominal cavity and the pelvic cavity. 37 Vascularization and innervation of organs of head and neck. 38 Synthetic classes: vascularization and innervation of the limbs. 2 39 Practical skills from the training material module 3 «Heart. Vessels 2 and nerves of the head, neck, chest cavity and extremities». 40 Case-control material of the module 1 «Anatomy of the locomotor 2 apparatus». Step 1. Practical skills. 41 Case-control material of the module 2 «Splanchnology. Central 2 nervous system and sense organs». Step 1. Practical skills. 42 Final semester certification (exam). 2 Topic 1. Anatomy of the heart: external structure, the cardiac chambers, wall structure of the heart. 1. Relevance of the topic. The heart is a hollow contractile muscular organ that lies within the pericardium in the mediastinum in the thorax. The heart is responsible for pumping blood through the pulmonary and systemic circulations. 2. The specific aims. 2.1.To have general knowledge of the topic studied; 2.2. To understand, to remember and to use the knowledge received; 2.3. To form the professional experience by reviewing, training and authorizing it; 2.4. To be able to find and show studying structures on visual aids. 3. Basic knowledge and skills necessary for study the topic (interdisciplinary integration) The preceding The acquired knowledge subjects Biology What are the main vessels of the systemic and pulmonary circulations Histology Structure of tissues which form the walls of the heart Cardiology Find the auscultatory points for the heart valves. What are the components of the components of the conducting system of heart 4. Tasks for students' individual work. 4.1. The list of basic terms, parameters, characteristics which the student should master while preparing for the class: Cor (Greek. cardia) Heart Ventriculus cordis dexter/sinister Ventricle right / left Auricula dextra, sinistrа Right / left auricle Anulus fibrosus dexter/sinister Right / left fibrous rings M. papillaris Papillary muscle Trabeculae carneae Trabeculae carneae 4.2. Theoretical questions for the class: 1. Surfaces and borders of the heart. 2. Structure of the walls of the heart. 3. Chambers of the heart, structure of the right atrium. 4. Structure of the left atrium. 5. Structure of the right ventricle. 6. Structure of the left ventricle. 7. Structure of interventricular septum. 4.3. Practical task pertaining to the topic and to be completed during the class: on the preparations, tables, models to study the external structure of the heart, its shape, position, heart chambers, structure of the heart, heart valves, heart wall structure. Content of the topic. The heart, slightly larger than a clenched fist, is a double self-adjusting muscular pump, the parts of which work in unison to propel blood to the body. The right side of the heart receives poorly oxygenated blood from the body through the superior vena cava (SVC) and inferior vena cava (IVC) and pumps it through the pulmonary trunk to the lungs for oxygenation. The left side of the heart receives well-oxygenated blood from the lungs through the pulmonary veins and pumps it into the aorta for distribution to the body. The heart has four chambers: right and left atria and right and left ventricles. The atria are receiving chambers that pump blood into the ventricles—the discharging chambers. The synchronous pumping actions of the heart's two atrioventricular (AV) pumps (right and left chambers) constitute the cardiac cycle. The cycle begins with a period of ventricular relaxation (diastole) and ends with a period of ventricular contraction (systole). Two heart sounds—resulting from valve closures—can be heard with a stethoscope: a "lub" sound as the atria transfer blood to the ventricles and a "dub" sound as the ventricles contract and propel blood from the heart. The heart sounds are produced by the snapping shut of the one-way valves that normally keep blood from flowing backward during contractions of the heart. The wall of each chamber of the heart consists of three layers from superficial to deep: • Epicardium, a thin external layer (mesothelium) formed by the visceral layer of serous pericardium. • Myocardium, a thick middle layer composed of cardiac muscle. • Endocardium, a thin internal layer (endothelium and subendothelial connective tissue) or lining membrane of the heart that also covers its valves. When the ventricles contract, they produce a wringing motion because of the spiral orientation of the cardiac muscle fibers in the myocardium. This motion propels the blood from the heart. The muscle fibers are anchored to the fibrous skeleton of the heart. The fibrous framework of dense collagen forms four fibrous rings, which surround the orifices of the valves, right and left fibrous trigones, formed by connecting the rings, and the membranous parts of the interatrial and interventric- ular septa. The fibrous skeleton of the heart: • Keeps the orifices of the atrioventricular (AV) and semilunar valves patent and from being overly distended by the volume of blood pumping through them. • Provides attachments (origin and insertion) for the leaflets and cusps of the valves. • Provides attachment (origin and insertion) for the myocardium. • Forms an electrical "insulator" by separating the myenterically conducted impulses of the atria and ventricles so that they contract independently, and by surrounding and providing passage for the initial part of the AV bundle. The heart and roots of the great vessels within the pericardial sac are related anteriorly to the sternum, costal cartilages, and the medial ends of the 3rd through 5th ribs on the left side.
Recommended publications
  • Netter's Musculoskeletal Flash Cards, 1E
    Netter’s Musculoskeletal Flash Cards Jennifer Hart, PA-C, ATC Mark D. Miller, MD University of Virginia This page intentionally left blank Preface In a world dominated by electronics and gadgetry, learning from fl ash cards remains a reassuringly “tried and true” method of building knowledge. They taught us subtraction and multiplication tables when we were young, and here we use them to navigate the basics of musculoskeletal medicine. Netter illustrations are supplemented with clinical, radiographic, and arthroscopic images to review the most common musculoskeletal diseases. These cards provide the user with a steadfast tool for the very best kind of learning—that which is self directed. “Learning is not attained by chance, it must be sought for with ardor and attended to with diligence.” —Abigail Adams (1744–1818) “It’s that moment of dawning comprehension I live for!” —Calvin (Calvin and Hobbes) Jennifer Hart, PA-C, ATC Mark D. Miller, MD Netter’s Musculoskeletal Flash Cards 1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899 NETTER’S MUSCULOSKELETAL FLASH CARDS ISBN: 978-1-4160-4630-1 Copyright © 2008 by Saunders, an imprint of Elsevier Inc. All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier’s Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or e-mail [email protected].
    [Show full text]
  • Gross Anatomy
    www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY www.BookOfLinks.com Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the infor- mation contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs. www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY David A. Morton, PhD Associate Professor Anatomy Director Department of Neurobiology and Anatomy University of Utah School of Medicine Salt Lake City, Utah K. Bo Foreman, PhD, PT Assistant Professor Anatomy Director University of Utah College of Health Salt Lake City, Utah Kurt H.
    [Show full text]
  • Arteria Carotis Externa ACE External Carotid Artery
    Common carotid artery CCA External Carotid artery ECA Internal carotid artery, ICA Subclavian artery SA and veins Ivo Klepáček ´tooth ache´ Salisbury cathedrale Three vascular systems are finally formed: Intraembryonic (cardinal); aortic sac (later gives rise aortic arches) Vitelline (aa. + vv.) Development of the vascular Placental system (umbilical Day 27 aa. + vv.) 1st – maxillary artery 2nd – hyoid, stapedial aa. 3rd – common carotid a. and first part of the internal carotid a., external carotid a. 4th – part of the subclavian aa. some of intersegmental arteries Common carotid artery Anterolaterally – skin, fascia, sternocleidomastoid muscle, sternohyoid, sternothyroid, superior belly of the omohyoid Posteriorly – transverse process of the C4 vertebrae, prevertebral muscles, sympathetic trunk Medially – wall of the pharynx and larynx, trachea, esophagus, the lobe of the thyroid gland Laterally – the internal jugular vein, vagus nerve (posterolaterally) Fascia pretrachealis a ACC Pretracheal fascia and ACC Sympathetic plexus surrounding arteries comes from sympathetic trunk External carotid artery ECA Anterolaterally – sternocleidomastoid muscle, XII. nerve, within parotid gland is crossed by VII. nerve, fascia, skin Medially – wall of the pharynx, internal carotid artery, stylopharyngeus, pharyngeal branch of the vagus For head without orbit, inner ear and brain Internal jugular Styloid vein lies septum dorsally and laterally from internal carotid artery behind m. m. stylohyoideus and styloglossus External carotid artery lies ventrally
    [Show full text]
  • The Anterior View of the Extraosseous Blood Supply to the Foot and Ankle in a Specimen That Was Injected with Batson's Com- Po
    The Journal of Bone and Joint Surgery (Gilbert) Final 32 Author(s): Paragraph text formatting will be adjusted prior to publication. Fig. E-1 The anterior view of the extraosseous blood supply to the foot and ankle in a specimen that was injected with Batson’s com- pound. 1 = first cuneiform, 2 = second cuneiform, 3 = third cu- neiform, 4 = cuboid, 5 = calcaneus, 6 = fibula, 7 = tibia, 8 = talus, 9 = navicular, A = anterior tibial artery, B = anterior medial malleolar artery, C = anterior lateral malleolar artery, D = dorsa- lis pedis artery, E = proximal lateral tarsal artery, F = proximal medial tarsal artery, G = distal medial tarsal artery, H = distal lateral tarsal artery, I = arcuate artery, J = first dorsal metatar- sal artery, K = artery of the sinus tarsi, L = longitudinal branch to second intermetatarsal space, M = longitudinal branch to third intermetatarsal space, N = longitudinal branch to fourth in- termetatarsal space, and O = transverse pedicle branch. Author: Illustration(s) on this page may have been modified. Please check illustration(s) carefully! TABLE E-1 Extraosseous Vessel Characteristics Artery Artery Present (%) Internal Diameter (mean [range]) (mm) Anterior tibial artery 95 1.828 (1.302 - 2.222) Medial metaphyseal artery 100 0.389 (0.106 - 0.818) Medial malleolar branch 100 0.316 (0.103 - 0.595) Annular branch 100 0.243 (0.122 - 0.464) Recurrent branch 90 0.218 (0.100 - 0.491) Lateral metaphyseal artery 100 0.352 (0.143 - 0.778) Anterior medial malleolar artery 80 0.430 (0.119 - 1.039) Superficial branch 100
    [Show full text]
  • The Anatomy of Th-E Blood Vascular System of the Fox ,Squirrel
    THE ANATOMY OF TH-E BLOOD VASCULAR SYSTEM OF THE FOX ,SQUIRREL. §CIURUS NlGER. .RUFIVENTEB (OEOEEROY) Thai: for the 009m of M. S. MICHIGAN STATE COLLEGE Thomas William Jenkins 1950 THulS' ifliillifllfllilllljllljIi\Ill\ljilllHliLlilHlLHl This is to certifg that the thesis entitled The Anatomy of the Blood Vascular System of the Fox Squirrel. Sciurus niger rufiventer (Geoffroy) presented by Thomas William Jenkins has been accepted towards fulfillment of the requirements for A degree in MEL Major professor Date May 23’ 19500 0-169 q/m Np” THE ANATOMY OF THE BLOOD VASCULAR SYSTEM OF THE FOX SQUIRREL, SCIURUS NIGER RUFIVENTER (GEOFFROY) By THOMAS WILLIAM JENKINS w L-Ooffi A THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology 1950 \ THESlSfi ACKNOWLEDGMENTS Grateful acknowledgment is made to the following persons of the Zoology Department: Dr. R. A. Fennell, under whose guidence this study was completed; Mr. P. A. Caraway, for his invaluable assistance in photography; Dr. D. W. Hayne and Mr. Poff, for their assistance in trapping; Dr. K. A. Stiles and Dr. R. H. Manville, for their helpful suggestions on various occasions; Mrs. Bernadette Henderson (Miss Mac), for her pleasant words of encouragement and advice; Dr. H. R. Hunt, head of the Zoology Department, for approval of the research problem; and Mr. N. J. Mizeres, for critically reading the manuscript. Special thanks is given to my wife for her assistance with the drawings and constant encouragement throughout the many months of work.
    [Show full text]
  • Arteries and Veins) of the Gastrointestinal System (Oesophagus to Anus)
    2021 First Sitting Paper 1 Question 07 2021-1-07 Outline the anatomy of the blood supply (arteries and veins) of the gastrointestinal system (oesophagus to anus) Portal circulatory system + arterial blood flow into liver 1100ml of portal blood + 400ml from hepatic artery = 1500ml (30% CO) Oxygen consumption – 20-35% of total body needs Arterial Supply Abdominal Aorta • It begins at the aortic hiatus of the diaphragm, anterior to the lower border of vertebra T7. • It descends to the level of vertebra L4 it is slightly to the left of midline. • The terminal branches of the abdominal aorta are the two common iliac arteries. Branches of Abdominal Aorta Visceral Branches Parietal Branches Celiac. Inferior Phrenics. Superior Mesenteric. Lumbars Inferior Mesenteric. Middle Sacral. Middle Suprarenals. Renals. Internal Spermatics. Gonadal Anterior Branches of The Abdominal Aorta • Celiac Artery. Superior Mesenteric Artery. Inferior Mesenteric Artery. • The three anterior branches supply the gastrointestinal viscera. Basic Concept • Fore Gut - Coeliac Trunk • Mid Gut - Superior Mesenteric Artery • Hind Gut - Inferior Mesenteric Artery Celiac Trunk • It arises from the abdominal aorta immediately below the aortic hiatus of the diaphragm anterior to the upper part of vertebra LI. • It divides into the: left gastric artery, splenic artery, common hepatic artery. o Left gastric artery o Splenic artery ▪ Short gastric vessels ▪ Lt. gastroepiploic artery o Common hepatic artery ▪ Hepatic artery proper JC 2019 2021 First Sitting Paper 1 Question 07 • Left hepatic artery • Right hepatic artery ▪ Gastroduodenal artery • Rt. Gastroepiploic (gastro-omental) artery • Sup pancreatoduodenal artery • Supraduodenal artery Oesophagus • Cervical oesophagus - branches from inferior thyroid artery • Thoracic oesophagus - branches from bronchial arteries and aorta • Abd.
    [Show full text]
  • Infraclavicular Topography of the Brachial Plexus Fascicles in Different Upper Limb Positions
    Int. J. Morphol., 34(3):1063-1068, 2016. Infraclavicular Topography of the Brachial Plexus Fascicles in Different Upper Limb Positions Topografía Infraclavicular de los Fascículos del Plexo Braquial en Diferentes Posiciones del Miembro Superior Daniel Alves dos Santos*; Amilton Iatecola*; Cesar Adriano Dias Vecina*; Eduardo Jose Caldeira**; Ricardo Noboro Isayama**; Erivelto Luis Chacon**; Marianna Carla Alves**; Evanisi Teresa Palomari***; Maria Jose Salete Viotto**** & Marcelo Rodrigues da Cunha*,** ALVES DOS SANTOS, D.; IATECOLA, A.; DIAS VECINA, C. A.; CALDEIRA, E. J.; NOBORO ISAYAMA, R.; CHACON, E. L.; ALVES, M. C.; PALOMARI, E. T.; SALETE VIOTTO, M. J. & RODRIGUES DA CUNHA, M. Infraclavicular topography of the brachial plexus fascicles in different upper limb positions. Int. J. Morphol., 34 (3):1063-1068, 2016. SUMMARY: Brachial plexus neuropathies are common complaints among patients seen at orthopedic clinics. The causes range from traumatic to occupational factors and symptoms include paresthesia, paresis, and functional disability of the upper limb. Treatment can be surgical or conservative, but detailed knowledge of the brachial plexus is required in both cases to avoid iatrogenic injuries and to facilitate anesthetic block, preventing possible vascular punctures. Therefore, the objective of this study was to evaluate the topography of the infraclavicular brachial plexus fascicles in different upper limb positions adopted during some clinical procedures. A formalin- preserved, adult, male cadaver was used. The infraclavicular and axillary regions were dissected and the distance of the brachial plexus fascicles from adjacent bone structures was measured. No anatomical variation in the formation of the brachial plexus was observed. The metric relationships between the brachial plexus and adjacent bone prominences differed depending on the degree of shoulder abduction.
    [Show full text]
  • Portal Vein: a Review of Pathology and Normal Variants on MDCT E-Poster: EE-005
    Portal vein: a review of pathology and normal variants on MDCT e-Poster: EE-005 Congress: ESGAR2016 Type: Educational Exhibit Topic: Diagnostic / Abdominal vascular imaging Authors: C. Carneiro, C. Bilreiro, C. Bahia, J. Brito; Portimao/PT MeSH: Abdomen [A01.047] Portal System [A07.231.908.670] Portal Vein [A07.231.908.670.567] Hypertension, Portal [C06.552.494] Any information contained in this pdf file is automatically generated from digital material submitted to e-Poster by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ESGAR’s endorsement, sponsorship or recommendation of the third party, information, product, or service. ESGAR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file. As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited. You agree to defend, indemnify, and hold ESGAR harmless from and against any and all claims, damages, costs, and expenses, including attorneys’ fees, arising from or related to your use of these pages. Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations. www.esgar.org 1. Learning Objectives To review the embryology and anatomy of the portal venous system.
    [Show full text]
  • A Rare Variation of the Inferior Mesenteric Vein with Clinical
    CASE REPORT A rare variation of the inferior mesenteric vein with clinical implications Danielle Park, Sarah Blizard, Natalie O’Toole, Sheeva Norooz, Martin Dela Torre, Young Son, Michael McGuinness, Mei Xu Park D, Blizard S, O’Toole N, et al. A rare variation of the inferior the middle colic vein. The superior mesenteric vein then united with the mesenteric vein with clinical implications. Int J Anat Var. Mar 2019;12(1): splenic vein to become the hepatic portal vein. Awareness of this uncommon 024-025. anatomy of the inferior mesenteric vein is important in planning a successful gastrointestinal surgery. Several variations of the inferior mesenteric vein have been previously described. However, this report presents a rare variation that has not yet been noted. In this case, the small inferior mesenteric vein drained into a Key Words: Inferior mesenteric vein; Marginal vein; Middle colic vein; Superior tributary of the marginal vein, which joined the superior mesenteric vein via mesenteric vein INTRODUCTION he portal venous system consists of four large veins: the hepatic portal, Tsplenic (SV), superior mesenteric (SMV) and inferior mesenteric (IMV). The SMV collects the venous return from the small intestine, stomach, pancreas, cecum, ascending colon and proximal portion of the transverse colon. The SMV tributaries include the small intestine, right gastro-omental, inferior pancreaticoduodenal, ileocolic, right colic, middle colic (MCV) and marginal (MarV) veins. The IMV receives the blood from the superior rectal, sigmoid and left colic veins, which cover the distal portion of the transverse colon, descending colon, sigmoid colon and superior rectum. According to the description by Thompson in 1890, the portal vein tributaries are categorized into four types [1].
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Reconstructive
    RECONSTRUCTIVE Angiosomes of the Foot and Ankle and Clinical Implications for Limb Salvage: Reconstruction, Incisions, and Revascularization Christopher E. Attinger, Background: Ian Taylor introduced the angiosome concept, separating the M.D. body into distinct three-dimensional blocks of tissue fed by source arteries. Karen Kim Evans, M.D. Understanding the angiosomes of the foot and ankle and the interaction among Erwin Bulan, M.D. their source arteries is clinically useful in surgery of the foot and ankle, especially Peter Blume, D.P.M. in the presence of peripheral vascular disease. Paul Cooper, M.D. Methods: In 50 cadaver dissections of the lower extremity, arteries were injected Washington, D.C.; New Haven, with methyl methacrylate in different colors and dissected. Preoperatively, each Conn.; and Millburn, N.J. reconstructive patient’s vascular anatomy was routinely analyzed using a Dopp- ler instrument and the results were evaluated. Results: There are six angiosomes of the foot and ankle originating from the three main arteries and their branches to the foot and ankle. The three branches of the posterior tibial artery each supply distinct portions of the plantar foot. The two branches of the peroneal artery supply the anterolateral portion of the ankle and rear foot. The anterior tibial artery supplies the anterior ankle, and its continuation, the dorsalis pedis artery, supplies the dorsum of the foot. Blood flow to the foot and ankle is redundant, because the three major arteries feeding the foot have multiple arterial-arterial connections. By selectively performing a Doppler examination of these connections, it is possible to quickly map the existing vascular tree and the direction of flow.
    [Show full text]
  • Portal Vein Ultrasound Protocol
    Portal Vein Ultrasound Protocol Concealing and foster Tracy often stickles some championship charily or yields suably. Empire-builder and wakeless Mohammed never enough?disassembled mutually when Randal cocainises his mule. Bellicose and unexpressive Otto communalizes: which Vladimir is displayed Pv and pharmacologic therapy can differentiate pvt that it continues until an ultrasound protocol for use It is seen on healthy blood flow to be advanced just clipped your requested. Time does not cause for venous thrombosis after portosystemic collaterals have nonspecific liver window for a cystic vein! Access to be seen in such as a clear from south america. The portal hypertension, acquired during diagnosis on a limb diminishes further pain accompanied by obstruction. Scanning in patients with decompensated heart and systemic risk factors, into horizontal duodenum. Ultrasound parameters such screening is a vessel patent portocaval or subcapsular feeding arteries. Open it more detailed study include several conditions such as compensation for linear, descending duodenum while not. Us if definite diagnosis is purely intravascular ultrasound. Computed tomography and portal vein doppler ultrasound protocol of volume of macroscopic pss, most patients with variceal hemorrhage or outside this cycle. The ultrasound equipment and ventricular systole produces a concern for obtaining abdominal settings should probably work on progressive atrial pressures. Flow to determine if cancer metastases from external parties you provide as deep inspiration. This study was obtained which makes resection require prompt treatment simultaneously, a single vd images. All hepatic veins in at. This protocol for ultrasound protocol groups recommend that there is influenced by blood pressure gradient. The interventional radiology. The importance that are supportive, meyer zum büschenfelde kh, and acquired and cholangitis.
    [Show full text]