Different Neuromuscular Variations in the Gluteal Region
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hip Extensor Mechanics and the Evolution of Walking and Climbing Capabilities in Humans, Apes, and Fossil Hominins
Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins Elaine E. Kozmaa,b,1, Nicole M. Webba,b,c, William E. H. Harcourt-Smitha,b,c,d, David A. Raichlene, Kristiaan D’Aoûtf,g, Mary H. Brownh, Emma M. Finestonea,b, Stephen R. Rossh, Peter Aertsg, and Herman Pontzera,b,i,j,1 aGraduate Center, City University of New York, New York, NY 10016; bNew York Consortium in Evolutionary Primatology, New York, NY 10024; cDepartment of Anthropology, Lehman College, New York, NY 10468; dDivision of Paleontology, American Museum of Natural History, New York, NY 10024; eSchool of Anthropology, University of Arizona, Tucson, AZ 85721; fInstitute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom; gDepartment of Biology, University of Antwerp, 2610 Antwerp, Belgium; hLester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614; iDepartment of Anthropology, Hunter College, New York, NY 10065; and jDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708 Edited by Carol V. Ward, University of Missouri-Columbia, Columbia, MO, and accepted by Editorial Board Member C. O. Lovejoy March 1, 2018 (received for review September 10, 2017) The evolutionary emergence of humans’ remarkably economical their effects on climbing performance or tested whether these walking gait remains a focus of research and debate, but experi- traits constrain walking and running performance. mentally validated approaches linking locomotor -
Gluteal Region-II
Gluteal Region-II Dr Garima Sehgal Associate Professor King George’s Medical University UP, Lucknow Structures in the Gluteal region • Bones & joints • Ligaments Thickest muscle • Muscles • Vessels • Nerves Thickest nerve • Bursae Learning Objectives By the end of this teaching session Gluteal region –II all the MBBS 1st year students must be able to: • Enumerate the nerves of gluteal region • Write a short note on nerves of gluteal region • Describe the location & relations of sciatic nerve in gluteal region • Enumerate the arteries of gluteal region • Write a short note on arteries of gluteal region • Enumerate the arteries taking part in trochanteric and cruciate anastomosis • Write a short note on trochanteric and cruciate anastomosis • Enumerate the structures passing through greater sciatic foramen • Enumerate the structures passing through lesser sciatic foramen • Enumerate the bursae in relation to gluteus maximus • Enumerate the structures deep to gluteus maximus • Discuss applied anatomy Nerves of Gluteal region (all nerves in gluteal region are branches of sacral plexus) Superior gluteal nerve (L4,L5, S1) Inferior gluteal nerve (L5, S1, S2) FROM DORSAL DIVISIONS Perforating cutaneous nerve (S2,S3) Nerve to quadratus femoris (L4,L5, S1) Nerve to obturator internus (L5, S1, S2) FROM VENTRAL DIVISIONS Pudendal nerve (S2,S3,S4) Sciatic nerve (L4,L5,S1,S2,S3) Posterior cutaneous nerve of thigh FROM BOTH DORSAL &VENTRAL (S1,S2) & (S2,S3) DIVISIONS 1. Superior Gluteal nerve (L4,L5,S1- dorsal division) 1 • Enters through the greater 3 sciatic foramen • Above piriformis 2 • Runs forwards between gluteus medius & gluteus minimus • SUPPLIES: 1. Gluteus medius 2. Gluteus minimus 3. Tensor fasciae latae 2. -
All About Glutes 1 Table of Contents
All About Glutes 1 Table of Contents Are You Training Your Glutes the Wrong Way? 3 • Anatomy of the Glutes 4 • Functions of the Glutes at the Hip 4 • The Shortcoming of Most Training Programs 5 • Progression and Preventing Knee Valgus 6 • Simple Solution 6 How to Identify and Correct Tight Hip Flexors 8 • What Exactly Are Tight Hip Flexors? 9 • The Hip Flexor Muscle Group 9 • Signs You Have Tight Hip Flexors 10 • What Causes Hip Tightness 10 • Stretches to Loosen up Tight Hip Flexors 10 • Exercises to Strengthen Hip Flexors 11 Pain in the Buttocks When Sitting? Tips to Prevent and Manage 12 Piriformis Syndrome • What is Piriformis Syndrome? 13 • How Does Piriformis Syndrome Happen? 13 • Special Considerations with Clients 14 • Prevention and Pain Management 14 How Do I Build the Perfect Glutes? 16 • Can’t I Just Squat and Lunge? 17 • Your Best Bets to Target the Glutes 18 • Don’t Forget the Legs 18 • Train the Glutes SPECIFICALLY 19 TABLE OF CONTENTS 800.545.4772 WWW.ISSAONLINE.EDU 2 Are You Training Your Glutes the Wrong Way? 800.545.4772 WWW.ISSAONLINE.EDU 3 UNIT ONE These days, the glutes get a lot of attention, and it’s well deserved. When you build and strengthen your glutes in the right way, they not only make your body look better, but they also increase your performance and can diminish knee pain. The problem is most people aren’t taking the best approach to training for the highest level of glute development. Anatomy of the Glutes Let’s start with a little anatomy. -
Importance of Iliopsoas and Erector Spinae Muscles in Predicting The
International Journal of Physiotherapy and Research, Int J Physiother Res 2014, Vol 2(5):681-88. ISSN 2321-1822 Original Article IMPORTANCE OF ILIOPSOAS AND ERECTOR SPINAE MUSCLES IN PREDICTING THE FUNCTIONAL COMPETENCE OF TRANSFEMORAL AMPUTEES Lajja K Rishi 1, Suraj Kumar *2, Sangeeta Lahiri 3, V.P. Sharma 4. 1 Master of Physiotherapy (student), National Institute for the Orthopaedically Handicapped, Kolkata, West Bengal, India. *2 HOD and Associate Professor, Department of Physiotherapy, UPRIMS&R, Saifai, Etawah, UP, India. 3 Physical Therapist (cardio-respiratory disorders & intensive care), India. 4 Professor, KGM Medical University, Lucknow, India. ABSTRACT Purpose: Muscle imbalance in transfemoral amputees impair physical mobility and activities of daily living. Aim of this study was to correlate the muscle imbalance with functional competence in transfemoral amputees. Methods: Thirty amputees were evaluated under inclusion criteria and randomly allocated into 2 groups. Group A received stretching(1 week) followed by strengthening(3 weeks) and in group B strengthening(3 weeks) were followed by stretching(1 week) . Phase I includes values after 1 week stretching program in group A and 3 weeks strengthening program in group B. Data were recorded at baseline, after phase I completion and end of treatment. Physical mobility was assessed by “Timed up and go” test. Results: Muscle imbalance and physical mobility improved significantly in both groups at the end of treatment. The correlation values of “Timed up and go” test with Iliopsoas and Erector spinae muscle showed significant improvement in both groups. Conclusion: Baseline measurements showed that Iliopsoas and Erector spinae muscles were tight whereas Gluteus maximus and Abdominal muscles were weak in transfemoral amputees. -
Effects of a Gluteal Muscles Specific Exercise Program on the Vertical
International Journal of Environmental Research and Public Health Article Effects of a Gluteal Muscles Specific Exercise Program on the Vertical Jump Tomás Gallego-Izquierdo 1, Gerardo Vidal-Aragón 2, Pedro Calderón-Corrales 2, Álvaro Acuña 2, Alexander Achalandabaso-Ochoa 3,* , Agustín Aibar-Almazán 3 , Antonio Martínez-Amat 3 and Daniel Pecos-Martín 1 1 Physiotherapy and Pain Group, Department of Physical Therapy, University of Alcala, 28801 Madrid, Spain; [email protected] (T.G.-I.); [email protected] (D.P.-M.) 2 Physical Therapist, Department of Physical Therapy, University of Alcala, 28801 Madrid, Spain; [email protected] (G.V.-A.); pedrocalderon.fi[email protected] (P.C.-C.); [email protected] (Á.A.) 3 Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain.; [email protected] (A.A.-A.); [email protected] (A.M.-A.) * Correspondence: [email protected]; Tel.: +34-953213651 Received: 9 June 2020; Accepted: 23 July 2020; Published: 27 July 2020 Abstract: The vertical jump is a complex movement where many factors are involved in the final result. Currently, how a specific exercise program for gluteal muscles can affect the vertical jump is unknown. So, the aim of this study was to examine the effect of a specific exercise program for the gluteal muscles on a vertical jump. Forty-nine amateur athletes completed an 8-week program. The experimental group received a specific gluteal muscle training program in addition to their regular training routine, whereas the control group received their regular training routine. Jump height, flight time, speed and power were assessed (baseline, postintervention, and 4-week follow-up). -
ACE's Essentials of Exercise Science for Fitness Professionals
ACE’s Essentials of Exercise Science for Fitness Professionals Chapter 3: Fundamentals of Applied Kinesiology Hip Flexors . There are 21 major muscles involved in the actions of the hip joint. – Actions of the hip joint include flexion, extension, internal rotation, external rotation, adduction, and abduction. – More than half of these muscles are involved in multiple actions. Anterior Hip Muscles: Hip Flexors . Active range of motion for hip flexion . Prime movers: iliopsoas, rectus femoris, sartorius, pectineus, and tensor fasciae latae – Act synergistically to cause hip flexion (e.g., “up” phase of a knee lift) – Act eccentrically to control hip extension (e.g., “down” phase of a knee lift) Hip Flexors: Considerations . Muscle origins and insertions impact muscular function. Iliopsoas – The psoas major and Sample Sample stretching exercise: minor originate in the strengthening low back and insert to the exercise: proximal femur, leading to poor mechanical leverage when used to raise and lower a straight leg. – The abdominals are not strong enough to balance the large force and keep the spine in neutral alignment. Hip Flexors: Considerations . Rectus femoris – Works at both the knee and hip, concentrically contracting to perform hip flexion and knee extension. – Sample strengthening exercise: standing straight-leg raise – Sample stretching exercise: iliopsoas lunge, bending the back knee . The sartorius is the longest muscle in the body. – It is also involved in hip abduction, adduction, and external rotation, and knee flexion and internal rotation. Tensor fascia latae (TFL) – IT band – Explosive hip flexion results in a highly developed TFL. Hip Internal and External Rotators . The hip internal rotators include the tensor fasciae latae, semitendinosus (slight), and semimembranosus (slight). -
Sacroiliac Joint Dysfunction and Piriformis Syndrome
Classic vs. Functional Movement Approach in Physical Therapy Setting Crista Jacobe-Mann, PT Nevada Physical Therapy UNR Sports Medicine Center Reno, NV 775-784-1999 [email protected] Lumbar Spine Intervertebral joints Facet joints Sacroiliac joint Anterior ligaments Posterior ligaments Pelvis Pubic symphysis Obturator foramen Greater sciatic foramen Sacrospinous ligament Lesser sciatic foramen Sacrotuberous ligament Hip Capsule Labrum Lumbar spine: flexion and extension ~30 total degrees of rotation L1-L5 Facet joints aligned in vertical/saggital plane SI joints 2-5 mm in all directions, passive movement, not caused by muscle activation Shock absorption/accepting load with initial contact during walking Hip Joints Extension 0-15 degrees 15% SI joint pain noted in chronic LBP patients Innervation: L2-S3 Classic signs and symptoms Lower back pain generally not above L5 transverse process Pain can radiate down posterior thigh to posterior knee joint, glutes, sacrum, iliac crest sciatic distribution Pain with static standing, bending forward, donning shoes/socks, crossing leg, rising from chair, rolling in bed Relief with continuous change in position Trochanteric Bursitis Piriformis Syndrome Myofascial Pain Lumbosacral Disc Herniation and Bulge Lumbosacral Facet Syndrome J. Travell suspects Si joint pain may causes piriformis guarding and lead to Piriformis syndrome… Tenderness to palpation of PSIS, lower erector spinae, quadratus lumborum and gluteal muscles Sometimes positive SLR Limited hip mobility -
The Absence of Piriformis Muscle, Combined Muscular Fusion, and Neurovascular Variation in the Gluteal Region
Autopsy Case Report The absence of piriformis muscle, combined muscular fusion, and neurovascular variation in the gluteal region Matheus Coelho Leal1 , João Gabriel Alexander1 , Eduardo Henrique Beber1 , Josemberg da Silva Baptista1 How to cite: Leal MC, Alexander JG, Beber EH, Baptista JS. The absence of piriformis muscle, combined muscular fusion, and neuro-vascular variation in the gluteal region. Autops Case Rep [Internet]. 2021;11:e2020239. https://doi.org/10.4322/ acr.2020.239 ABSTRACT The gluteal region contains important neurovascular and muscular structures with diverse clinical and surgical implications. This paper aims to describe and discuss the clinical importance of a unique variation involving not only the piriformis, gluteus medius, gluteus minimus, obturator internus, and superior gemellus muscles, but also the superior gluteal neurovascular bundle, and sciatic nerve. A routine dissection of a right hemipelvis and its gluteal region of a male cadaver fixed in 10% formalin was performed. During dissection, it was observed a rare presentation of the absence of the piriformis muscle, associated with a tendon fusion between gluteus and obturator internus, and a fusion between gluteus minimus and superior gemellus muscles, along with an unusual topography with the sciatic nerve, which passed through these group of fused muscles. This rare variation stands out with clinical manifestations that are not fully established. Knowing this anatomy is essential to avoid surgical iatrogeny. Keywords Anatomic Variation; Anatomy; Buttocks; Muscle; Piriformis Muscle Syndrome. INTRODUCTION The gluteal region contains important Over the years, these variations have been neurovascular and muscular structures that may classified and distributed into different groups. impose diverse clinical and surgical approaches. -
Readingsample
Body Contouring Art, Science, and Clinical Practice Bearbeitet von Melvin A. Shiffman, Alberto Di Giuseppe 1st Edition. 2010. Buch. xxviii, 869 S. Hardcover ISBN 978 3 642 02638 6 Format (B x L): 19,3 x 26 cm Gewicht: 2072 g Weitere Fachgebiete > Medizin > Chirurgie > Plastische, Rekonstruktive & Kosmetische Chirurgie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Gluteal Contouring Surgery: Aesthetics and Anatomy 2 Robert F. Centeno 2.1 Introduction the gluteus maximus muscle and fat deposits in the superficial fascia. In addition, our erect posture con- tributed to the lumbosacral curve, which is also unique Most plastic surgeons are probably more familiar with to primates. Evolutionary biology suggests that an the anatomy of the face, abdomen, or breasts than with hourglass figure, with a small waist and full buttocks, the anatomy of the gluteal region. Because only a small has historically been associated with female reproduc- percentage of plastic surgery procedures involve the tive potential and physical health across cultures, gen- buttocks, retaining knowledge of its clinical anatomy erations, and ethnicities [1]. A waist-to-hip ratio of 0.7 is not a high priority for most surgeons. This picture, in women remains the ideal of beauty even as different however, is changing as increasing number of patients ethnic groups prefer different gluteal shapes and cur- request body contouring and are increasingly aware of vatures. -
The Human Gluteus Maximus and Its Role in Running
The Human Gluteus Maximus and its Role in Running The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lieberman, Daniel E., David A. Raichlen, Herman Pontzer, Dennis M. Bramble, and Elizabeth Cutright-Smith. 2006. The human gluteus maximus and its role in running. Journal of Experimental Biology 209: 2143-2155. Published Version doi:10.1242/jeb.02255 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3743645 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 2143 The Journal of Experimental Biology 209, 2143-2155 Published by The Company of Biologists 2006 doi:10.1242/jeb.02255 The human gluteus maximus and its role in running Daniel E. Lieberman1,*, David A. Raichlen1, Herman Pontzer1, Dennis M. Bramble2 and Elizabeth Cutright-Smith3 1Department of Anthropology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA, 2Department of Biology, University of Utah, Salt Lake City, UT 84112, USA and 3Department of Anthropology, University of Arizona, 1009 E. South Campus Drive PO Box 210030, Tucson, AZ 85721, USA *Author for correspondence (e-mail: [email protected]) Accepted 5 April 2006 Summary The human gluteus maximus is a distinctive muscle in side and to decelerate the swing leg; contractions of the terms of size, anatomy and function compared to apes and stance-side gluteus maximus may also help to control other non-human primates. -
Gluteal Region and Back of Thigh Doctors Notes Notes/Extra Explanation Editing File Objectives
Color Code Important Gluteal Region and Back of Thigh Doctors Notes Notes/Extra explanation Editing File Objectives Know contents of gluteal region: Groups of Glutei muscles and small muscles (Lateral Rotators). Nerves & vessels. Foramina and structures passing through them as: 1-Greater Sciatic Foramen. 2-Lesser Sciatic Foramen. Back of thigh : Hamstring muscles. Movements of the lower limb Hip = Thigh Knee=Leg Foot=Ankle Flexion/Extension Flexion/Extension Flexion/Extension Rotation Adduction/Abduction Inversion/Eversion Contents Of Gluteal Region: Muscles / Nerves / Vessels 1- Muscles: • Glutei: 1. Gluteus maximus. 2. Gluteus medius. 3. Gluteus minimus. Abductors: • Group of small muscles (Lateral Rotators): 1. Gluteus medius. 2. Gluteus minimus. 1.Piriformis. Rotators: 2.Obturator internus 1. Obturator internus. 3.Superior gemellus 2. Quadratus femoris. 4.Inferior gemellus Extensor: 5.Quadratus femoris Gluteus maximus. Contents Of Gluteal Region: Muscles / Nerves / Vessels 2- Nerves (All from Sacral Plexus): 1. Sciatic nerve. 2. Superior gluteal nerve. 3. Inferior gluteal nerve. 4. Post. cutaneous nerve of thigh. 5. Nerve to obturator internus. 6. Nerve to quadratus femoris. 7. Pudendal nerve. Contents Of Gluteal Region: Muscles / Nerves / Vessels 3- VESSELS: (all from internal iliac vessels): 1. Superior gluteal 2. Inferior gluteal 3. Internal pudendal vessels. Greater sciatic foreamen: Greater sciatic notch of hip bone is transformed into foramen by: sacrotuberous (between the sacrum to ischial tuberosity) & sacrospinous (between the sacrum to ischial spine ) Structures passing through Greater sciatic foramen : Nerves: Vessels: Greater sciatic foramen Above 1. Superior gluteal nerves, 2. Superior gluteal piriformis vessels. Lesser sciatic foramen muscle. 3. Piriformis muscle. Belew 4. Inferior gluteal nerves 10. -
Intercostal, Ilioinguinal, and Iliohypogastric Nerve Transfers for Lower Limb Reinnervation After Spinal Cord Injury: an Anatomical Feasibility and Experimental Study
LABORATORY INVESTIGATION J Neurosurg Spine 30:268–278, 2019 Intercostal, ilioinguinal, and iliohypogastric nerve transfers for lower limb reinnervation after spinal cord injury: an anatomical feasibility and experimental study *Ahmed A. Toreih, MD,1 Asser A. Sallam, MD, PhD,1 Cherif M. Ibrahim, MD,2 Ahmed I. Maaty, MD,3 and Mohsen M. Hassan4 Departments of 1Orthopedic Surgery and Trauma and 3Physical Medicine, Rheumatology, and Rehabilitation, Suez Canal University Hospitals; 2Department of Anatomy, Suez Canal University; and 4Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt OBJECTIVE Spinal cord injury (SCI) has been investigated in various animal studies. One promising therapeutic ap- proach involves the transfer of peripheral nerves originating above the level of injury into those originating below the level of injury. The purpose of the present study was to evaluate the feasibility of nerve transfers for reinnervation of lower limbs in patients suffering SCI to restore some hip and knee functions, enabling them to independently stand or even step forward with assistive devices and thus improve their quality of life. METHODS The feasibility of transferring intercostal to gluteal nerves and the ilioinguinal and iliohypogastric nerves to femoral nerves was assessed in 5 cadavers. Then, lumbar cord hemitransection was performed below L1 in 20 dogs, followed by transfer of the 10th, 11th, and 12th intercostal and subcostal nerves to gluteal nerves and the ilioinguinal and iliohypogastric nerves to the femoral nerve in only 10 dogs (NT group). At 6 months, clinical and electrophysiological evaluations of the recipient nerves and their motor targets were performed.