Some Effects of LSI on Minicomputers

Total Page:16

File Type:pdf, Size:1020Kb

Some Effects of LSI on Minicomputers IMPACT OF LSi TECHN'ILOGY 3N SLIDE RULES. CALCULATORS, AND MINICOMPUTERS SOME EFFECTS OF LSI ON MIRICOMPUTERS C. G. Bell L. Gale C. Kaman Carnegie-Mellon Univ. Digital Equip. Co. Digital Equip. Co. The minicomputer is entering the HOLD TECHNOLOGY CO?dSTANT era of the consumer good; it is forced by a combination of market We believe that the main effect of pressures (e.g. demands, and drastically reduced costs will be eventual desk calculator competi- the creation of a very large market. tion) and available low cost Already the most dramatic realiza- technology. If system costs are tions are the desk calculators and held low in the order of $10,000 the programmable calculators. to $20,000, then a number of functions can be incorporated to The view of minicomputers is chanq- aid the user. (This means that ing to handle the control within the mini is an important contri- various terminals. Observe the use butor to the evolution of computer of minis in terminals--the so-called systems.) Thus, lower cost and "smart terminal": for remote batch higher performance technology pro- processing terminals with included vide three possible alternatives: card reader, punch and line printer (e.g. the UCC terminals and DEC DC71): 1. Hold technology constant and for one-user graphics terminals (e.q. provide the minimal cost system the DEC GT40 and ~T08);and finally, for that technology (in essence, we might expect that lower cost soft the factor creating the mini- and hard copy terminals would be computer). controlled in a similar fashion. Indeed, eventually yesterday's minis 2. Hold cost constant (at what priced for the consumer market will users might pay) and incorpor- be at today's calculator prices. ate as many functions as Yesterday's large, general purpose possible for the constant cost. computer is today's minicomputer. Dennis and Smith (wl), of IBM 3. Build structures which would research, postulate a 5000 circuit not have been possible with and 20,000 byte computer integrated older technology (very large circuit cost in the late 1970's of array and pipelined computers about $75. such as ILLIAC IV and CDC STAR, see Bell, Chen, and Rege, Now, almost every integrated circuit 1971). manufacturer has an MOS "micro- processor-on-a-chip" (e.g. Intel The following discussion explores 80081, and by combining several dozen the first two topics. chips together with memory, a 5 -U 10 TECHNICAL SESSIONS microsecond cycle time minicomputer programs larger than the physical can he fabricated. memory. This capability will no doubt be standard in five years. For a one user system with a key- board-printer (or scope) terminal, In ,the future, other capabilities the system price is beginning to be like those above, which have been dominated by the mechanical parts derived from larger, general purpose of the terminal. For a small volume, computers (see Bell and Newell, 1971) the hardware and software costs are will undoubtedly be available, for about equal. For the user, the example, the use of caches to increase applications' costs predominate. In performance. fact, in an article (Coury, 1970) a "0" cost minicomputer was predicted, Although the above concepts have been and still the system cost was over "adopted" from the large computer, $10,000. the minicomputer has also contributed to computer development, Perhaps the HOLD COST CONSTANT greatest influence has been to belie the myth that computers are hard to From a computer structures and user interface. The research necessary viewpoint, the addition of more for multiprocessing is based on mini- functions in a minicomputer has more computer processors (e.9. Wulf and promise. The total cost to buy; Bell, 1972). Similarly, user micro- maintain, program, and use the mini programming is available on several is important--not the purchase cost minicomputers. This capability is alone. Admittedly, the manufacturer douhle edged: while giving higher has difficulty communicating this to performance, it does so at losg of buyers who tend to look mostly at generality and future compatibility. purchasing price. OBSERVED EFFECTS SO FAR For example, a larger primary memory provides probably the largest incre- Already the minicomputer, because of mental improvement in cost-effective- its simple structure and relatively ness because it permits a larger short half life, has tracked tech- range of user and systems programs nology. Thus, any change in circuit to be run. performance or availability is in- corporated rapidly. The advent of There are other improvements already LSI has effected the cost and market appearing in the more advanced mini- size as described above. computers. The processing of float- ing data in hardware provides the The direct effect of low-cost, high- single most direct improvement in performance LSI memories has per- performance. With floating point mitted a large processor state (i.e. capability, there is less distinction general registers); microprogramming between the larger general purpose (1/2K word read-only or read-write computer (e.g. mid-range 360 and 370 memories) ; various memory mapping models) and the minicomputer (e.g. (constructed of smail arrays); DEC PDP-8 with floating point pro- eventual replacement. o:~core by MOS; cessor, Interdata computers, and and ?he cache memory. Within the PDP-11/45) . Memory mapping capa- processor tl19re has been a less bi Zity (e. g. procrram paging and/or dramatic effect; an MOS processor-on- segmentation) also provide for multi- a-chip is really only cost-effective programming .and the execution of in smaller systems where absolute IOW MEREM 72-151 cost is required--or a certain minim.^^. perfom~3nc.r.-2s r;c~eptaSle. FOP example, the availability of the MOS PDP-8, runriny 3t 1/5-1/8 the current PDP-8 speed wodd not satisfy all the PDP-8 users. Instead, it would probably establish varkets which currently are not available because of cost. SUMMARY The above discussion has explored the technological (LSI) and market pressures (lower cost and more capability at a constant cost) which have influenced the minicomputer. As technology improves, it is in- corporated within the minicomputer so rapidly that the mini. now plays an important role in the evolution of the computer specie. REFERENCES Bell, C.G., R. Chen, and S. Rege, "The Near-Term Effect of Technology on Computer Structures". Bell, C.G., and A. Newell, Computer Structures: Readinqs and Exampls, McGraw-Hill Book Company, 1971. Coury, F., "A Systems Approach to Minicomputer 1/0" SJCC, 1970, p677- 682. Dennis, S.F. and M.G. Smith, "LSI: Implications for Future Design and Architecture", IBM Research Report, RC 3598 (#16278) November 3, 1971, IBM Research, Yorktm Heights, N.Y., 26 pages. House, D.L. and R.A. Henzel, "The Effect of Low Cost Logic on Mini- computer Organization" Computer Design, January 1971, pp 97-101. Wulf, W. and G. Bell, "C.rmr(p: A Multiple Minicomp~!ter (pDP-ll) Processor" FXC, 1972. TECHNICAL SESSIONS .
Recommended publications
  • The Video Game Industry an Industry Analysis, from a VC Perspective
    The Video Game Industry An Industry Analysis, from a VC Perspective Nik Shah T’05 MBA Fellows Project March 11, 2005 Hanover, NH The Video Game Industry An Industry Analysis, from a VC Perspective Authors: Nik Shah • The video game industry is poised for significant growth, but [email protected] many sectors have already matured. Video games are a large and Tuck Class of 2005 growing market. However, within it, there are only selected portions that contain venture capital investment opportunities. Our analysis Charles Haigh [email protected] highlights these sectors, which are interesting for reasons including Tuck Class of 2005 significant technological change, high growth rates, new product development and lack of a clear market leader. • The opportunity lies in non-core products and services. We believe that the core hardware and game software markets are fairly mature and require intensive capital investment and strong technology knowledge for success. The best markets for investment are those that provide valuable new products and services to game developers, publishers and gamers themselves. These are the areas that will build out the industry as it undergoes significant growth. A Quick Snapshot of Our Identified Areas of Interest • Online Games and Platforms. Few online games have historically been venture funded and most are subject to the same “hit or miss” market adoption as console games, but as this segment grows, an opportunity for leading technology publishers and platforms will emerge. New developers will use these technologies to enable the faster and cheaper production of online games. The developers of new online games also present an opportunity as new methods of gameplay and game genres are explored.
    [Show full text]
  • Inside the Computer Microcomputer Minicomputer Mainframe
    Inside the computer Microcomputer Classification of Systems: • Personal Computer / Workstation. – Microcomputer • Desktop machine, including portables. – Minicomputer • Used for small, individual tasks - such as – Mainframe simple desktop publishing, small business – Supercomputer accounting, etc.... • Typical cost : £500 to £5000. • Chapters 1-5 in Capron • Example : The PCs in the labs are microcomputers. Minicomputer Mainframe • Medium sized server • Large server / Large Business applications • Desk to fridge sized machine. • Large machines in purpose built rooms. • Used for distributed data processing and • Used as large servers and for intensive multi-user server support. business applications. • Typical cost : £5,000 to £500,000. • Typical cost : £500,000 to £10,000,000. • Example : Scarlet is a minicomputer. • Example : IBM ES/9000, IBM 370, IBM 390. Supercomputer • Scientific applications • Large machines. • Typically employ parallel architecture (multiple processors running together). • Used for VERY numerically intensive jobs. • Typical cost : £5,000,000 to £25,000,000. • Example : Cray supercomputer 1 What's in a Computer System? Software • The Onion Model - layers. • Divided into two main areas • Hardware • Operating system • BIOS • Used to control the hardware and to provide an interface between the user and the hardware. • Software • Manages resources in the machine, like • Where does the operating system come in? • Memory • Disk drives • Applications • includes games, word-processors, databases, etc.... Interfaces Hardware • The chunky stuff! •CUI • If you can touch it... it's probably hardware! • Command Line Interface • The mother board. •GUI • If we have motherboards... surely there must be • Graphical User Interface fatherboards? right? •WIMP • What about sonboards, or daughterboards?! • Windows, Icons, Mouse, Pulldown menus • Hard disk drives • Monitors • Keyboards BIOS Basics • Basic Input Output System • Directly controls hardware devices like UARTS (Universal Asynchronous Receiver-Transmitter) - Used in COM ports.
    [Show full text]
  • Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses
    of Commerce Computer Science National Bureau and Technology of Standards NBS Special Publication 500-110 Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses QO IGf) .U57 500-110 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act ot Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides; (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and
    [Show full text]
  • 2 CLASSIFICATION of COMPUTERS.Pdf
    CLASSIFICATION OF COMPUTERS Computers can be classified in the following methods: I . Computational Method I. Size and Capability I. Classification based on Computational method: Based on the way a system performs the computations, a computer can be classified as follows: • Digital • Analog • Hybrid Digital computer: A digital computer can count and accept numbers and letters through various input devices. The input devices convert the data into electronic pulses, and perform arithmetical operations on numbers in discrete form. In addition to performing arithmetical operations, they are also capable of:- 1. Storing data for processing 2. Performing logical operations 3. Editing or deleting the input data. One of the main advantages in the use of digital computers is that any desired level of accuracy can be achieved by considering as many places of decimal as are necessary and hence are most suitable for business application. The main disadvantage is their high cost, even after regular reductions in price and the complexity in programming. Example: To calculate the distance travelled by a car in a particular time interval, you might take the diameter of the tyre to calculate the periphery, take into consideration the number of revolutions of the wheel per minute, take the time in minutes and multiply them all to get the distance moved. This is called digital calculation. A computer using the principle of digital calculations can be called a digital computer. Analog Computer: Analog computers process data input in a continuous form. Data such as voltage, resistance or temperature are represented in the computer as a continuous, unbroken flow of information, as in engineering and scientific applications, where quantities to be processed exists as waveforms or continually rising and falling voltages, pressure and so on.
    [Show full text]
  • Digital and System Design
    Digital System Design — Use of Microcontroller RIVER PUBLISHERS SERIES IN SIGNAL, IMAGE & SPEECH PROCESSING Volume 2 Consulting Series Editors Prof. Shinsuke Hara Osaka City University Japan The Field of Interest are the theory and application of filtering, coding, trans- mitting, estimating, detecting, analyzing, recognizing, synthesizing, record- ing, and reproducing signals by digital or analog devices or techniques. The term “signal” includes audio, video, speech, image, communication, geophys- ical, sonar, radar, medical, musical, and other signals. • Signal Processing • Image Processing • Speech Processing For a list of other books in this series, see final page. Digital System Design — Use of Microcontroller Dawoud Shenouda Dawoud R. Peplow University of Kwa-Zulu Natal Aalborg Published, sold and distributed by: River Publishers PO box 1657 Algade 42 9000 Aalborg Denmark Tel.: +4536953197 EISBN: 978-87-93102-29-3 ISBN:978-87-92329-40-0 © 2010 River Publishers All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Dedication To Nadia, Dalia, Dina and Peter D.S.D To Eleanor and Caitlin R.P. v This page intentionally left blank Preface Electronic circuit design is not a new activity; there have always been good designers who create good electronic circuits. For a long time, designers used discrete components to build first analogue and then digital systems. The main components for many years were: resistors, capacitors, inductors, transistors and so on. The primary concern of the designer was functionality however, once functionality has been met, the designer’s goal is then to enhance per- formance.
    [Show full text]
  • Chapter 1. a Chronology of Game Programming
    This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks . [ Team LiB ] Chapter 1. A Chronology of Game Programming "In the beginning the Universe was created. This has made a lot of people very angry and been widely regarded as a bad move." —Douglas Adams KEY TOPICS Phase I: Before Spacewar Phase II: Spacewar to Atari Phase III: Game Consoles and Personal Computers Phase IV: Shakedown and Consolidation Phase V: The Advent of the Game Engine Phase VI: The Handheld Revolution Phase VII: The Cellular Phenomenon Phase VIII: Multiplayer Games In Closing The art and science of game development have experienced a huge progression since the early days. Hardware has improved by orders of magnitude, whereas game complexity and richness have simply exploded. To better understand how games are coded today, and why, it is essential to look back and review the history of game programming. I have divided that lengthy narration into what I consider the eight most defining moments that shaped the current industry. Let's time warp ourselves to those moments and take a look at how things were done back then. This way the reasons behind today's practices will become obvious. I will avoid the trivial and focus on programming practices. Because raw data is useless without perspective, it's also important to provide some context in which to interpret the data and to understand how today's programming practices were developed. [ Team LiB ] This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it.
    [Show full text]
  • Selection Between Unix in Minicomputer Setup and Lan
    SELECTION BETWEEN UNIX IN MINICOMPUTER SETUP AND LAN CONFIGURATION FOR A MEDIUM-SIZED COMPANY CONSIDERING COMPUTERIZATION by LEUNG WAI-MING, RAYMOND ( -f 体 ) AND CHANG CHE SON (張 ) MBA PROJECT REPORT Presented to f. y . The Graduate Scfeol In Partial Fulfilment of the Requirements for the Degree of MASTER OF BUSINESS ADMINISTRATION THREE-YEAR MBA PROGRAMME THE CHINESE UNIVERSITY OF HONG KONG May 1991 (DR. STAN HU) Advisor . cC 乏 . 、 3 2s ^fj: .-if".〜— . ^^ ;::\,」一 H I,ft t, , 一 :湖.. 广 ...v., M r 5 ?, „ — / r, . 二 i/ . L I >(多 • i .二, , / f .、/ \ l .> . --- , 1•1 • ABSTRACT With the evolution of VLSI and the microcomputers, the cost of computerization dropped tremendously in recent years. The application of computer systems in medium-sized companies in Hong Kong became a necessity in order to gain the competitive edge over the rivalries. However, the widely accepted configurations of Personal Computers (PC) in Local Area Network (LAN) environment and the UNIX Operating System under minicomputers puzzled many Electronic Data Processing (EDP) managers and Management Information System (MIS) managers when considering computerization of their own companies. Our project aimed to study the advantages and disadvantages of computerization in a medium-sized company under Unix/Minicomputer and LAN/PC environments in Hong Kong. This report included the study on the requirements of computerization process of these companies and the pros and cons of both the Unix/Minicomputer and the LAN/PC configurations. An attempt was made to provide some recommendations and guidelines for those companies that might want to and decide to employ computers in their business arenas so that they could maximize their return on the investment on the computerization.
    [Show full text]
  • The Shaping of the Personal Computer
    9780813345901-text_Westview Press 6 x 9 5/15/13 9:26 AM Page 229 10 THE SHAPING OF THE PERSONAL COMPUTER NO HISTORIAN HAS yet written a full account of the personal computer. Per- sonal computing was perhaps the most life-changing consumer phenomenon of the second half of the twentieth century, and it continues to surprise in its ever-evolving applications and forms. If we consider an earlier invention, domestic radio, it took about fifty years for historians to start writing really satisfactory accounts. We should not expect to fully understand the personal computer in a lesser time scale. There has, of course, been no shortage of published accounts of the develop- ment of the personal computer by journalists. Much of this reportage is bad his- tory, though some of it makes for good reading. Perhaps its most serious distortion is its focus on a handful of individuals, portrayed as visionaries who saw the future and made it happen: Apple Computer’s Steve Jobs and Microsoft’s Bill Gates figure prominently in this genre. By contrast, IBM and the established computer firms are usually portrayed as dinosaurs: slow-moving, dim-witted, deservedly extinct. When historians write this history, it will be more complex than these journalistic ac- counts. The real history lies in the rich interplay of cultural forces and commercial interests. RADIO DAYS If the idea that the personal computer was shaped by an interplay of cultural forces and commercial interests appears nebulous, it is helpful to compare the develop- ment of the personal computer with the development of radio in the opening decades of the twentieth century, whose history is well understood.
    [Show full text]
  • Future Computing Environments: the Commodity Mainframe
    - - Decision Resources, Inc. Bay Colony Corporate Center Information Systems Industry 1100 Winter Street Waltham, Massachusetts 02154 Telephone 617.487.3700 Future Computing Environments: Telefax 617.487.5750 The Commodity Mainframe Era Gordon Bell Consultant to Decision Resources, Inc. The success of large-scale, multimilliondollar main- frames built from ECL technology and running pre Business Implications prietary operating systems from IBM and other The structure of mainframes renders them un- hardware vendors (e.g., Fujitsu, Hitachi, NEC, and competitive against micrebased multiprocessor Unisys) has clearly peaked. While some analysts fore- computers. These micro-based systems also cast the overall mainframe market to increase at 24% have cost advantages in manufacturing, software (less than half that of personal computers and work- volumes, interactivity, and a base of trained us- stations), others forecast a shrinking market for main- ers and programmers. frames. We believe that the mainframe hardware market will be eaten away by alternative technologies, The industry is transitioning from servercentric but large-scale transaction-oriented applications will and clientcentric environments to client-server, client-multipleserver, and network computing grow moderately. with multiple clients and multiple servers. This Mainframes operate as a central facility for batch transition will take another decade because mis- processing, large transaction processing workloads, sion-critical legacy applications cannot readily and general-purpose
    [Show full text]
  • MICROCOMPUTERS a Microcomputer Is a Small, Relatively
    MICROCOMPUTERS A microcomputer is a small, relatively inexpensive computer with a microprocessor as its central processing unit (CPU). It includes a microprocessor, memory, and input/output (I/O) facilities. Microcomputers became popular in the 1970s and 80s with the advent of increasingly powerful microprocessors. microcomputer contains a microprocessor (a central processing unit on a microchip ),memory in the form of read-only memory and random access memory , I/O ports and a bus or system of interconnecting wires, housed in a unit that is usually called a motherboard . Monitors, keyboards and other devices for input and output may be integrated or separate. Computer memory in the form of RAM, and at least one other less volatile, memory storage device are usually combined with the CPU on a system bus in one unit. Other devices that make up a complete microcomputer system include batteries, a power supply unit, a keyboard and various input/output devices used to convey information to and from a human operator (printers, monitors, human interface devices). Microcomputers are designed to serve only one user at a time, although they can often be modified with software or hardware to concurrently serve more than one user. Microcomputers fit well on or under desks or tables, so that they are within easy access of users. Bigger computers like minicomputers, mainframes, and supercomputers take up large cabinets or even dedicated rooms. A microcomputer comes equipped with at least one type of data storage, usually RAM. Although some microcomputers (particularly early 8-bit home micros) perform tasks using RAM alone, some form of secondary storage is normally desirable.
    [Show full text]
  • Chapter 1: Introduction
    Chapter 1: Introduction CD-ROM stands for: a. Compact Disk Random Only Memory b. Compact Disk Read Only Memory c. Computer Device Read Only Memory d. Computer Disk Random Online Memory Control Unit (CU) is the a. Main unit of the computer and sometimes is called the brain of the computer b. Unit that controls and coordinates all other computer components c. Main memory of any computer system d. Unit that is responsible for performing all the computer calculations Which of the following factors you should consider when buying a computer a. Size of the RAM b. Speed of the CPU c. Size of the hard disk d. All of the above The term "end user" is used to describe people who a. use the output from computers (the end product). b. write software for computers. c. use computers to perform information processing tasks. d. are the last to use a computer or the information from a computer. The largest computers, used mainly for research, are called a. microcomputers. b. maxicomputers. c. supercomputers. d. mainframe computers. The raw material used to create information is called a. metaware. b. hardware. c. data. d. manuals / procedures. The name for the kind of software that performs tasks like word processing or database management is a. DOS. b. system software. c. application software. d. operation software. Software used to interact between user programs and the computer is called a. application software. b. system software. c. operation software. d. custom made software. 1 Chapter 1: Introduction Microcomputers are divided into two general categories a. high speed and low speed.
    [Show full text]
  • THE USE of MINICOMPUTERS in a DISTRIBUTED INFORMATION PROCESSING SYSTEM-A FEASIBILITY STUDY by Stanley M
    THE USE OF MINICOMPUTERS IN A DISTRIBUTED INFORMATION PROCESSING SYSTEM-A FEASIBILITY STUDY By Stanley M. Lon^will, Jesse M. McNellis, and Dou&las R. Posson U.S. GEOLOGICAL SURVEY Open-File Report 80—326 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director For additional information write to: Chief Hydrolo&ist 437 National Center U.S. Geological Survey, WRD Reston, Virginia 22092 TABLE OF CONTENTS I Introduction ................. 5 II Executive summary ............... 6 III Acquisition of prototype systems .......... 8 IV Prototype minicomputer configuration ......... 9 V Minicomputer installation and operations ........ 13 A. Installation of minicomputer systems ....... 13 1. Logistics ............... 13 2. Environment .............. 13 3. Other ................ 13 B. Operation ................ 14 1. Attended ............... 14 2. Unattended .............. 14 C. Hardware malfunctions ............ 15 1. CPU and memory ............. 15 2. Peripherals .............. 15 D. Hardware deficiencies ............ 16 1. CPU and memory ............. 16 2. Peripherals .............. 16 E. Software deficiencies ............ 17 1. System functions ............ 17 2. Processors .............. 17 a. FORTRAN .............. 17 b. Editor .............. 18 c. HASP emulator ............ 18 d. 200UT emulator ........... 18 e. Tape utilities ........... 18 F. Telecommunications ............. 18 G. Programming ................ 19 H. Training ................ 19 I. Maintenance ................ 20
    [Show full text]