MICROCOMPUTERS a Microcomputer Is a Small, Relatively

Total Page:16

File Type:pdf, Size:1020Kb

MICROCOMPUTERS a Microcomputer Is a Small, Relatively MICROCOMPUTERS A microcomputer is a small, relatively inexpensive computer with a microprocessor as its central processing unit (CPU). It includes a microprocessor, memory, and input/output (I/O) facilities. Microcomputers became popular in the 1970s and 80s with the advent of increasingly powerful microprocessors. microcomputer contains a microprocessor (a central processing unit on a microchip ),memory in the form of read-only memory and random access memory , I/O ports and a bus or system of interconnecting wires, housed in a unit that is usually called a motherboard . Monitors, keyboards and other devices for input and output may be integrated or separate. Computer memory in the form of RAM, and at least one other less volatile, memory storage device are usually combined with the CPU on a system bus in one unit. Other devices that make up a complete microcomputer system include batteries, a power supply unit, a keyboard and various input/output devices used to convey information to and from a human operator (printers, monitors, human interface devices). Microcomputers are designed to serve only one user at a time, although they can often be modified with software or hardware to concurrently serve more than one user. Microcomputers fit well on or under desks or tables, so that they are within easy access of users. Bigger computers like minicomputers, mainframes, and supercomputers take up large cabinets or even dedicated rooms. A microcomputer comes equipped with at least one type of data storage, usually RAM. Although some microcomputers (particularly early 8-bit home micros) perform tasks using RAM alone, some form of secondary storage is normally desirable. In the early days of home micros, this was often a data cassette deck (in many cases as an external unit). Later, secondary storage (particularly in the form of floppy disk and hard disk drives) were built into the microcomputer case. Desktop computers, laptops, personal digital assistant (PDA), tablets & smartphones are all types of microcomputers. The micro-computers are widely used & the fastest growing computers. These computers are the cheapest among the other three types of computers. The Micro- computers are specially designed for general usage like entertainment, education and work purposes. Well known manufacturers of Micro-computer are Dell, Apple, Samsung, Sony & Toshiba. Desktop computers, Gaming consoles, Sound & Navigation system of a car, Netbooks, Notebooks, PDA’s, Tablet PC’s, Smartphones, Calculators are all type of Microcomputers. Personal Computer or PC – A PC is a computer that is used by someone for his personal use. It is a complete system in itself and its convenient size, price and simple functions make it easy for the end-user to work on it without any intervention from computer operators. Desktop – Any PC that is designed to be placed on a desk and not for portability is called a desktop. Such computers are kept in a somewhat permanent location and can be a little bulky. They usually have more power and storage compared to their movable counterparts. Laptop or Notebook – A PC that can be moved around is called a laptop. It gets its name from the fact that you can keep it on your lap and use it. It is also called a notebook because you can carry the battery-operated device to classes or meetings conveniently and store any notes or information in it. It integrates the monitor, keyboard, pointing device, CPU, memory and hard drive in one system. Netbook – This is similar to a laptop, the only difference being that it is smaller in size, which makes it even more portable. It is also less expensive and performs the basic functions, but its internal parts are not as powerful as a desktop or laptop. Workstation – This computer is a desktop which is larger, consists of a more powerful processor, greater memory space and extra ability to do specific kind of work. Such a computer is used by programmers, game developers, video or sound editors and graphic designers. PDA – A Personal Digital Assistant is a small, highly integrated computer usually using flash memory for storage instead of a hard drive. It uses touchscreen technology and doesn’t have a keyboard. Those which use a digital pen for input are called handheld computers. It is light, portable, has good battery life and fits within your palm, because of which it is also called a palmtop. Popular computers include CyberPower Zeus Mini - Asus Chromebox M004U - Apple Mac Pro (2013) MINICOMPUTERS Minicomputers are used by small businesses & firms. These are small machines and can be accommodated on a disk with not as processing and data storage capabilities as super-computers & Mainframes. These computers are not designed for a single user. Individual departments of a large company or organizations use Mini-computers for specific purposes. For example, a production department can use Mini-computers for monitoring certain production process. Minicomputers (colloquially, minis) are a class of multi-user computers that lie in the middle range of the computing spectrum, in between the smallest multi-user systems (mainframe computers) and the largest single-user systems (microcomputers or personal computers). The term superminicomputer or super mini was used to distinguish more powerful minicomputers that approached mainframes in capability. Super minis were usually 32-bit at a time when most minicomputers were 16-bit. The contemporary term for minicomputer is midrange computer, such as the higher-end SPARC, POWER and Itanium-based systems from Oracle Corporation, IBM and Hewlett-Packard. A minicomputer, or colloquially mini, is a class of smaller computers that evolved in the mid-1960s and sold for much less than mainframe and mid-size computers from IBM and its direct competitors.. Minis were designed for control, instrumentation, human interaction, and communication switching as distinct from calculation and record keeping. Many were sold indirectly to Original Equipment Manufacturers (OEMs) for final end use application. During the two decade lifetime of the minicomputer class (1965-1985), almost 100 companies formed and only a half dozen remained. When single-chip CPUs appeared, beginning with the Intel 4004 in 1971, the term "minicomputer" came to mean a machine that lies in the middle range of the computing spectrum, in between the smallest mainframe computers and the microcomputers. Examples include the higher- end SPARC, Power Architectureand Itanium-based systems from Oracle, IBM and Hewlett- Packard. A variety of companies emerged that built turnkey systems around minicomputers with specialized software and, in many cases, custom peripherals that addressed specialized problems such as computer aided design, computer aided manufacturing, process control, manufacturing resource planning, and so on. Many if not most minicomputers were sold through these original equipment manufacturers and value-added resellers.Several pioneering computer companies first built minicomputers, such as DEC, Data General, and Hewlett-Packard (HP) (who now refers to its HP3000 minicomputers as "servers" rather than "minicomputers"). And although today's PCs and servers are clearly microcomputers physically, architecturally their CPUs and operating systems have evolved largely by integrating features from minicomputers. MAINFRAMES Although Mainframes are not as powerful as supercomputers, but certainly they are quite expensive nonetheless, and many large firms & government organizations uses Mainframes to run their business operations. The Mainframe computers can be accommodated in large air- conditioned rooms because of its size. Super-computers are the fastest computers with large data storage capacity, Mainframes can also process & store large amount of data. Banks educational institutions & insurance companies use mainframe computers to store data about their customers, students & insurance policy holders. Popular Mainframe computers: Fujitsu’s ICL VME Hitachi’s Z800 The term mainframe computer was created to distinguish the traditional, large, institutional computer intended to service multiple users from the smaller, single user machines. These computers are capable of handling and processing very large amounts of data quickly. Mainframe computers are used in large institutions such as government, banks and large corporations. They are measured in MIPS (million instructions per second) and respond to up to 100s of millions of users at a time. Mainframe computers are used by large companies and organizations to perform critical tasks that involve bulk data processing like transaction processing, census information, statistical data and so on. They consist of extensive input and output facilities, are very stable and dependable and handle millions of transactions every day. Mainframe computers are used primarily by corporate and governmental organizations for critical applications, bulk data processing such as census, industry and consumer statistics, enterprise resource planning and transaction processing. The term originally referred to the large cabinets called "main frames" that housed the central processing unit and main memory of early computers. Later, the term was used to distinguish high-end commercial machines from less powerful units. Most large-scale computer system architectures were established in the 1960s, but continue to evolve. Modern mainframe design is generally less defined by single-task computational speed (typically defined as MIPS rate or FLOPS in the case of floating point calculations),
Recommended publications
  • The Video Game Industry an Industry Analysis, from a VC Perspective
    The Video Game Industry An Industry Analysis, from a VC Perspective Nik Shah T’05 MBA Fellows Project March 11, 2005 Hanover, NH The Video Game Industry An Industry Analysis, from a VC Perspective Authors: Nik Shah • The video game industry is poised for significant growth, but [email protected] many sectors have already matured. Video games are a large and Tuck Class of 2005 growing market. However, within it, there are only selected portions that contain venture capital investment opportunities. Our analysis Charles Haigh [email protected] highlights these sectors, which are interesting for reasons including Tuck Class of 2005 significant technological change, high growth rates, new product development and lack of a clear market leader. • The opportunity lies in non-core products and services. We believe that the core hardware and game software markets are fairly mature and require intensive capital investment and strong technology knowledge for success. The best markets for investment are those that provide valuable new products and services to game developers, publishers and gamers themselves. These are the areas that will build out the industry as it undergoes significant growth. A Quick Snapshot of Our Identified Areas of Interest • Online Games and Platforms. Few online games have historically been venture funded and most are subject to the same “hit or miss” market adoption as console games, but as this segment grows, an opportunity for leading technology publishers and platforms will emerge. New developers will use these technologies to enable the faster and cheaper production of online games. The developers of new online games also present an opportunity as new methods of gameplay and game genres are explored.
    [Show full text]
  • Classification of Computers
    Chapter-2 Classification of Computers Computers can be classified many different ways -- by size, by function, or by processing capacity. Functionality wise 4 types a) Micro computer b) Mini Computer c) Mainframe Computer d) Super Computer Microcomputers Microcomputers are connected to networks of other computers. The price of a microcomputer varies from each other depending on the capacity and features of the computer. Microcomputers make up the vast majority of computers. Single user can interact with this computer at a time. It is a small and general purpose computer. Mini Computer Mini Computer is a small and general purpose computer. It is more expensive than a micro computer. It has more storage capacity and speed. It designed to simultaneously handle the needs of multiple users. Mainframe Computer Large computers are called Mainframes. Mainframe computers process data at very high rates of speed, measured in the millions of instructions per second. They are very expensive than micro computer and mini computer. Mainframes are designed for multiple users and process vast amounts of data quickly. Examples: - Banks, insurance companies, manufacturers, mail-order companies, and airlines are typical users. Super Computers The largest computers are Super Computers. They are the most powerful, the most expensive, and the fastest. They are capable of processing trillions of instructions per second. It uses governmental agencies, such as:- Chemical analysis in laboratory Space exploration National Defense Agency National Weather Service Bio-Medical research Design of many other machines Limitations of Computer Computer cannot take over all activities simply because they are less flexible than humans. It does not hold intelligence of its own.
    [Show full text]
  • Inside the Computer Microcomputer Minicomputer Mainframe
    Inside the computer Microcomputer Classification of Systems: • Personal Computer / Workstation. – Microcomputer • Desktop machine, including portables. – Minicomputer • Used for small, individual tasks - such as – Mainframe simple desktop publishing, small business – Supercomputer accounting, etc.... • Typical cost : £500 to £5000. • Chapters 1-5 in Capron • Example : The PCs in the labs are microcomputers. Minicomputer Mainframe • Medium sized server • Large server / Large Business applications • Desk to fridge sized machine. • Large machines in purpose built rooms. • Used for distributed data processing and • Used as large servers and for intensive multi-user server support. business applications. • Typical cost : £5,000 to £500,000. • Typical cost : £500,000 to £10,000,000. • Example : Scarlet is a minicomputer. • Example : IBM ES/9000, IBM 370, IBM 390. Supercomputer • Scientific applications • Large machines. • Typically employ parallel architecture (multiple processors running together). • Used for VERY numerically intensive jobs. • Typical cost : £5,000,000 to £25,000,000. • Example : Cray supercomputer 1 What's in a Computer System? Software • The Onion Model - layers. • Divided into two main areas • Hardware • Operating system • BIOS • Used to control the hardware and to provide an interface between the user and the hardware. • Software • Manages resources in the machine, like • Where does the operating system come in? • Memory • Disk drives • Applications • includes games, word-processors, databases, etc.... Interfaces Hardware • The chunky stuff! •CUI • If you can touch it... it's probably hardware! • Command Line Interface • The mother board. •GUI • If we have motherboards... surely there must be • Graphical User Interface fatherboards? right? •WIMP • What about sonboards, or daughterboards?! • Windows, Icons, Mouse, Pulldown menus • Hard disk drives • Monitors • Keyboards BIOS Basics • Basic Input Output System • Directly controls hardware devices like UARTS (Universal Asynchronous Receiver-Transmitter) - Used in COM ports.
    [Show full text]
  • CPU, Microcomputer and Microcontroller
    Chapter 1 Types, Selection, and Applications of Microcontrollers Lesson 2 CPU, Microcomputer and Microcontroller 2011 Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education 2 CPU Program-flow control Section Fetch Unit Control unit Internal Buses Instruction Execution Section Arithmetic +,-,, Rotate and Logic XOR, OR, Unit Shift AND,NOT 2011 Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education 3 Internal bus Fetch IR Decode ID Control Execution and Sequencer Circuits CPU 2011 Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education 4 CPU and Buses Fetch Unit Memory IO Devices Control unitProgram Counter Arithmetic and Logic Control Data Unit Bus Bus Address Bus 2011 Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education 5 Microprocessor - Chip or VLSI Section Cache Reset CPU circuit Registers Clock circuit Stack 2011 Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education 6 Microcomputer Chip or VLSI Core Microprocessor Memory Interrupt Timing Unit Handler unit IO Devices Data Control Bus Bus Address Bus 2011 Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education 7 Computer System Microprocessor Micro- Ports Memory computer CD Interrupt Handler unit drive Timing Unit Hard Disk Keyboard Peripherals 2011 Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education 8 Microcontroller Chip or VLSI Core CPU Micro- Ports Memory computer Interrupt Handler unit Serial Devices Timing Devices Watchdog Timer Application specific Devices PWM ADC 2011 Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education 9 Embedded processor - Chip or VLSI Core Cache Reset CPU circuit Large register sets Clock Fast context switching circuit Registers based ALU 2011 Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education 10 Embedded Microcontroller 2011 Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education 11 Embedded Microcontroller CPU Micro- Ports Memory computer Interrupt Handler unit Serial Devices Timing Devices Application Watchdog Timer specific Devices PWM ADC No external memory or devices based system 2011 Microcontrollers-..
    [Show full text]
  • Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses
    of Commerce Computer Science National Bureau and Technology of Standards NBS Special Publication 500-110 Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses QO IGf) .U57 500-110 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act ot Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides; (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and
    [Show full text]
  • Microcomputers in Development: a Manager's Guide
    Microcomputers in Development: A Manager's Guide Marcus D. Ingle, Noel Berge, and Marcia Hamilton Kumarianfl P-ress 29 Bishop Road West Hartford, Connecticut 06119 Dedications To Diana who is so special in many ways, Aric who helps me learn, Aaron who makes it fun, and Danika who has it all together. Marcus To my Love and Best Friend - Nancy. Noel I am so grateful for the patience, support and gentle harassment provided by my children, Daniel and Elizabeth, and by my husband Dennis. Marcia Copyright © 1983 by Kumarian Press 29 Bishop Road, West Hartford, Connecticut 06119 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher. Printed in the United States of America Cover de.ign by Marilyn Penrod This manuscript was prepared on a Kaypro microcomputer using Wordstar and printed on a C. Itoh printer using prestige elite type. Library of Congress Cataloging in Publication Data Ingle, Marcus. Microcomputers in development. Bibliography: p: 1. Microcomputers. 2. Economic development projects ­ Management-Data processing. I. Berge, Noel, 1943- II.Hamilton, Marcia, 1943- III. Title. QA76.5.1445 1983 658.4'038 83-19558 ISBN 0-931816-03-3 ii TABLE OF CONTENTS Table of Contents iii Foreword v[ ( Authors' Pre fac- ix Acknowledgement s xf INTRODUCTION 1 Some Implications 2 What a Microcomputer is Not 2 Who Should Use T~i Guide? 3 The Purpose and Scope of the Guide 5 What the Guide Does and Does Not Do 6 CHAPTER I: THE IMANAGEMENT POTENTIAL OF USER-FRIENDLY MICROCOMPUTERS 9 The Context if Development Management ]I Generic Management Functions 13 The Importance of User-Friendliness in Microcomputer Systems 24 Structured Flexibility 24 User-Friendly Skill.
    [Show full text]
  • Estimating Surplus in the Computing Market
    This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research Volume Title: The Economics of New Goods Volume Author/Editor: Timothy F. Bresnahan and Robert J. Gordon, editors Volume Publisher: University of Chicago Press Volume ISBN: 0-226-07415-3 Volume URL: http://www.nber.org/books/bres96-1 Publication Date: January 1996 Chapter Title: From Superminis to Supercomputers: Estimating Surplus in the Computing Market Chapter Author: Shane M. Greenstein Chapter URL: http://www.nber.org/chapters/c6071 Chapter pages in book: (p. 329 - 372) 8 From Superminis to Supercomputers: Estimating Surplus in the Computing Market Shane M. Greenstein 8.1 Introduction Innovation is rampant in adolescent industries. Old products die or evolve and new products replace them. Each new generation of products offers new features, extends the range of existing features, or lowers the cost of obtaining old features. Vendors imitate one another’s products, so that what had been a novelty becomes a standard feature in all subsequent generations. Depending on the competitive environment and the type of innovation, prices may or may not reflect design changes. The computer industry of the late 1960s and 1970s experienced remarkable growth and learning. At the start of the period several technological uncertain- ties defied easy resolution. Most knowledgeable observers could predict the direction of technical change, but not its rate. Vendors marketed hundreds of new product designs throughout the 1970s, and a fraction of those products became commercially successful. In time the industry took on a certain matu- rity and predictability. By the late 1970s, both buyers and sellers understood the technical trajectory of the industry’s products.
    [Show full text]
  • MCC ACADEMIC PROGRAMS ASSOCIATE in SCIENCE and ARTS DEGREE PROGRAMS Associate in Science and Arts
    Programs MCC ACADEMIC PROGRAMS ASSOCIATE IN SCIENCE AND ARTS DEGREE PROGRAMS Associate in Science and Arts ............................................................................................. Pg 55 Associate in Science and Arts - Criminal Justice ................................................................. Pg 59 Associate in Science and Arts - Early Childhood Education ............................................... Pg 59 Associate in Science and Arts - Nursing ............................................................................. Pg 59 ASSOCIATE IN APPLIED SCIENCE DEGREE PROGRAMS Criminal Justice ................................................................................................................... Pg 60 Corrections Certificates ...................................................................................................... Pg 60 ALLIED HEALTH PROGRAMS (Degrees, Certificates, and Diplomas) Nursing ...............................................................................................................................................Pg 62 Respiratory Therapy ............................................................................................................Pg 66 Massage Therapy ................................................................................................................Pg 67 BUSINESS PROGRAMS (Degrees, Certificates, and Professional Development Credits) Accounting/Office Management ........................................................................................
    [Show full text]
  • 2 CLASSIFICATION of COMPUTERS.Pdf
    CLASSIFICATION OF COMPUTERS Computers can be classified in the following methods: I . Computational Method I. Size and Capability I. Classification based on Computational method: Based on the way a system performs the computations, a computer can be classified as follows: • Digital • Analog • Hybrid Digital computer: A digital computer can count and accept numbers and letters through various input devices. The input devices convert the data into electronic pulses, and perform arithmetical operations on numbers in discrete form. In addition to performing arithmetical operations, they are also capable of:- 1. Storing data for processing 2. Performing logical operations 3. Editing or deleting the input data. One of the main advantages in the use of digital computers is that any desired level of accuracy can be achieved by considering as many places of decimal as are necessary and hence are most suitable for business application. The main disadvantage is their high cost, even after regular reductions in price and the complexity in programming. Example: To calculate the distance travelled by a car in a particular time interval, you might take the diameter of the tyre to calculate the periphery, take into consideration the number of revolutions of the wheel per minute, take the time in minutes and multiply them all to get the distance moved. This is called digital calculation. A computer using the principle of digital calculations can be called a digital computer. Analog Computer: Analog computers process data input in a continuous form. Data such as voltage, resistance or temperature are represented in the computer as a continuous, unbroken flow of information, as in engineering and scientific applications, where quantities to be processed exists as waveforms or continually rising and falling voltages, pressure and so on.
    [Show full text]
  • Digital and System Design
    Digital System Design — Use of Microcontroller RIVER PUBLISHERS SERIES IN SIGNAL, IMAGE & SPEECH PROCESSING Volume 2 Consulting Series Editors Prof. Shinsuke Hara Osaka City University Japan The Field of Interest are the theory and application of filtering, coding, trans- mitting, estimating, detecting, analyzing, recognizing, synthesizing, record- ing, and reproducing signals by digital or analog devices or techniques. The term “signal” includes audio, video, speech, image, communication, geophys- ical, sonar, radar, medical, musical, and other signals. • Signal Processing • Image Processing • Speech Processing For a list of other books in this series, see final page. Digital System Design — Use of Microcontroller Dawoud Shenouda Dawoud R. Peplow University of Kwa-Zulu Natal Aalborg Published, sold and distributed by: River Publishers PO box 1657 Algade 42 9000 Aalborg Denmark Tel.: +4536953197 EISBN: 978-87-93102-29-3 ISBN:978-87-92329-40-0 © 2010 River Publishers All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Dedication To Nadia, Dalia, Dina and Peter D.S.D To Eleanor and Caitlin R.P. v This page intentionally left blank Preface Electronic circuit design is not a new activity; there have always been good designers who create good electronic circuits. For a long time, designers used discrete components to build first analogue and then digital systems. The main components for many years were: resistors, capacitors, inductors, transistors and so on. The primary concern of the designer was functionality however, once functionality has been met, the designer’s goal is then to enhance per- formance.
    [Show full text]
  • Chapter 1. a Chronology of Game Programming
    This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks . [ Team LiB ] Chapter 1. A Chronology of Game Programming "In the beginning the Universe was created. This has made a lot of people very angry and been widely regarded as a bad move." —Douglas Adams KEY TOPICS Phase I: Before Spacewar Phase II: Spacewar to Atari Phase III: Game Consoles and Personal Computers Phase IV: Shakedown and Consolidation Phase V: The Advent of the Game Engine Phase VI: The Handheld Revolution Phase VII: The Cellular Phenomenon Phase VIII: Multiplayer Games In Closing The art and science of game development have experienced a huge progression since the early days. Hardware has improved by orders of magnitude, whereas game complexity and richness have simply exploded. To better understand how games are coded today, and why, it is essential to look back and review the history of game programming. I have divided that lengthy narration into what I consider the eight most defining moments that shaped the current industry. Let's time warp ourselves to those moments and take a look at how things were done back then. This way the reasons behind today's practices will become obvious. I will avoid the trivial and focus on programming practices. Because raw data is useless without perspective, it's also important to provide some context in which to interpret the data and to understand how today's programming practices were developed. [ Team LiB ] This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it.
    [Show full text]
  • Willy Loman and the "Soul of a New Machine": Technology and the Common Man Richard T
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Maine The University of Maine DigitalCommons@UMaine English Faculty Scholarship English 1983 Willy Loman and the "Soul of a New Machine": Technology and the Common Man Richard T. Brucher University of Maine - Main, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/eng_facpub Part of the English Language and Literature Commons Repository Citation Brucher, Richard T., "Willy Loman and the "Soul of a New Machine": Technology and the Common Man" (1983). English Faculty Scholarship. 7. https://digitalcommons.library.umaine.edu/eng_facpub/7 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in English Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. a Willy Loman and The Soul of New Machine: Technology and the Common Man RICHARD T. BRUCHER As Death of a Salesman opens, Willy Loman returns home "tired to the death" (p. 13).1 Lost in reveries about the beautiful countryside and the past, he's been driving off the road; and now he wants a cheese sandwich. ? But Linda's that he a new cheese suggestion try American-type "It's whipped" (p. 16) -irritates Willy: "Why do you get American when I like Swiss?" (p. 17). His anger at being contradicted unleashes an indictment of modern industrialized America : street cars. not a The is lined with There's breath of fresh air in the neighborhood.
    [Show full text]