เรื่อง Technology Be It Or out of the Game อยู่รอดด้วยเทคโนโลยี / อ.พิ

Total Page:16

File Type:pdf, Size:1020Kb

เรื่อง Technology Be It Or out of the Game อยู่รอดด้วยเทคโนโลยี / อ.พิ อ.พิเชษฐ กนกศิริมา ขอบคุณ Technologies การน ารูปและคลิปมาประกอบการบรรยายเป็นเพือให้ความรู่ และเป็น ้ ประโยชน์แก่ผู้ฟัง มิได้มีความตังใจที้ จะละเมิดลิขสิ่ ทธิหรือเพื์ อเป็น่ Be In or Out การโฆษณาแต่อย่างใด จึงขอขอบคุณไว้ ณ ทีนี่ ้ Of The Game Outline อย่รอดด้วยู การเปลียนแปลงของโลกในยุคที่ เรียกว่า่ 4.0 ด าเนินไปอย่างรวดเร็วกว่า ในยุคก่อน การท าความเข้าใจและติดตามทัน โดยต้องเตรียมตัวและ เทคโนโลยี ปรับเปลียนจึงเป็นเรื่ องที่ หลีกเลี่ ยงไม่ได้่ หัวข้อการบรรยายมีดังนี้ . ประโยชน์ของเทคโนโลยี . การเปลียนแปลงด้านเทคโนโลยี่ . เทคโนโลยีทีน่ ามาใช ้ ่ . ทักษะทีต้องเตรียม 2 พฤติกรรมและไลฟ์สไตล ์เปลียน่ ! “คนไม่พอ” “ส่งงานไม่ทัน” คนอ่านข่าว..นักพยากรณ์..คนแปลหนังสือ..มัคคุเทศน์.. “ค่าแรงสูง ต้นทุนเพิม่ ” พนักงานธนาคาร..พนักงานต้อนรับ..พนักงานเสริฟ.. พนักงานขายของหน้าร ้าน..พ่อค้าคนกลาง..พนักงานไปรษณีย.. ์ “คุณภาพไม่สม่ าเสมอ” คนขับแท็กซี..่ แพทย.. ์ ศัลยแพทย… ์ เทรดหุ้น……….. “งานละเอียด งานอันตราย” ส่อเค้าตกงาน ! “ความเปลียนแปลงด้านเทคโนโลยี่ ” ท าให้เกิดความสะดวก ถูกต้อง รวดเร็ว ท าไม ? ท าไม ? และประหยัด เราควรปรับตัวและอยู่กับสิงนี่ ้ 3 4 Computer ประโยชน์ทีได้รับจากเทคโนโล่ ยี Connectivity Automate Improve Service Accurate Faster Secure Collaboration Cost Efficient 5 6 1 อ.พิเชษฐ กนกศิริมา Man vs Machine 2016 Man vs Machine 2017 May 1997: Deep Blue conquers chess February 2011: Victorious at Jeopardy Watson competes on Jeopardy and defeats Google DeepMind's AlphaGo beats 9-dan The Future of Go Summit was held in May 2017 by the Chinese IBM's Deep Blue computer beats world chess professional Go player, 4 games to 1 the TV quiz show’s two biggest all-time Lee Sedol, Go Association, Sport Bureau of Zhejiang Province. AlphaGo champion Garry Kasparov in a six-game match won three-game match against Chinese grandmaster Ke Jie, the that lasts several days champions. Deep Blue It wins US$1 million; IBM donates the full world's top Go player amount to charity. • Observe Lee Se-dol presents the signed board from his Go match against 1997 Interpret 2011 AlphaGo as a gift to Google • DeepMind CEO Demis Hassabis • Evaluate after the fifth and final game • Decide 7 8 Man vs Machine ยุค Digital AI Artificial Intelligence เป็นศาสตร ์แขนงหนึ่งของวิทยาศาสตร ์ คอมพิวเตอร ์ ทีเกี่ ยวข้องกับวิธีกา่ รท าให้ คอมพิวเตอร ์มีความสามารถคล้ายมนุษยหรือ ์ เลียน แบบพฤติกรรมมนุษย ์โดยเฉพาะ ความสามารถในการคิดเองได้ หรือมีปัญญา นั่นเอง Algorithm ปัญญานีมนุษย์เป็นผู้สร้ ้างให้คอมพิวเตอร ์ จึง A combination of machine learning and tree search techniques, Monte Carlo tree search, เรียกว่าปัญญาประดิษฐ ์ guided by a "value network" and a "policy network," both implemented using deep neural network technology. 9 10 AI Artificial Intelligence Technology Rational Logic Calculation model Sensor Expert system Human Camera Cognitive science Actuator Microphone Motor Think Touch screen Speaker Light LED Agent Act etc. (Software) etc. Rational Solving problem Maximize achievement Human Language Body movement 11 12 2 อ.พิเชษฐ กนกศิริมา Technology ลักษณะทางกายภาพ (Physiological Biometrics) 1) ลายนิวมือ้ Fingerprint (40 จุด) 2) ลักษณะใบหน้า Facial Recognition 3) ลักษณะของมือ Hand Geometry ลักษณะของนิวมือ้ Finger Geometry 4) Iris ม่านตา และ Retina จอตา 5) DNA 13 14 JD Uses Intel Technology in Staff-Free D-Mart Store กระทรวงการคลัง Face Pay 15 16 องค ์ประกอบของตา (Anatomy of eye) กระจกตา(Cornea) เป็นส่วนของตาด า กระจกตาจะมีความใส และท าให้เกิดการหักเหของแสงมากทีสุด่ ม่านตา(Iris) เป็นส่วนทีมีสีซึ่ งแตกต่างกันขึ่ นอยู่กับเชื้ อชาติ้ บ้างเป็นสีเขียว บ้างเป็นสีฟ้า สีน าตาล้ หรือสี ด า หน้าทีของม่านตาคือช่วยในการควบคุมขนาดของรูม่านตา่ โดยการหดตัวหรือขยายตัว ของกล้ามเนือม่านตา้ เลนส ์แก ้วตา(Lens) เป็นส่วนทีใสอยู่หลังม่านตา่ หน้าทีคือช่วยโฟกัสเพื่ อการมองเห็นที่ ชั่ ดเจน จอประสาทตา(Retina) จอประสาทตาประกอบด้วยเส้นประสาทตาทีมีความละเอียดสูงอยู่ในผนังชั่ นในของลูกตา้ ท าหน้าทีคล้ายกับฟิล่ ์มถ่ายรูปโดยจะส่งผ่านรูปไปยังสมอง ซึงในภาว่ ะสายตาปกติ การหัก เหของแสงจะลงมาตกกระทบทีจอประสาทตาพอดี่ 17 3 อ.พิเชษฐ กนกศิริมา ม่านตา(Iris) เป็นส่วนทีมีสีซึ่ งแตกต่างกันขึ่ นอยู่กับเชื้ อชาติ้ บ้างเป็นสีเขียว บ้างเป็นสีฟ้า สีน าตาล้ หรือสี ด า หน้าทีของม่านตาคือช่วยในการควบคุมขนาดของรูม่านตา่ โดยการหดตัวหรือขยายตัว ของกล้ามเนือม่านตา้ IRIS Recognition Technology เป็นเทคโนโลยียืนยันตัวตนด้วยม่านตา ม่านตาคนเราจะ ไม่เปลียนแปลงเมื่ ออายุมากกว่า่ 1 ปี ม่านตาคนเราโอกาสจะซากันน้อยมาก ้ โดย 1 ข้างตาจะมีความน่าจะเป็นซาม่ ้ านตาคนอืน่ 1 ใน 1.2 ล้านคน ถ้า 1 คู่ตา โอกาสซากับคนอื ้ นน้อยกว่า่ 1 ใน1000 ล้านคน โอกาสซา ้ แทบไม่มีเลย กระบวนการสร้างรหัสม่านตา (Generate IRIS Code) การเก็บม่านตาท าได้ง่ายมาก เพียงการถ่ายภาพม่านตาด้วยกล้องทีมีความล่ ะเอียดสูง การสร ้างรหัสม่านตา (Iris code) เริมจากการถ่ายภาพดวงตาโดยปกติจะใช่ ้กล่องถ่ายภาพแบบ (infrared iris cameras) ผู้ใช ้ไม่จาเป็นต้องสัมผัสกับอุปกรณ์ และรหัสม่านตา (iris Infrared cameras ซึงกล่องจะสามารถจับพลังงาน่ infrared (ความร ้อน) ซึงมีแสงน้อยมาก่ และแปลงเป็น ่ ่ minutiae) 1 ข้างตามีขนาดไฟล ์เพียง 512 byte แต่ได้ค่ารหัสข้อมูลสูงถึง 220 - 260 จุด ภาพทีละเอียดและคมชัด การสร ้างข้อมูลรหัสม่านตา จะน าภาพทีได้ผ่านกระบวนการประมวลผลภาพ (Image ่ จึงท าให้การยืนยันตัวตนด้วยม่านตาจึงมีความแม่นย าสูงมาก (most accuracy) และมีความ processing) เพือให้ภาพมีคุณภาพดี และท าการหาตาแหน่งม่านตาโดยแยกรูม่านตา จะได้วงกลมคล้ายๆ โดนัท หลังจากนันท้ าการแกะเนือม่านตาทีละวงตามภาพ้ และถอดรหัสข้อมูลนันใช้ ้การคาน วณทางคณิตศาสตร ์ รวดเร็วในการเปรียบเทียบ (high speed) ชันสูง้ (Encode) เป็นแถบขาวดา สุดท้ายจะแปลงข้อมูลนันเป็นรหัส้ Binary ทีท่ าให้คอมพิวเตอร ์อ่านได้ เครืองสแกนม่านตา่ 1แสนบาท 19 20 จอประสาทตา(Retina) จอประสาทตาประกอบด้วยเส้นประสาทตาทีมีความละเอียดสูงอยู่ในผนังชั่ นในของลูกตา้ ลักษณะทางกายภาพ (Physiological Biometrics) ท าหน้าทีคล้ายกับฟิล่ ์มถ่ายรูปโดยจะส่งผ่านรูปไปยังสมอง ซึงในภาว่ ะสายตาปกติ การหัก เหของแสงจะลงมาตกกระทบทีจอประสาทตาพอดี่ Hand and Finger Geometry 21 22 Technology การพิมพ์ ลักษณะทางพฤติกรรม (Behavioural Biometrics) Keystroke Dynamics 1) การพิมพ์ Keystroke Dynamics 2) การเดิน Gait Recognition 3) เสียง Voice Recognition 4) การเซ็นชือ่ Signature 23 24 4 อ.พิเชษฐ กนกศิริมา Technology Technology การเดิน Gait Recognition Speech Recognition คือระบบโปรแกรมคอมพิวเตอร ์ที่ สามารถแปลงเสียงพูด (Audio File) เป็นข้อความตัวอักษร (Text) โดยสามารถแจกแจงค าพูดต่างๆ ทีมนุษย่ ์สามารถพูด ใส่ไมโครโฟน โทรศัพท ์หรืออุปกรณ์อืนๆ่ และเข้าใจค าศัพท ์ ทุกค าอย่างถูกต้องเกือบ 100% 25 26 ประเภทของ Robot 1. Cartesian (gantry) Robot (3P) 1. Cartesian Robot (3P) 2. Cylindrical Robot (R2P) เคลือนที่ เป็นแนวเส้นตรงทั่ ง้ 3 มิติ (linear robot) 3. Spherical Robot (2RP) (ไม่สามารถเข้าถึงวัตถุจากทิศทางข้างใต้ได้) เช่น CNC Machine, 3D Printing, Pick & Place Machine 4. Articulated Arm (3R) 5. SCARA Robot Revolute joint ข้อต่อแบบหมุน Prismatic joint ข้อต่อแบบเลือน่ 27 28 2. Cylindrical Robot (R2P) 3. Spherical Robot (Polar) (2RP) ่ ่ ่ แกนที1(เอว), แกนที 2(ไหล่) และแกนที 3(ข้อศอก) มีสองแกนทีเคลื่ อนในลักษณะการหมุน่ คือแกนที ่ 1 (เอว) และแกนที ่ 2 (ไหล่) ส่วนแกนที ่ 3 ่ ่ ้ ่ ท าให้การเคลือนทีได้พืนทีการท างานเป็นรูปทรงกระบอก (ข้อศอก) จะเป็นลักษณะของการเคลือนที่ แนวเส้นตรง่ ้ ้ ่ ่ ่ ใช ้ในการหยิบยกชินงาน หรือป้อนชินงานเข้าเครืองจักร เพราะสามารถเคลือนทีเข้าออก เหมาะกับการหยิบยกสิงของที่ มีน่ าหนัก้ เช่นหยิบของเข้าออกจากเครือง่ punch press บริเวณทีเป็นช่องได้สะดวก่ เช่น การโหลดชินงานเข้าเครื้ อง่ CNC 30 29 5 อ.พิเชษฐ กนกศิริมา 4. Articulated Arm Robot (3R) 5. SCARA Robot (Selective Compliance Assembly Robot Arm ) ใช ้งานประเภท welding, drilling และ soldering เพราะเป็นงานทีท่ าซาๆ ้ และใช ้กับงานทีมี่ น าหนักเบา้ และการเคลือนไหวในแนวดิ่ ง่ complex applications as Its arm was rigid in the Z-axis and pliable in the XY-axes, which allowed it to adapt spray painting and welding to holes in the XY-axes, i.e., inserting a round pin in a round hole without binding. 31 32 X Skills Skills McKinsey Mercer Deloitte World Economic Forum LinkedIn 1 Adaptability O O 2 Analytics O O 3 Change Management O 4 Cognitive Flexibility O 5 Collaboration O O 6 Communication O 7 Coordinating with Others O 8 Creativity/Innovation O O O O 9 Critical Thinking O 10 Culture Fit O 11 Decision Making O 12 Design Thinking O 13 Digital Savvy O 14 Emotional Intelligence O O 15 Entrepreneurship O O 16 Ethical O 17 Global Mindset O 18 Growth Potential O 19 Leadership O O 20 Listening O 21 Negotiation O 22 People Management O O 23 Prioritization O 24 Problem Solving / Complex O O O - Robot 25 Project Management O 26 Sales O O - Lisp, Prolog, C/C++, Java, Python 27 Service Orientation O 33 28 Virtual Collaboration O 34 บทสรุป Transformation Technology Disruptive Technology ต่างๆ (ที่ส่งผลอย่างรุนแรง)ไม่ว่าจะ มีความคิดสร้างสรรค ์ สรุป Mobility, Connectivity, Cloud, Biometric, Facial & Voice ชอบวิเคราะห ์วิจัย Recognition, Camera Interaction, EV, Autonomous Car, มีความสามารถทางสังคม Robot, Big Data, Humanoid, AI, Digital World, เป็นนักเจรจา .……Block Chain มีความยืดหยุ่น พัฒนาซอฟต ์แวร ์ การปรับตัวในยุคปัจจุบัน ยุคดิจิทัล เพืออยู่ได้่ ใน 20 ปีข้างหน้า ติดตามเรืองไอทีและเทคโนโลยี่ เป็นเรืองส่ าคัญและท้าทายอย่างมาก เรียนรู ้อย่างต่อเนื่อง อ่านให้มาก คบคนเก่ง ตามให้ทันเพื่อเป็นผู้น า หลีกเลียงงานที่ มีกระบวนการซ่ า ้ ๆ ท างานเป็นทีม และอยู่รอด 35 36 6.
Recommended publications
  • Iaj 10-3 (2019)
    Vol. 10 No. 3 2019 Arthur D. Simons Center for Interagency Cooperation, Fort Leavenworth, Kansas FEATURES | 1 About The Simons Center The Arthur D. Simons Center for Interagency Cooperation is a major program of the Command and General Staff College Foundation, Inc. The Simons Center is committed to the development of military leaders with interagency operational skills and an interagency body of knowledge that facilitates broader and more effective cooperation and policy implementation. About the CGSC Foundation The Command and General Staff College Foundation, Inc., was established on December 28, 2005 as a tax-exempt, non-profit educational foundation that provides resources and support to the U.S. Army Command and General Staff College in the development of tomorrow’s military leaders. The CGSC Foundation helps to advance the profession of military art and science by promoting the welfare and enhancing the prestigious educational programs of the CGSC. The CGSC Foundation supports the College’s many areas of focus by providing financial and research support for major programs such as the Simons Center, symposia, conferences, and lectures, as well as funding and organizing community outreach activities that help connect the American public to their Army. All Simons Center works are published by the “CGSC Foundation Press.” The CGSC Foundation is an equal opportunity provider. InterAgency Journal FEATURES Vol. 10, No. 3 (2019) 4 In the beginning... Special Report by Robert Ulin Arthur D. Simons Center for Interagency Cooperation 7 Military Neuro-Interventions: The Lewis and Clark Center Solving the Right Problems for Ethical Outcomes 100 Stimson Ave., Suite 1149 Shannon E.
    [Show full text]
  • Machine Learning Explained
    Learning Deep or not Deep… De MENACE à AlphaGo JM Alliot Le Deep Learning en Version Simple Qu’est-ce que c’est ? Croisement entre deux univers • L’apprentissage • Par renforcement: on est capable d’évaluer le résultat et de l’utiliser pour améliorer le programme • Supervisé: une base de données d’apprentissage est disponible cas par cas • Non supervisé: algorithmes de classification (k- means,…),… • Les neurosciences DLVS L’apprentissage par renforcement • Turing: • « Instead of trying to produce a program to simulate the adult mind, why not rather try to produce one which simulates the child’s? If this were then subjected to an appropriate course of education one would obtain the adult brain. Presumably the child brain is something like a notebook as one buys it from the stationers. Rather little mechanism, and lots of blank sheets.” • “The use of punishments and rewards can at best be a part of the teaching process. Roughly speaking, if the teacher has no other means of communicating to the pupil, the amount of information which can reach him does not exceed the total number of rewards and punishments applied. By the time a child has learnt to repeat “Casabianca” he would probably feel very sore indeed, if the text could only be discovered by a “Twenty Questions” technique, every “NO” taking the form of a blow.” DLVS L’apprentissage par renforcement • Arthur Samuel (1959): « Some Studies in Machine Learning Using the Game of Checkers » • Memoization • Ajustement automatique de paramètres par régression. • Donald Michie (1962): MENACE
    [Show full text]
  • Hearing on China's Military Reforms and Modernization: Implications for the United States Hearing Before the U.S.-China Economic
    HEARING ON CHINA'S MILITARY REFORMS AND MODERNIZATION: IMPLICATIONS FOR THE UNITED STATES HEARING BEFORE THE U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION ONE HUNDRED FIFTEENTH CONGRESS SECOND SESSION THURSDAY, FEBRUARY 15, 2018 Printed for use of the United States-China Economic and Security Review Commission Available via the World Wide Web: www.uscc.gov UNITED STATES-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION WASHINGTON: 2018 U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION ROBIN CLEVELAND, CHAIRMAN CAROLYN BARTHOLOMEW, VICE CHAIRMAN Commissioners: HON. CARTE P. GOODWIN HON. JAMES TALENT DR. GLENN HUBBARD DR. KATHERINE C. TOBIN HON. DENNIS C. SHEA MICHAEL R. WESSEL HON. JONATHAN N. STIVERS DR. LARRY M. WORTZEL The Commission was created on October 30, 2000 by the Floyd D. Spence National Defense Authorization Act for 2001 § 1238, Public Law No. 106-398, 114 STAT. 1654A-334 (2000) (codified at 22 U.S.C. § 7002 (2001), as amended by the Treasury and General Government Appropriations Act for 2002 § 645 (regarding employment status of staff) & § 648 (regarding changing annual report due date from March to June), Public Law No. 107-67, 115 STAT. 514 (Nov. 12, 2001); as amended by Division P of the “Consolidated Appropriations Resolution, 2003,” Pub L. No. 108-7 (Feb. 20, 2003) (regarding Commission name change, terms of Commissioners, and responsibilities of the Commission); as amended by Public Law No. 109- 108 (H.R. 2862) (Nov. 22, 2005) (regarding responsibilities of Commission and applicability of FACA); as amended by Division J of the “Consolidated Appropriations Act, 2008,” Public Law Nol. 110-161 (December 26, 2007) (regarding responsibilities of the Commission, and changing the Annual Report due date from June to December); as amended by the Carl Levin and Howard P.
    [Show full text]
  • Autonomous Aircraft Sequencing and Separation with Hierarchical Deep Reinforcement Learning
    ICRAT 2018 Autonomous Aircraft Sequencing and Separation with Hierarchical Deep Reinforcement Learning Marc Brittain Peng Wei Aerospace Engineering Department Aerospace Engineering Department Iowa State University Iowa State University Ames, IA, USA Ames, IA, USA [email protected] [email protected] Abstract—With the increasing air traffic density and complexity autonomy or human operator decisions, and cope with in traditional controlled airspace, and the envisioned large envisioned high-density and on-demand air traffic by providing volume vertical takeoff and landing (VTOL) operations in low- automated sequencing and separation advisories. altitude airspace for personal air mobility or on-demand air taxi, an autonomous air traffic control system (a fully automated The inspiration of this paper is twofold. First, the authors airspace) is needed as the ultimate solution to handle dense, were amazed by the fact that an artificial intelligence agent complex and dynamic air traffic in the future. In this work, we called AlphaGo built by DeepMind defeated the world design and build an artificial intelligence (AI) agent to perform champion Ke Jie in three matches of Go in May 2017 [11]. air traffic control sequencing and separation. The approach is to This notable advance in AI field demonstrated the theoretical formulate this problem as a reinforcement learning model and foundation and computational capability to potentially augment solve it using the hierarchical deep reinforcement learning and facilitate human tasks with intelligent agents and AI algorithms. For demonstration, the NASA Sector 33 app has technologies. Therefore, the authors want to apply the most been used as our simulator and learning environment for the recent AI frameworks and algorithms to re-visit the agent.
    [Show full text]
  • Fml-Based Dynamic Assessment Agent for Human-Machine Cooperative System on Game of Go
    Accepted for publication in International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems in July, 2017 FML-BASED DYNAMIC ASSESSMENT AGENT FOR HUMAN-MACHINE COOPERATIVE SYSTEM ON GAME OF GO CHANG-SHING LEE* MEI-HUI WANG, SHENG-CHI YANG Department of Computer Science and Information Engineering, National University of Tainan, Tainan, Taiwan *[email protected], [email protected], [email protected] PI-HSIA HUNG, SU-WEI LIN Department of Education, National University of Tainan, Tainan, Taiwan [email protected], [email protected] NAN SHUO, NAOYUKI KUBOTA Dept. of System Design, Tokyo Metropolitan University, Japan [email protected], [email protected] CHUN-HSUN CHOU, PING-CHIANG CHOU Haifong Weiqi Academy, Taiwan [email protected], [email protected] CHIA-HSIU KAO Department of Computer Science and Information Engineering, National University of Tainan, Tainan, Taiwan [email protected] Received (received date) Revised (revised date) Accepted (accepted date) In this paper, we demonstrate the application of Fuzzy Markup Language (FML) to construct an FML- based Dynamic Assessment Agent (FDAA), and we present an FML-based Human–Machine Cooperative System (FHMCS) for the game of Go. The proposed FDAA comprises an intelligent decision-making and learning mechanism, an intelligent game bot, a proximal development agent, and an intelligent agent. The intelligent game bot is based on the open-source code of Facebook’s Darkforest, and it features a representational state transfer application programming interface mechanism. The proximal development agent contains a dynamic assessment mechanism, a GoSocket mechanism, and an FML engine with a fuzzy knowledge base and rule base.
    [Show full text]
  • NTT Technical Review, Vol. 15, No. 11, Nov. 2017
    NTT Technical Review November 2017 Vol. 15 No. 11 Front-line Researchers Naonori Ueda, NTT Fellow, Head of Ueda Research Laboratory and Director of Machine Learning and Data Science Center, NTT Communication Science Laboratories Feature Articles: Communication Science that Enables corevo®—Artificial Intelligence that Gets Closer to People Basic Research in the Era of Artificial Intelligence, Internet of Things, and Big Data—New Research Design through the Convergence of Science and Engineering Generative Personal Assistance with Audio and Visual Examples Efficient Algorithm for Enumerating All Solutions to an Exact Cover Problem Memory-efficient Word Embedding Vectors Synthesizing Ghost-free Stereoscopic Images for Viewers without 3D Glasses Personalizing Your Speech Interface with Context Adaptive Deep Neural Networks Regular Articles Optimization of Harvest Time in Microalgae Cultivation Using an Image Processing Algorithm for Color Restoration Global Standardization Activities Report on First Meeting of ITU-T TSAG (Telecommunication Standardization Advisory Group) for the Study Period 2017 to 2020 Information Event Report: NTT Communication Science Laboratories Open House 2017 Short Reports Arkadin Brings Businesses into the Future with New Cloud Unified Communications Services and Digital Operations Strategies World’s Largest Transmission Capacity with Standard Diameter Multi-core Optical Fiber—Accelerated Multi-core Fiber Application Using Current Standard Technology External Awards/Papers Published in Technical Journals
    [Show full text]
  • Computer Wins Second GAME Against Chinese GO Champion
    TECHNOLOGY SATURDAY, MAY 27, 2017 Samsung investigating Galaxy S8 ‘iris hack’ SEOUL: Samsung Electronics is investigating claims by a German hacking group that it fooled the iris recognition system of the new flagship Galaxy S8 device, the firm said yesterday. The launch of the Galaxy S8 was a key step for the world’s largest smartphone maker as it sought to move on from last year’s humiliating withdrawal of the fire-prone Galaxy Note 7s, which hammered the firm’s once-stellar reputation. But a video posted by the Chaos Computer Club (CCC), a German hacking group founded in 1981, shows the Galaxy S8 being unlocked using a printed photo of the owner’s eye covered with a contact lens to replicate the curvature of a real eyeball. “A high- resolution picture from the internet is sufficient to cap- ture an iris,” CCC spokesman Dirk Engling said, adding: “Ironically, we got the best results with laser printers made by Samsung.” A Samsung spokeswoman said it was aware of the report and was investigating. The iris scanning technolo- gy was “developed through rigorous testing”, the firm said in a statement as it sought to reassure customers. “If there is a potential vulnerability or the advent of a new method that challenges our efforts to ensure security at WUZHEN: Chinese Go player Ke Jie, left, looks at the board as a person makes a move on behalf of Google’s artificial any time, we will respond as quickly as possible to resolve intelligence program, AlphaGo, during a game of Go at the Future of Go Summit in Wuzhen in eastern China’s Zhejiang the issue.” Samsung’s hopes of competing against archri- Province.
    [Show full text]
  • Global Artificial Intelligence Industry Whitepaper
    Global artificial intelligence industry whitepaper Global artificial intelligence industry whitepaper | 4. AI reshapes every industry 1. New trends of AI innovation and integration 5 1.1 AI is growing fully commercialized 5 1.2 AI has entered an era of machine learning 6 1.3 Market investment returns to reason 9 1.4 Cities become the main battleground for AI innovation, integration and application 14 1.5 AI supporting technologies are advancing 24 1.6 Growing support from top-level policies 26 1.7 Over USD 6 trillion global AI market 33 1.8 Large number of AI companies located in the Beijing-Tianjin-Hebei Region, Yangtze River Delta and Pearl River Delta 35 2. Development of AI technologies 45 2.1 Increasingly sophisticated AI technologies 45 2.2 Steady progress of open AI platform establishment 47 2.3 Human vs. machine 51 3. China’s position in global AI sector 60 3.1 China has larger volumes of data and more diversified environment for using data 61 3.2 China is in the highest demand on chip in the world yet relying heavily on imported high-end chips 62 3.3 Chinese robot companies are growing fast with greater efforts in developing key parts and technologies domestically 63 3.4 The U.S. has solid strengths in AI’s underlying technology while China is better in speech recognition technology 63 3.5 China is catching up in application 64 02 Global artificial intelligence industry whitepaper | 4. AI reshapes every industry 4. AI reshapes every industry 68 4.1 Financial industry: AI enhances the business efficiency of financial businesses
    [Show full text]
  • Reinforcement Learning and Video Games Arxiv:1909.04751V1 [Cs.LG]
    University of Sheffield Reinforcement Learning and Video Games Yue Zheng Supervisor: Prof. Eleni Vasilaki A report submitted in partial fulfilment of the requirements for the degree of MSc Data Analytics in Computer Science in the arXiv:1909.04751v1 [cs.LG] 10 Sep 2019 Department of Computer Science September 12, 2019 i Declaration All sentences or passages quoted in this document from other people's work have been specif- ically acknowledged by clear cross-referencing to author, work and page(s). Any illustrations that are not the work of the author of this report have been used with the explicit permis- sion of the originator and are specifically acknowledged. I understand that failure to do this amounts to plagiarism and will be considered grounds for failure. Name: Yue Zheng Abstract Reinforcement learning has exceeded human-level performance in game playing AI with deep learning methods according to the experiments from DeepMind on Go and Atari games. Deep learning solves high dimension input problems which stop the development of reinforcement for many years. This study uses both two techniques to create several agents with different algorithms that successfully learn to play T-rex Runner. Deep Q network algorithm and three types of improvements are implemented to train the agent. The results from some of them are far from satisfactory but others are better than human experts. Batch normalization is a method to solve internal covariate shift problems in deep neural network. The positive influence of this on reinforcement learning has also been proved in this study. ii Acknowledgement I would like to express many thanks to my supervisor, Prof.
    [Show full text]
  • When Are We Done with Games?
    When Are We Done with Games? Niels Justesen Michael S. Debus Sebastian Risi IT University of Copenhagen IT University of Copenhagen IT University of Copenhagen Copenhagen, Denmark Copenhagen, Denmark Copenhagen, Denmark [email protected] [email protected] [email protected] Abstract—From an early point, games have been promoted designed to erase particular elements of unfairness within the as important challenges within the research field of Artificial game, the players, or their environments. Intelligence (AI). Recent developments in machine learning have We take a black-box approach that ignores some dimensions allowed a few AI systems to win against top professionals in even the most challenging video games, including Dota 2 and of fairness such as learning speed and prior knowledge, StarCraft. It thus may seem that AI has now achieved all of focusing only on perceptual and motoric fairness. Additionally, the long-standing goals that were set forth by the research we introduce the notions of game extrinsic factors, such as the community. In this paper, we introduce a black box approach competition format and rules, and game intrinsic factors, such that provides a pragmatic way of evaluating the fairness of AI vs. as different mechanical systems and configurations within one human competitions, by only considering motoric and perceptual fairness on the competitors’ side. Additionally, we introduce the game. We apply these terms to critically review the aforemen- notion of extrinsic and intrinsic factors of a game competition and tioned AI achievements and observe that game extrinsic factors apply these to discuss and compare the competitions in relation are rarely discussed in this context, and that game intrinsic to human vs.
    [Show full text]
  • Comparison of Artificial Intelligence Algorithms for Pokémon Battles
    Comparison of Artificial Intelligence Algorithms for Pokémon Battles Master’s thesis in Complex Adaptive Systems LINUS NORSTRÖM Department of Space, Earth and Environment CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2019 Master’s thesis 2019 Comparison of Artificial Intelligence Algorithms for Pokémon Battles LINUS NORSTRÖM Department of Space, Earth and Environment Division of Physical Resource Theory Chalmers University of Technology Gothenburg, Sweden 2019 Comparison of Artificial Intelligence Algorithms for Pokémon Battles LINUS NORSTRÖM © LINUS NORSTRÖM, 2019. Supervisor: Kristian Lindgren, Department of Space, Earth and Environment Examiner: Kristian Lindgren, Department of Space, Earth and Environment Master’s Thesis 2019 Department of Space, Earth and Environment Division of Physical Resource Theory Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Typeset in LATEX Gothenburg, Sweden 2019 iv Comparison of Artificial Intelligence Algorithms for Pokémon Battles LINUS NORSTRÖM Department of Space, Earth and Environment Chalmers University of Technology Abstract This thesis aims to compare various artificial intelligence algorithms in three scenar- ios of Pokémon battles increasing in complexity. The highest performing algorithm was used in a challenge against human players, with the goal of at least playing on human level. The most successful algorithm was a Monte Carlo search algorithm which spend time, before a round, playing out the entire game from that round many times. Another successful algorithm was linear combination of features, which spend time before the battle playing many training games in order to adjust weights correlating to actions and the game state. In addition, the random algorithm which always picks a random action and the hard coded algorithm which picks a pre-defined action each round was used as benchmark algorithms for the different scenarios.
    [Show full text]
  • AI Beats Go Master, but Google Still Can't Come To
    AI beats Go master, but Google still can’t Come to China 24 May 2017 at 18:56 Demis Hassabis, co-founder of Google's artificial intelligence (AI) startup DeepMind speaks during the AI forum of the Future of Go summit at Wuzhen internet international conference and exhibition centre in Wuzhen, China's Zhejiang province, 24 May 2017. (EPA photo) BEIJING -- A Google artificial intelligence programme defeated a Chinese grand master at the ancient board game Go on Tuesday, a major feather in the cap for the firm's AI ambitions as it looks to woo Beijing to gain re-entry into the country. In the first of three planned games in the eastern water town of Wuzhen, the AlphaGo program held off China's world number one Ke Jie in front of Chinese officials and Google parent Alphabet's chief executive Eric Schmidt. The victory over the world's top player - which many thought would take decades to achieve - underlines the potential of artificial intelligence to take on humans at complex tasks. Wooing Beijing may be less simple. The game streamed live on Google-owned YouTube, while executives from the DeepMind unit that developed the programme sent out updates live on Twitter. Both are blocked by China, as is Google search. Google pulled its search engine from China seven years ago after it refused to self-censor internet searches, a requirement of Beijing. Since then it has been inaccessible behind the country's nationwide firewall. The ceremonial game - the second time AlphaGo has gone head-to-head with a master Go player in a public showdown - represents a major bridge-building exercise for Google in China, following a charm offensive in recent years.
    [Show full text]