Agrobiodiversity Management for Food Security

Total Page:16

File Type:pdf, Size:1020Kb

Agrobiodiversity Management for Food Security Agrobiodiversity Management for Food Security A Critical Review Dedication For Dandylion Agrobiodiversity Management for Food Security A Critical Review J.M. Lenné and D. Wood North Oldmoss Croft, Fyvie, Turriff, Aberdeenshire, UK CABI is a trading name of CAB International CABI Head Offi ce CABI North American Offi ce Nosworthy Way 875 Massachusett s Avenue Wallingford 7th Floor Oxfordshire, OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © CAB International 2011. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Agrobiodiversity management for food security : a critical review / J. M. Lenné and D. Wood [editors]. p. cm. Includes bibliographical references and index. ISBN 978-1-84593-761-4 (alk. paper) 1. Agrobiodiversity. 2. Food security. I. Lenné, Jillian M. II. Wood, D. (David), 1939- S494.5.A43A475 2011 631.5’8--dc22 2010043978 ISBN-13: 978 1 84593 761 4 Commissioning Editor: Rachel Cutt s Editorial Assistant: Alexandra Lainsbury Production Editor: Fiona Chippendale Typeset by Columns Design XML Limited, Reading, Berkshire. Printed and bound in the UK by Antony Rowe Contents Contributors vii Acknowledgements viii 1. Agrobiodiversity Revisited 1 J.M. Lenné and D. Wood 2. Food Security and Agrobiodiversity Management 12 J.M. Lenné 3. Agrobiodiversity Management and the Origins of Agriculture 26 D. Wood 4. Crop Introduction and Agrobiodiversity Management 53 D. Wood 5. Utilization of Crop Diversity for Food Security 64 J.M. Lenné and D. Wood 6. Impact of Introduction of Modern Varieties on Crop Diversity 87 J.R. Witcombe, K.D. Joshi, D.S. Virk and B.R. Sthapit 7. Transgenics Can Enhance Crop Diversity – Under Certain Circumstances 99 J. Gressel 8. Management of Crop-associated Biodiversity Above-ground 111 J.M. Lenné 9. Biodiversity and Ecosystem Functioning Below-ground 134 T.W. Kuyper and K.E. Giller 10. Agrobiodiversity Conservation Policy: a ‘Tragedy of Errors’ 150 D. Wood and J.M. Lenné v vi Contents 11. Can the International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD) Approach Ensure Future Food Security? 170 D. Wood and J.M. Lenné 12. Agrobiodiversity Management for Climate Change 189 R. Ortiz 13. Agricultural Revolutions and their Enemies: Lessons for Policy Makers 212 J.M. Lenné and D. Wood Index 229 Contributors Jonathan Gressel, Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel. E-mail: [email protected] Kenneth E. Giller, Plant Production Systems Group, Wageningen University, PO Box 430, 6700 AK Wageningen, the Netherlands. E-mail: [email protected] K.D. Joshi, Advanced Research in International Agriculture Development (CARIAD), South Asia Offi ce, c/o CIMMYT – South Asia, PO Box 5186, Kathmandu, Nepal. E-mail: [email protected]; [email protected] Thomas W. Kuyper, Department of Soil Quality, Wageningen University, PO Box 47, 6700 AK Wageningen, the Netherlands. E-mail: [email protected] J.M. Lenné, North Oldmoss Croft , Fyvie, Turriff , Aberdeenshire AB53 8NA, UK. E-mail: jillian. [email protected] Rodomiro Ortiz, Martín Napanga 253, Apt. 101, Mirafl ores, Lima 18, Perú. E-mail: [email protected] B.R. Sthapit, Centre for Bioversity International, Offi ce for South Asia, National Agricultural Science Centre, DPS Marg, Pusa Campus, New Delhi 110012, India. E-mail: b.sthapit@ cgiar.org D.S. Virk, Centre for Advanced Research in International Agriculture Development (CARIAD), Bangor University, Bangor, Gwynedd LL57 2UW, UK. E-mail: [email protected] J.R. Witcombe, Centre for Advanced Research in International Agriculture Development (CARIAD), Bangor University, Bangor, Gwynedd LL57 2UW, UK. E-mail: j.r.witcombe@ bangor.ac.uk D. Wood, North Oldmoss Croft , Fyvie, Turriff , Aberdeenshire AB53 8NA, UK. E-mail: [email protected] vii Acknowledgements We are especially grateful to the contributors to this book who kindly provided their expertise in key areas of client-oriented crop breeding (John Witcombe, Krishna Joshi, Daljit Virk and Bhuwon Sthapit), transgenic crop breeding (Jonny Gressel), soil biodiversity management (Thom Kuyper and Ken Giller) and agrobiodiversity management for climate change (Rodomiro Ortiz). We would also like to thank CAB International for inviting us to write this book and the following people who kindly provided us with literature and illustrations: Mauricio Bellon, Tim Chancellor, Rachel Cutt s, David Grzywacz, Eugene Hett el, Marcus Knapp, Zeyaur Khan, Kristin Mercer, Dagmar Mithöfer, Sam Mohanty, Peter Neuenschwander, Rodomiro Ortiz, Jörg Romeis, Fritz Schultess, Mark Tester and Henry Wainwright. viii 1 Agrobiodiversity Revisited J.M. Lenné and D. Wood the dynamism of agrodiversity, a constantly changing patchwork of relations between people, plants, and their environment, always coping with new problems, always fi nding new ways. Brookfi eld (1998) Introduction staple crops – rice, wheat and maize – account for about 60% of the calories and 56% of the Biodiversity refers to all living things and the protein that humans consume directly from interactions between them: a vast array of plants. Wheat and rice alone contribute about organisms with an almost infi nite complexity 44% of edible dry weight directly; root crops of relationships. Agricultural biodiversity, less than 10%; sugar crops about 8%; that is, ‘agrobiodiversity’, is an exceptionally vegetables and fruit about 7%; and pulses important subset of biodiversity. Agrobio- about 3%. Future global food security is diversity has been defi ned by Qualset et al. therefore fi rmly anchored in improved pro- (1995) as including all crops and livestock ductivity and appropriate management and and their wild relatives, and all interacting use of crop plant agrobiodiversity, especially species of pollinators, symbionts, pests, para- of rice, wheat and maize. sites, predators and competitors. This defi n- But agrobiodiversity includes far more ition formed the foundation for our fi rst book than the husbandry of crops and farm Agrobiodiversity: Characterization, Utilization animals. As Brookfi eld (1998) observed, ‘the and Management (Wood and Lenné, 1999) and dynamism of agrodiversity, a constantly remains an important basis for this second changing patch work of relations between book, Agrobiodiversity Management for Food people, plants, and their environment, always Security: a Critical Review. coping with new problems, always fi nding Agrobiodiversity through agriculture, new ways’, the dynamic interactions of this that is, the management of the interactions food agrobiodiversity with other agro- between crops and domestic animals and biodiversity in agroecosystems – both bene- their associated biodiversity and the environ- fi cial and harmful and both above- and ment, provides most of our food with less below-ground – are critical to determining if than 5% coming from the wild (Prescott -Allen we harvest more or less food. The almost and Prescott -Allen, 1986 [for the USA]; Wood limitless combinations of more or less and Lenné, 1999). Most of our food is also intensive management, the varied local biotic derived directly or indirectly from plants. It and abiotic environments, and the human has been estimated that more than 80% of our ability to introduce crops and their pests and calories and edible dry weight comes from diseases from elsewhere, and then select crop plants (Evans, 2003). Less than 20 species within and between these varieties, resulted provide most of the world’s food and three in a diversity of planned agro biodiversity © CAB International 2011. Agrobiodiversity Management for Food Security (J.M. Lenné and D. Wood) 1 2 Chapter 1 and a yet greater diversity of associated, protected sites and the UNESCO Man and the unplanned and, even, unmanage able and Biosphere Programme for biosphere reserves unpredictable agrobiodiversity (Wood and largely neglected agrobiodiversity. The 1992 Lenné, 1999). Agrobiodiversity is complex Convention on Biological Diversity (CBD) and dynamic, both in the crop and associated was the fi rst international initiative to specifi - components. Too oft en, however, the term is cally highlight the importance of agrobiodi- used narrowly to denote only ‘benefi cial versity (UNEP, 1992). The CBD recognizes diversity’ based on the common belief that domesticated or cultivated species, the need biodiversity is a ‘good thing’ (see www. for scientifi c research on genetic resources, bioversityinternational.org). Consideration of and in situ and ex situ conservation. In CBD harmful biodiversity, e.g. insect pests, Article 1, emphasis was given to the sustaina- pathogens and weeds in agroecosystems, is ble use of biodiversity in meeting food needs and usually excluded in much of the current Agenda 21 gives a comprehensive coverage literature. Yet, as a key factor in substantially of agriculture. reducing food production, it must be However, the main implementing mech- addressed as an important component of an ism for the CBD – the Global Environment agro biodiversity management for food Facility (GEF) of the World Bank, UNDP and security. UNEP – has only allocated a very
Recommended publications
  • Major Heretofore Intractable Biotic Constraints to African Food Security
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ICRISAT Open Access Repository ARTICLE IN PRESS Crop Protection 23 (2004) 661–689 Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions Jonathan Gressela,*, Abdelhaq Hanafib, Graham Headc, Wally Marasasd,A. Babatunde Obilanae, James Ochandaf, Thouraya Souissig, George Tzotzosh a Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel b Department of Plant Protection, IAV Hassan II, Complexe Horticole d’Agadir, BP:12042, Cite Balneaire Agadir, Morocco c Monsanto LLC, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA d PROMEC Unit, Medical Research Council, PO Box 19070, Tygerberg 7505, South Africa e ICRISAT Nairobi, PO Box 39063 Nairobi, Kenya f Department of Biochemistry, University of Nairobi, P. O. BOX 30197, Nairobi, Kenya g INAT. Lab. Botanique & Malherbologie, Tunisia h Ferrogasse 27, A-1180, Vienna, Austria Received 1 September 2003; received in revised form 9 October 2003; accepted 28 November 2003 Abstract The input costs of pesticides to control biotic constraints are often prohibitive to the subsistence farmers of Africa and seed based solutions to biotic stresses are more appropriate. Plant breeding has been highly successful in dealing with many pest problems in Africa, especially diseases, but is limited to the genes available within the crop genome. Years of breeding and studying cultural practices have not always been successful in alleviating many problems that biotechnology may be able to solve. We pinpoint the major intractable regional problems as: (1) weeds: parasitic weeds (Striga and Orobanche spp.) throughout Africa; grass weeds of wheat (Bromus and Lolium) intractable to herbicides in North Africa; (2) insect and diseases: stem borers and post-harvest grain weevils in sub-Saharan Africa; Bemesia tabaci (white fly) as the vector of the tomato leaf curl virus complex on vegetable crops in North Africa; and (3) the mycotoxins: fumonisins and aflatoxins in stored grains.
    [Show full text]
  • HAUSTORIUM 45 August 2004 1 HAUSTORIUM Parasitic Plants Newsletter
    HAUSTORIUM 45 August 2004 1 HAUSTORIUM Parasitic Plants Newsletter Official Organ of the International Parasitic Plant Society August 2005 Number 45 IPPS –A MESSAGE FROM THE SECRETARY Science Congress (IWSC), by which the parasitic weed researchers were exposed to the broader scope Dear IPPS Members, of weed science and the IWSC participants could Our most recent Symposium on Parasitic Weeds, take part in presentations and discussions during our which took place in Durban (South Africa) last Symposium. We are grateful to the organizers of the June, was a wonderful occasion to learn about IWSC, and in particular to Baruch Rubin, Vice- progress in many areas of parasitic plant research, to President of the IWSS and member of our Board, discuss new ideas, to meet old friends and for help and encouragement regarding the colleagues, and to make new acquaintances. Let me coordination of these two scientific meetings. take this opportunity to once again thank everyone The International Scientific Committee, with who contributed to the meeting; it was in many representative of the major areas of parasitic plant ways a resounding success! research and control, evaluated all submitted The International Parasitic Plants Society was abstracts, and the final program was constructed inaugurated during the International Parasitic according to their recommendations. We happily Weeds Conference in Nantes. Due to some legal thank all members of the committee for their difficulties it was possible to officially register the contribution to the success of the Symposium. The IPPS as an international society only in 2002. The Proceedings of the 8th International Symposium on Board of Directors provided the Executive Parasitic Weeds can be downloaded from the IPPS Committee with recommendations that are now website at http://www.ppws.vt.edu/IPPS/ .
    [Show full text]
  • Transgenics Are Imperative for Biofuel Crops
    Available online at www.sciencedirect.com Plant Science 174 (2008) 246–263 www.elsevier.com/locate/plantsci Review Transgenics are imperative for biofuel crops Jonathan Gressel a,b,* a Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel b Assif Strategies Ltd, Yakum 60972, Israel Received 29 October 2007; accepted 23 November 2007 Available online 3 December 2007 Abstract Petroleum dependency is a challenge that can potentially be partly offset by agricultural production of biofuels, while decreasing net, non- renewable carbon dioxide output. Plants have not been domesticated for modern biofuel production, and the quickest, most efficient, and often, the only way to convert plants to biofuel feedstocks is biotechnologically. First generation biofuel feedstock sources: sugarcane and cereal grains to produce bioethanol and biobutanol and oilseeds to produce biodiesel compete directly with needs for world food security. The heavy use of oilseed rape releases quantities of methyl bromide to the atmosphere, which can be prevented by gene suppression. Second generation bioethanolic/biobutanolic biofuels will come from cultivated lignocellulosic crops or straw wastes. These presently require heat and acid to remove lignin, which could be partially replaced by transgenically reducing or modifying lignin content and upregulating cellulose biosynthesis. Non-precipitable silicon emissions from burning could be reduced by transgenically modulating silicon content. The shrubby Jatropha and castor beans should have highly toxic protein components transgenically removed from their meal, cancer potentiating diterpenes removed from the oils, and allergens from the pollen, before extensive cultivation. Algae and cyanobacteria for third generation biodiesel need transgenic manipulation to deal with ‘‘weeds’’, light penetration, photoinhibition, carbon assimilation, etc.
    [Show full text]
  • Life-History Parameters of Encarsia Formosa, Eretmocerus Eremicus and E
    Eur. J. Entomol. 101: 83–94, 2004 ISSN 1210-5759 Life-history parameters of Encarsia formosa, Eretmocerus eremicus and E. mundus, aphelinid parasitoids of Bemisia argentifolii (Hemiptera: Aleyrodidae) YU TONG QIU, JOOP C. VAN LENTEREN, YVONNE C. DROST and CONNIE J.A.M. POSTHUMA-DOODEMAN Laboratory of Entomology, Wageningen University; P.O.Box 8031, 6700 EH Wageningen, The Netherlands e-mails: [email protected]; [email protected] Key words. Hymenoptera, Aphelinidae, Homoptera, Aleyrodidae, whiteflies, Encarsia formosa, Eretmocerus eremicus, Eretmocerus mundus, biological control, life history, longevity, development time Abstract. Life-history parameters (juvenile development time, adult longevity, host instar preference and rate of parasitism) of four parasitoids of Bemisia argentifolii (two strains of Encarsia formosa (D and B), Eretmocerus eremicus and Eretmocerus mundus) were studied in the laboratory. At 15°C juvenile development time was the shortest for E. formosa B (48 days), longest for E. ere- micus (79.3 days) and intermediate for E. formosa D (62.8 days) and E. mundus (64 days) at 15°C. With increase in temperature, development time decreased to around 14 days for all species/strains at 32°C. The lower developmental threshold for development was 11.5, 8.1, 13.0 and 11.5°C for E. formosa D, E. formosa B, E. eremicus and E. mundus, respectively. E. formosa D and B, and E. mundus all appeared to prefer to parasitize 3rd instar nymphs. The presence of hosts shortened adult longevity in most of the para- sitoids, with the exception of E. formosa B, which lived longer than other species/strains irrespective of the presence of hosts.
    [Show full text]
  • Control Biológico De Insectos: Clara Inés Nicholls Estrada Un Enfoque Agroecológico
    Control biológico de insectos: Clara Inés Nicholls Estrada un enfoque agroecológico Control biológico de insectos: un enfoque agroecológico Clara Inés Nicholls Estrada Ciencia y Tecnología Editorial Universidad de Antioquia Ciencia y Tecnología © Clara Inés Nicholls Estrada © Editorial Universidad de Antioquia ISBN: 978-958-714-186-3 Primera edición: septiembre de 2008 Diseño de cubierta: Verónica Moreno Cardona Corrección de texto e indización: Miriam Velásquez Velásquez Elaboración de material gráfico: Ana Cecilia Galvis Martínez y Alejandro Henao Salazar Diagramación: Luz Elena Ochoa Vélez Coordinación editorial: Larissa Molano Osorio Impresión y terminación: Imprenta Universidad de Antioquia Impreso y hecho en Colombia / Printed and made in Colombia Prohibida la reproducción total o parcial, por cualquier medio o con cualquier propósito, sin autorización escrita de la Editorial Universidad de Antioquia. Editorial Universidad de Antioquia Teléfono: (574) 219 50 10. Telefax: (574) 219 50 12 E-mail: [email protected] Sitio web: http://www.editorialudea.com Apartado 1226. Medellín. Colombia Imprenta Universidad de Antioquia Teléfono: (574) 219 53 30. Telefax: (574) 219 53 31 El contenido de la obra corresponde al derecho de expresión del autor y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. El autor asume la responsabilidad por los derechos de autor y conexos contenidos en la obra, así como por la eventual información sensible publicada en ella. Nicholls Estrada, Clara Inés Control biológico de insectos : un enfoque agroecológico / Clara Inés Nicholls Estrada. -- Medellín : Editorial Universidad de Antioquia, 2008. 282 p. ; 24 cm. -- (Colección ciencia y tecnología) Incluye glosario. Incluye bibliografía e índices.
    [Show full text]
  • Orange Spiny Whitefly, Aleurocanthus Spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S
    EENY341 Orange Spiny Whitefly, Aleurocanthus spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S. Hodges2 Introduction Africa (Van den Berg et al. 1990). More recently, orange spiny whitefly was reported from Italy (2008), Croatia Orange spiny whitefly, Aleurocanthus spiniferus Quaintance, (2012), and Montenegro (2013) (Radonjic et al. 2014). is a native pest of citrus in tropical Asia. In the early 1920s, Established populations of orange spiny whitefly are not yet pest outbreak infestation levels caused Japan to begin a known to occur in the continental US. biological control program. Primarily, orange spiny whitefly affects host plants by sucking the sap but it also causes indirect damage by producing honeydew and subsequently Description and Life History promoting the growth of sooty mold. Sooty mold is a Whiteflies have six developmental stages: egg, crawler (1st black fungus that grows on honeydew. Heavy infestations instar), two sessile nymphal instars (2nd and 3rd instars), of orange spiny whitefly, or other honeydew-producing the pupa (4th instar), and adult. Identification of the insects such as scales, mealybugs, aphids, and other whitefly Aleyrodidae is largely based upon characters found in the species, can cause sooty mold to completely cover the leaf pupal (4th instar) stage. The duration of the life cycle and surface and negatively affect photosynthesis. the number of generations per year are greatly influenced by the prevailing climate. A mild temperature with high Distribution relative humidity provides ideal conditions for growth and development. About four generations per year have The orange spiny whitefly has spread to Africa, Australia, been recorded in Japan (Kuwana et al.
    [Show full text]
  • Genetic Glass Ceilings Gressel, Jonathan
    Genetic Glass Ceilings Gressel, Jonathan Published by Johns Hopkins University Press Gressel, Jonathan. Genetic Glass Ceilings: Transgenics for Crop Biodiversity. Johns Hopkins University Press, 2008. Project MUSE. doi:10.1353/book.60335. https://muse.jhu.edu/. For additional information about this book https://muse.jhu.edu/book/60335 [ Access provided at 2 Oct 2021 23:39 GMT with no institutional affiliation ] This work is licensed under a Creative Commons Attribution 4.0 International License. Genetic Glass Ceilings Transgenics for Crop Biodiversity This page intentionally left blank Genetic Glass Ceilings Transgenics for Crop Biodiversity Jonathan Gressel Foreword by Klaus Ammann The Johns Hopkins University Press Baltimore © 2008 The Johns Hopkins University Press All rights reserved. Published 2008 Printed in the United States of America on acid-free paper 987654321 The Johns Hopkins University Press 2715 North Charles Street Baltimore, Maryland 21218-4363 www.press.jhu.edu Library of Congress Cataloging-in-Publication Data Gressel, Jonathan. Genetic glass ceilings : transgenics for crop biodiversity / Jonathan Gressel. p. cm. Includes bibliographical references and index. ISBN 13: 978-0-8018-8719-2 (hardcover : alk. paper) ISBN 10: 0-8018-8719-4 (hardcover : alk. paper) 1. Crops—Genetic engineering. 2. Transgenic plants. 3. Plant diversity. 4. Crop improvement. I. Title. II. Title: Transgenics for crop biodiversity. SB123.57.G74 2008 631.5Ј233—dc22 20007020365 A catalog record for this book is available from the British Library. Special discounts are available for bulk purchases of this book. For more information, please contact Special Sales at 410-516-6936 or [email protected]. Dedicated to the memory of Professor Leroy (Whitey) Holm, the person who stimulated me to think differently.
    [Show full text]
  • 94: Frank & Mccoy Intro. 1 INTRODUCTION to INSECT
    Behavioral Ecology Symposium ’94: Frank & McCoy Intro. 1 INTRODUCTION TO INSECT BEHAVIORAL ECOLOGY : THE GOOD, THE BAD, AND THE BEAUTIFUL: NON-INDIGENOUS SPECIES IN FLORIDA INVASIVE ADVENTIVE INSECTS AND OTHER ORGANISMS IN FLORIDA. J. H. FRANK1 AND E. D. MCCOY2 1Entomology & Nematology Department, University of Florida, Gainesville, FL 32611-0620 2Biology Department and Center for Urban Ecology, University of South Florida, Tampa, FL 33620-5150 ABSTRACT An excessive proportion of adventive (= “non-indigenous”) species in a community has been called “biological pollution.” Proportions of adventive species of fishes, am- phibia, reptiles, birds and mammals in southern Florida range from 16% to more than 42%. In Florida as a whole, the proportion of adventive plants is about 26%, but of in- sects is only about 8%. Almost all of the vertebrates were introduced as captive pets, but escaped or were released into the wild, and established breeding populations; few arrived as immigrants (= “of their own volition”). Almost all of the plants also were in- troduced, a few arrived as immigrants (as contaminants of shipments of seeds or other cargoes). In contrast, only 42 insect species (0.3%) were introduced (all for bio- logical control of pests, including weeds). The remainder (about 946 species, or 7.6%) arrived as undocumented immigrants, some of them as fly-ins, but many as contami- nants of cargoes. Most of the major insect pests of agriculture, horticulture, human- made structures, and the environment, arrived as hitchhikers (contaminants of, and stowaways in, cargoes, especially cargoes of plants). No adventive insect species caus- ing problems in Florida was introduced (deliberately) as far as is known.
    [Show full text]
  • Encarsia Catalog of World Species
    Last updated: August 2020 Notes on catalog: This catalog was produced using Biological and Systematic Information System (BASIS 3.0a developed by Gary Gibson and Jennifer Read (ECORC, Agriculture Canada Ottawa). This catalog of Encarsia is in development and no information presented herein regarding name changes should be considered as valid until properly published. If errors are discovered, please contact the primary author at [email protected]. Production of this catalog has been supported in part by National Science Foundation Grant DEB 1257733 and 1555808, University of California, van den Bosch Scholarship, and hatch project funds. Catalog of the Encarsia Förster of the World Robert L. Kresslein, John Heraty, James Woolley and Andrew Polaszek * Other Hosts: Aphelinidae, Aphididae, Cicadellidae, Coccidae, Plataspidae, Platygastridae, Pseudococcidae, Pyralidae Encarsia of the World — Contents _____________________________________________________________________________________________ Contents Encarsia Förster ............................................................................................................................................. 1 Unplaced Species............................................................................................................................................ 2 Albiscutellum Species Group ...................................................................................................................... 18 Aurantii Species Group ..............................................................................................................................
    [Show full text]
  • Augmentation of Parasitoids for Biological Control of Citrus Blackfly in Southern Texas
    186 Florida Entomologist 87(2) June 2004 AUGMENTATION OF PARASITOIDS FOR BIOLOGICAL CONTROL OF CITRUS BLACKFLY IN SOUTHERN TEXAS R. L. MEAGHER1 AND J. VICTOR FRENCH2 1USDA-ARS CMAVE, 1700 SW 23rd Drive, Gainesville, FL 32608 2Texas A&M University-Kingsville Citrus Center, P.O. Box 1150, Weslaco, TX 78599-1150 ABSTRACT Two parasitoid species, Amitus hesperidum Silvestri and Encarsia opulenta (Silvestri), were released in an augmentative program to control citrus blackfly, Aleurocanthus woglumi Ashby, in the citrus growing areas of southern Texas. Releases were made with laboratory- reared and field insectary parasitoids. Six citrus groves were closely monitored, and evalu- ations made during and after releases suggested that both parasitoid species became rees- tablished and exerted control over pest populations. Dissection of citrus blackfly immatures led us to suggest that E. opulenta increased in larger numbers than A. hesperidum, and that a stable host-natural enemy relationship became established. Key Words: Aleurocanthus woglumi, Amitus hesperidum, Encarsia opulenta, augmentative biological control RESUMEN Dos especies de parasitoides, Amitus hesperidum Silvestri y Encarsia opulenta (Silvestri) fueron liberadas en un programa de aumentó para el control de la mosca prieta de los cítri- cos. Aleurocanthus woglumi Ashby, en áreas donde siembran los citricos en el sur de Texas. Las liberaciones fueron hechas usando parasitoides criados en el laboratorio y los del insec- tario del campo. Un monitoreo preciso de seis huertos de cítricos fue hecho, y las evaluacio- nes hechas durante y después de la liberación que sugerieron que ambas especies de parasitoides se re-establecieron y ejercieron un control sobre la población de la plaga.
    [Show full text]
  • Haustorium 50 Issue!
    HAUSTORIUM 50 January 2007 1 HAUSTORIUM Parasitic Plants Newsletter Official Organ of the International Parasitic Plant Society 50th ISSUE! January 2007 Number 50 MESSAGE FROM THE IPPS PRESIDENT acquaintances between those interested in parasitic Dear IPPS Members, plants. The IPPS wishes you a happy festive season and a While the main reports during the early years of peaceful and happy 2007. We all wish that the New Haustorium were on taxonomic, anatomical and Year will bring a better understanding of parasitic physiological aspects of parasitic plants, the recent plants, and new breakthroughs in our ability to control issues also report on significant progress in molecular parasitic weeds. research of parasitic plants, with emphasis on three In addition to celebrating the birth of a new year, we main areas: (a) genome studies of parasitic plants, are also happily celebrating the issue of the 50th including evolutionary, genetic and physiological edition of Haustorium, the well established considerations; (b) the development of new resistances Newsletter of the parasitic plant research community. It against parasitic weeds either directly by genetic is my pleasure to send our special thanks and engineering or indirectly by the employment of appreciation to the dedicated founding Editors of herbicide resistance; and (c) the development of Haustorium and honorary members of the IPPS, Chris molecular markers for diagnostic purposes, and for Parker and Lytton Musselman, for their immense marker-assisted selection, serving more efficient long lasting contribution in distributing updated breeding of various crops for resistance against knowledge on parasitic plants to all parts of the world, parasitic weeds. gathering pieces of information on a variety of aspects Another encouraging development of the last decade is of parasitic plant biology and on the management of the availability of a number of effective means for the parasitic weeds, for the benefit of us all.
    [Show full text]
  • 46Th Meeting Weed Science Society of America Location of Special
    46th Meeting Weed Science Society of America Location of Special Committees & Activities .............. 1 Local Arrangements Committee............................... 1 History Committee .............................................. 2 50th Anniversary Committee .................................. 2 50th Anniversary of WSSA.................................... 2 President's Welcome ............................................ 2 The 2006 Program............................................... 3 2006 Program Committee ...................................... 4 General Information ............................................. 5 Committee Meetings ............................................ 7 Summary of 2006 Program .................................... 10 Complete Program............................................... 15 Meeting Room Maps............................................ 46 Author Index ..................................................... 65 Common Herbicides............................................. 80 WSSA Board of Directors ..................................... 84 WSSA Founder Award ......................................... 85 WSSA Original Honorary Members.......................... 85 WSSA Fellows ................................................... 85 WSSA Honorary Members..................................... 87 WSSA Past Presidents .......................................... 87 Notes .............................................................. 89 Personal Time Schedule ........................................ 92 Sustaining
    [Show full text]