Biological Control of Whitefly on Greenhouse Tomato in Colombia: Encarsiaformosa Oramitus Fuscipennist by Raf M

Total Page:16

File Type:pdf, Size:1020Kb

Biological Control of Whitefly on Greenhouse Tomato in Colombia: Encarsiaformosa Oramitus Fuscipennist by Raf M Biological control ofwhitefl y on greenhouse tomato in Colombia: Encarsiaformosa orAmitus fuscipennisl RafMJ. DeVis CENTRALE LANDBOUWCATALOGUS 0000 0873 7542 Promotor: Prof.Dr .J.C .va nLentere n Hoogleraar ind eEntomologi e Wageningen Universiteit Samenstelling promotiecommissie: Prof.Dr . H.J.P.Eijsackers , Vrije Universiteit Amsterdam / ALTERRA Dr.A .Janssen , Universiteit van Amsterdam Prof.Dr . M. Dicke, Wageningen Universiteit Dr.J.J .Fransen ,Proefstatio n Aalsmeer ^0^1 {3) 15 Propositions 1. The statement that biological control in greenhouses in temperate zones is easier than in tropical areas (e.g. Gullino et al., 1999; van Lenteren, 2000) is not valid (Bueno & van Lenteren, submitted; this thesis). Gullino, MX., et al. 1999. In: Albajes, R., et al. (Eds.). Integrated pest and disease management in greenhouse crops.Kluwe r AcademicPublishers ,Th eNetherlands ,p 1-13. vanLenteren ,J.C .2000 .Cro pProtectio n 19: 375-384. Bueno,V.H.P .& J.C .va nLenteren , submitted. Thisthesis . 2. The application of relatively safe pesticides (Hassan et al., 1991) by water sprays can still be very harmful for natural enemies.Thi s may also applyfo r biopesticides. Hassan,S.A. , et al. 1991.Entomophag a36 :55-67 . Thisthesis . 3. The intrinsic rate of increase of many whitefly parasitoids has probably been seriously underestimated. van Roermund, H.J.W. & J.C. van Lenteren. 1992.Wageninge n Agricultural University Papers 92(3): 103-147. vanLenteren , J.C, et al. 1997. J. Appl.Ent . 121:473-485. Drost,Y.C. ,e tal . 1996. Proc.Exper .& Appl .Entomol ,N.E.V .7 : 165-170. Thisthesis . 4. The requirement that growers' organisations participate in research projects in Colombia is an excellent way to force applied scientists to resolve real problems instead of producing science for science. 5. Most computer databases on agriculture or biology include only recent references exemplifying that our society has more respect for recent developments than for those of our predecessors. 6. The fact that acquiring scientific papers in "developed" countries is a question of few mouse clicks, while in "developing" countries it is a difficult to impossible task, is a serious limitation and disadvantage for scientists in the latter countries. 7. In contrast to the impression one gets from the media, the vast majority of Colombian people is very peaceful. Propositions with the thesis "Biological control of whitefly on greenhouse tomato in Colombia: Encarsiaformosa orAmitus fuscipennisT by Raf M. J. De Vis. Wageningen, December 18, 2001. RafM.J.DeVis Biological control ofwhitefl y on greenhouse tomato in Colombia: Encarsiaformosa orAmitus fuscipennis? Proefschrift ter verkrijging van degraa d van doctor op gezagva n rector magnificus van Wageningen Universiteit Prof.Dr .Ir .L .Speelma n inhe t openbaar te verdedigen op dinsdag 18decembe r200 1 desnamiddag st e 16.00i nd eAul a lbis\/\g DeVis ,Ra f M.J. 2001. Biological control of whitefly on greenhouse tomato in Colombia: Encarsia formosa or Amitusfuscipennisl Doctoral thesis. Wageningen University. -Wit href. - With summary in English, Dutchan d Spanish ISBNnr .90-5808-521- X Ternagedachtenis vanmijn ouders Table of contents Chapter 1 General introduction 1 Chapter 2 Longevity, fecundity, ovipositionfrequency an d intrinsic 15 rate of increase ofth e greenhousewhitefly ,Trialeurodes vaporariorum on greenhousetomat o in Colombia Chapter 3 Life history ofAmitus fuscipennis asparasitoi d ofth e 23 greenhouse whitefly Trialeurodesvaporariorum on tomato asfunctio n oftemperatur e Chapter 4 Foraging ofAmitusfuscipennis for whitefly 45 (Trialeurodes vaporariorum) ontomat o leaflets Chapter 5 Comparison offoragin g behaviour, interspecific host 67 discrimination and competition ofEncarsia formosa and Amitusfuscipennis Chapter 6 Biological control of Trialeurodes vaporariorum by 99 Encarsiaformosa ontomat o inunheate d greenhouses in thehig haltitud e tropics Chapter 7 Amitusfuscipennis, analternativ e toth ebiologica l 119 control of Trialeurodes vaporariorum byEncarsia formosa? Chapter 8 Summarising discussion 137 Summary 149 Samenvatting 153 Resumen 157 Dankwoord- Agradecimientos 161 List ofpublication s 163 Curriculum vitae 165 1.Genera l introduction From chemical control tointegrate d pest management Chemical control became thepanace a ofpes t management inth e 40's and 50's because of its easy use and the highly increased benefits. However, the appearance of a series of negative effects has made it nowth e black sheep of cropprotection . These negative effects are mainly the impact on the environment and non-target organisms. Additionally, the use of chemicals put the growers at risk when applying chemicals in the crop and the consumers when eating products with chemical residues. But certainly, the appearance of resistance was the most important drive to develop new ways of pest control. This lead to the development of integrated pest management (IPM) programs where several ways of pest control, including physical, mechanical, ethological, chemical and biological control are combined. However, the way pest management is focused in most of these programs is still therapeutic and, although the newly used control measures may be less harmful, pest outbreaks still occur. Crop protection should therefore focus on a total system approach, based on agroecosystems that limit in a natural way the development ofpest s and where therapeutic measures are only used as a corrective rather than a standard procedure. Habitat manipulation and host plant resistance are likely to play an important role in this approach. Therefore, knowledge of the agroecosystems and interactionsbetwee nth e different trophic levelsi sver y important (Lewis et al., 1997;va n Lenteren, 1997). The success of integrated approaches such as that of The Netherlands (Lewis et al., 1997), stimulated governments to develop rules to reduce the use of pesticides in favour of biologically based pest control. In this way, pesticide use has been reduced by 25-50 % or more inrelativel y shortperiod s of lesstha n a decade in Sweden, Denmark, Germany and The Netherlands (vanLenteren , 1997). The most important general advantages of IPM, and more specifically biological control, are the reduced impact of pest control on the environment and a healthier final product. But, growers look first at the benefit of their crops and are not likely to be interested in increasing costs or risks of yield losses solely for the altruistic reason of using biological control. However, it has been shown that the currently used systems are cheaper or comparable in costs and in fact more reliable than chemical control, at least in greenhouse vegetable crops (Bolckmans, 1999; van Lenteren & Martin, 1999). On the other hand, because of the lower thresholds and the wider variety of products in ornamentals, more research and experience will be needed to come to biological systems with comparable costs andreliabilit y aschemica l control.Additionally , growers implement biological control as the mainpes t control strategy for many other reasons (van Lenteren, 2000a; Parella et al., 1999). These include (1) ahealth y working environment; (2) beneficials do not cause phytotoxicity. Yield increases of 20-25 % have been found in greenhouses under biological control compared to chemical control in cucumber because of the reduced fytotoxicity; (3) the introduction of natural enemies is less time consuming and more pleasant; (4) natural enemies often find their way into areas of plant foliage, which may not bereache d by sprays; (5) introduction of natural enemies is usually done at the start of the crop when time is available and once the natural enemies are established no further introductions are normally Chapter 1 necessary, in contrast with chemical control; (6) application of natural enemies does not interfere with harvest (safety period before harvest) or with activities in the crop (re-entry period after application); (7) natural enemies do not become resistant, as opposed to pesticides; and (8) producing healthy products, without damaging the environment is appreciated byth e generalpubli c and improves the statuso fth e farm and farmer. Several strategies have been developed for the biological control of pests in agroecosystems (van Lenteren et al., 1996). Examples are given of whitefly pests that are controlled withth e different strategies: • Classical biological control or inoculative biological control: long term biological control isobtaine d byth e introduction ofa limited number of beneficials originating from an area othertha n where thepes t occurs. This method has been used successfully to control pests that are introduced in a new habitat where no natural enemies of that pest are present or control by endemic natural enemies is insufficient. For example, the introduction of Amitus spiniferus and Cales noacki to control the woolly whitefly (Aleurothrixus floccosus), and Amitus hesperidum and Encarsia opulentat o control the citrus blackfly (Aleurocanthus woglumi), in citrus orchards in North America (DeBach & Rose, 1976; Flanders, 1969). • Inundative biological control: high quantities of beneficials are released to obtain immediate control of the pest for a short period, without aiming to obtain an effect of these introductions for later pest generations. An example of this system is the use of Encarsia luteola and Delphastuspusillus to control Bemisa argentifolii in poinsettias in theUS A (Heinz &Parella , 1994). • Seasonal inoculative biological control: high numbers
Recommended publications
  • Life-History Parameters of Encarsia Formosa, Eretmocerus Eremicus and E
    Eur. J. Entomol. 101: 83–94, 2004 ISSN 1210-5759 Life-history parameters of Encarsia formosa, Eretmocerus eremicus and E. mundus, aphelinid parasitoids of Bemisia argentifolii (Hemiptera: Aleyrodidae) YU TONG QIU, JOOP C. VAN LENTEREN, YVONNE C. DROST and CONNIE J.A.M. POSTHUMA-DOODEMAN Laboratory of Entomology, Wageningen University; P.O.Box 8031, 6700 EH Wageningen, The Netherlands e-mails: [email protected]; [email protected] Key words. Hymenoptera, Aphelinidae, Homoptera, Aleyrodidae, whiteflies, Encarsia formosa, Eretmocerus eremicus, Eretmocerus mundus, biological control, life history, longevity, development time Abstract. Life-history parameters (juvenile development time, adult longevity, host instar preference and rate of parasitism) of four parasitoids of Bemisia argentifolii (two strains of Encarsia formosa (D and B), Eretmocerus eremicus and Eretmocerus mundus) were studied in the laboratory. At 15°C juvenile development time was the shortest for E. formosa B (48 days), longest for E. ere- micus (79.3 days) and intermediate for E. formosa D (62.8 days) and E. mundus (64 days) at 15°C. With increase in temperature, development time decreased to around 14 days for all species/strains at 32°C. The lower developmental threshold for development was 11.5, 8.1, 13.0 and 11.5°C for E. formosa D, E. formosa B, E. eremicus and E. mundus, respectively. E. formosa D and B, and E. mundus all appeared to prefer to parasitize 3rd instar nymphs. The presence of hosts shortened adult longevity in most of the para- sitoids, with the exception of E. formosa B, which lived longer than other species/strains irrespective of the presence of hosts.
    [Show full text]
  • Control Biológico De Insectos: Clara Inés Nicholls Estrada Un Enfoque Agroecológico
    Control biológico de insectos: Clara Inés Nicholls Estrada un enfoque agroecológico Control biológico de insectos: un enfoque agroecológico Clara Inés Nicholls Estrada Ciencia y Tecnología Editorial Universidad de Antioquia Ciencia y Tecnología © Clara Inés Nicholls Estrada © Editorial Universidad de Antioquia ISBN: 978-958-714-186-3 Primera edición: septiembre de 2008 Diseño de cubierta: Verónica Moreno Cardona Corrección de texto e indización: Miriam Velásquez Velásquez Elaboración de material gráfico: Ana Cecilia Galvis Martínez y Alejandro Henao Salazar Diagramación: Luz Elena Ochoa Vélez Coordinación editorial: Larissa Molano Osorio Impresión y terminación: Imprenta Universidad de Antioquia Impreso y hecho en Colombia / Printed and made in Colombia Prohibida la reproducción total o parcial, por cualquier medio o con cualquier propósito, sin autorización escrita de la Editorial Universidad de Antioquia. Editorial Universidad de Antioquia Teléfono: (574) 219 50 10. Telefax: (574) 219 50 12 E-mail: [email protected] Sitio web: http://www.editorialudea.com Apartado 1226. Medellín. Colombia Imprenta Universidad de Antioquia Teléfono: (574) 219 53 30. Telefax: (574) 219 53 31 El contenido de la obra corresponde al derecho de expresión del autor y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. El autor asume la responsabilidad por los derechos de autor y conexos contenidos en la obra, así como por la eventual información sensible publicada en ella. Nicholls Estrada, Clara Inés Control biológico de insectos : un enfoque agroecológico / Clara Inés Nicholls Estrada. -- Medellín : Editorial Universidad de Antioquia, 2008. 282 p. ; 24 cm. -- (Colección ciencia y tecnología) Incluye glosario. Incluye bibliografía e índices.
    [Show full text]
  • Orange Spiny Whitefly, Aleurocanthus Spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S
    EENY341 Orange Spiny Whitefly, Aleurocanthus spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S. Hodges2 Introduction Africa (Van den Berg et al. 1990). More recently, orange spiny whitefly was reported from Italy (2008), Croatia Orange spiny whitefly, Aleurocanthus spiniferus Quaintance, (2012), and Montenegro (2013) (Radonjic et al. 2014). is a native pest of citrus in tropical Asia. In the early 1920s, Established populations of orange spiny whitefly are not yet pest outbreak infestation levels caused Japan to begin a known to occur in the continental US. biological control program. Primarily, orange spiny whitefly affects host plants by sucking the sap but it also causes indirect damage by producing honeydew and subsequently Description and Life History promoting the growth of sooty mold. Sooty mold is a Whiteflies have six developmental stages: egg, crawler (1st black fungus that grows on honeydew. Heavy infestations instar), two sessile nymphal instars (2nd and 3rd instars), of orange spiny whitefly, or other honeydew-producing the pupa (4th instar), and adult. Identification of the insects such as scales, mealybugs, aphids, and other whitefly Aleyrodidae is largely based upon characters found in the species, can cause sooty mold to completely cover the leaf pupal (4th instar) stage. The duration of the life cycle and surface and negatively affect photosynthesis. the number of generations per year are greatly influenced by the prevailing climate. A mild temperature with high Distribution relative humidity provides ideal conditions for growth and development. About four generations per year have The orange spiny whitefly has spread to Africa, Australia, been recorded in Japan (Kuwana et al.
    [Show full text]
  • 94: Frank & Mccoy Intro. 1 INTRODUCTION to INSECT
    Behavioral Ecology Symposium ’94: Frank & McCoy Intro. 1 INTRODUCTION TO INSECT BEHAVIORAL ECOLOGY : THE GOOD, THE BAD, AND THE BEAUTIFUL: NON-INDIGENOUS SPECIES IN FLORIDA INVASIVE ADVENTIVE INSECTS AND OTHER ORGANISMS IN FLORIDA. J. H. FRANK1 AND E. D. MCCOY2 1Entomology & Nematology Department, University of Florida, Gainesville, FL 32611-0620 2Biology Department and Center for Urban Ecology, University of South Florida, Tampa, FL 33620-5150 ABSTRACT An excessive proportion of adventive (= “non-indigenous”) species in a community has been called “biological pollution.” Proportions of adventive species of fishes, am- phibia, reptiles, birds and mammals in southern Florida range from 16% to more than 42%. In Florida as a whole, the proportion of adventive plants is about 26%, but of in- sects is only about 8%. Almost all of the vertebrates were introduced as captive pets, but escaped or were released into the wild, and established breeding populations; few arrived as immigrants (= “of their own volition”). Almost all of the plants also were in- troduced, a few arrived as immigrants (as contaminants of shipments of seeds or other cargoes). In contrast, only 42 insect species (0.3%) were introduced (all for bio- logical control of pests, including weeds). The remainder (about 946 species, or 7.6%) arrived as undocumented immigrants, some of them as fly-ins, but many as contami- nants of cargoes. Most of the major insect pests of agriculture, horticulture, human- made structures, and the environment, arrived as hitchhikers (contaminants of, and stowaways in, cargoes, especially cargoes of plants). No adventive insect species caus- ing problems in Florida was introduced (deliberately) as far as is known.
    [Show full text]
  • Encarsia Catalog of World Species
    Last updated: August 2020 Notes on catalog: This catalog was produced using Biological and Systematic Information System (BASIS 3.0a developed by Gary Gibson and Jennifer Read (ECORC, Agriculture Canada Ottawa). This catalog of Encarsia is in development and no information presented herein regarding name changes should be considered as valid until properly published. If errors are discovered, please contact the primary author at [email protected]. Production of this catalog has been supported in part by National Science Foundation Grant DEB 1257733 and 1555808, University of California, van den Bosch Scholarship, and hatch project funds. Catalog of the Encarsia Förster of the World Robert L. Kresslein, John Heraty, James Woolley and Andrew Polaszek * Other Hosts: Aphelinidae, Aphididae, Cicadellidae, Coccidae, Plataspidae, Platygastridae, Pseudococcidae, Pyralidae Encarsia of the World — Contents _____________________________________________________________________________________________ Contents Encarsia Förster ............................................................................................................................................. 1 Unplaced Species............................................................................................................................................ 2 Albiscutellum Species Group ...................................................................................................................... 18 Aurantii Species Group ..............................................................................................................................
    [Show full text]
  • Augmentation of Parasitoids for Biological Control of Citrus Blackfly in Southern Texas
    186 Florida Entomologist 87(2) June 2004 AUGMENTATION OF PARASITOIDS FOR BIOLOGICAL CONTROL OF CITRUS BLACKFLY IN SOUTHERN TEXAS R. L. MEAGHER1 AND J. VICTOR FRENCH2 1USDA-ARS CMAVE, 1700 SW 23rd Drive, Gainesville, FL 32608 2Texas A&M University-Kingsville Citrus Center, P.O. Box 1150, Weslaco, TX 78599-1150 ABSTRACT Two parasitoid species, Amitus hesperidum Silvestri and Encarsia opulenta (Silvestri), were released in an augmentative program to control citrus blackfly, Aleurocanthus woglumi Ashby, in the citrus growing areas of southern Texas. Releases were made with laboratory- reared and field insectary parasitoids. Six citrus groves were closely monitored, and evalu- ations made during and after releases suggested that both parasitoid species became rees- tablished and exerted control over pest populations. Dissection of citrus blackfly immatures led us to suggest that E. opulenta increased in larger numbers than A. hesperidum, and that a stable host-natural enemy relationship became established. Key Words: Aleurocanthus woglumi, Amitus hesperidum, Encarsia opulenta, augmentative biological control RESUMEN Dos especies de parasitoides, Amitus hesperidum Silvestri y Encarsia opulenta (Silvestri) fueron liberadas en un programa de aumentó para el control de la mosca prieta de los cítri- cos. Aleurocanthus woglumi Ashby, en áreas donde siembran los citricos en el sur de Texas. Las liberaciones fueron hechas usando parasitoides criados en el laboratorio y los del insec- tario del campo. Un monitoreo preciso de seis huertos de cítricos fue hecho, y las evaluacio- nes hechas durante y después de la liberación que sugerieron que ambas especies de parasitoides se re-establecieron y ejercieron un control sobre la población de la plaga.
    [Show full text]
  • Introductions for Biological Control in Hawaii 1997–2001
    BPROCIOLOGICAL. HAWAIIAN CONTROL ENTOMOL IN H. SAWAIIOC. (2003), 1997–2001 36:145–153 145 Introductions for Biological Control in Hawaii 1997–2001 Thomas W. Culliney1, Walter T. Nagamine, and Kenneth K. Teramoto Hawaii Department of Agriculture, Division of Plant Industry, Plant Pest Control Branch 1428 South King Street, Honolulu, Hawaii 96814, U.S.A. 1Correspondence: T.W. Culliney, USDA, APHIS, PPQ, Center for Plant Health Science and Technology 1017 Main Campus Dr., Ste. 2500, Raleigh, NC 27606, USA Abstract. Introductions and releases of natural enemies for the biological control of agricultural and forest pests in Hawaii are discussed for the period 1997-2001. Sixteen insect and five fungal species were introduced, released, or redistributed by the Ha- waii Department of Agriculture for the control of six weeds (Clidemia hirta, Coccinia grandis, Miconia calvescens, Myrica faya, Senecio madagascariensis, and Ulex europaeus) and four insect pests (Aleurocanthus woglumi, Bemisia argentifolii, Pentalonia nigronervosa, and Sipha flava). Key words: biological control, Hawaii In its role as the state’s lead agency for classical biological control, the Plant Pest Control Branch of the Hawaii Department of Agriculture (HDOA) has maintained a program for the introduction and release of beneficial organisms for the past 100 years. This paper, the latest in a series, provides information on the status of some pests and their introduced natural enemies, and a list of natural enemies released for biological control in Hawaii from 1997 through 2001 (Table 1). All introductions are thoroughly studied and screened under quar- antine following established protocols, and must be approved by the state Board of Agricul- ture and the United States Department of Agriculture’s (USDA) Animal and Plant Health Inspection Service before they can be released in Hawaii.
    [Show full text]
  • I!Ilct of HOST PLANT on MEALYBUGS and THEIR
    1 I!iLCT OF HOST PLANT ON MEALYBUGS AND THEIR PARASITOIDS BY }LALAMBA ARACHCHIGE SUMANASIRI PERERA Thesis submitted for the degree of Doctor of Philosophy of the University of London Department of Biological Sciences Wye College University of London June 1990 2 DEDICATION Th13 work is dedicated to my parents and teachers who guided me to the Scientific World 3 ABSTRACT Six host plant species were tested as food plants for various life history parameters of two species of mealybug Planococous citri (Risso) and Pseudococcus affinis (Maskell). The range of acceptability Suggested that plants can be divided into host, acceptable non-host and unacceptable hosts. Mealybugs reared on soy bean plants developed significantly faster and reached a higher body weight in comparison to Insects reared on Gesneriaceae. Passiflora plant appeared to be completely resistant to P. cltri. Possible reasons for this are discussed. •The fecundity level of mealybugs reared on leguminous plants showed a two fold increase in comparison to Gesneriaceae plants. The relationship between fecundity, fresh weight and mean body length of adults showed differences between inealybugs reared on different plant species. The influence of host plant factors on the third trophic level was investigated. Anagyrus pseudococci (Girault) and Leptomastix dactylopil Howard were allowed to oviposit on P. cltri reared on various host plants and the fitness parameters were measured. Mealybugs fed on leguminous plants appear to be a better source or nutrient for the developing parasitoid larvae since the larger adults with longer life expectancy emerged from those hosts. More females emerged when the parasitolds oviposit on mealybugs reared on leguminous plants.
    [Show full text]
  • Agrobiodiversity Management for Food Security
    Agrobiodiversity Management for Food Security A Critical Review Dedication For Dandylion Agrobiodiversity Management for Food Security A Critical Review J.M. Lenné and D. Wood North Oldmoss Croft, Fyvie, Turriff, Aberdeenshire, UK CABI is a trading name of CAB International CABI Head Offi ce CABI North American Offi ce Nosworthy Way 875 Massachusett s Avenue Wallingford 7th Floor Oxfordshire, OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © CAB International 2011. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Agrobiodiversity management for food security : a critical review / J. M. Lenné and D. Wood [editors]. p. cm. Includes bibliographical references and index. ISBN 978-1-84593-761-4 (alk. paper) 1. Agrobiodiversity. 2. Food security. I. Lenné, Jillian M. II. Wood, D. (David), 1939- S494.5.A43A475 2011 631.5’8--dc22 2010043978 ISBN-13: 978 1 84593 761 4 Commissioning Editor: Rachel Cutt s Editorial Assistant: Alexandra Lainsbury Production Editor: Fiona Chippendale Typeset by Columns Design XML Limited, Reading, Berkshire. Printed and bound in the UK by Antony Rowe Contents Contributors vii Acknowledgements viii 1. Agrobiodiversity Revisited 1 J.M. Lenné and D.
    [Show full text]
  • Teoría Y Aplicación Del Control
    TEORÍA Y APLICACIÓN DEL CONTROL BIOLÓGICO CONTROL BIOLÓGICO TEORÍA Y APLICACIÓN DEL L. A. Rodríguez del Bosque H. C. Arredondo Bernal L. A. Rodríguez del Bosque H. C. Arredondo Bernal Editores Editores L. A. Rodríguez del Bosque H. C. Arredondo Bernal Editores TEORÍA Y APLICACIÓN DEL CONTROL BIOLÓGICO No está permitida la reproducción total o parcial de este libro, ni la transmisión de ninguna forma o por cualquier medio, ya sea electrónico, mecánico, por fotocopia, por registro u otros métodos, sin el permiso previo y por escrito de los titulares de derecho de autor. ISBN 978-968-5384-10-0 Derechos reservados © 2007 Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria Insurgentes Sur No. 489, piso 16 Col. Hipódromo Condesa C.P. 06100 México, D.F. Diseño de portada e interiores: L. A. Rodríguez del Bosque Primera Edición Tiraje: 1,000 ejemplares Impreso en México Esta obra se terminó de imprimir en noviembre de 2007 Sociedad Mexicana de Control Biológico, A.C. Mesa Directiva 2005-2007: Presidente: Hugo César Arredondo Bernal Vice-Presidente: Jorge E. Ibarra Rendón Secretario: Héctor González Hernández Tesorera: María Cristina del Rincón Castro La cita correcta de este libro es: Rodríguez-del-Bosque, L. A. y H. C. Arredondo-Bernal (eds.). 2007 Teoría y Aplicación del Control Biológico. Sociedad Mexicana de Control Biológico, México. 303 p. PRÓLOGO El control biológico de organismos nocivos para la agricultura, ganadería y recursos naturales ha cobrado un renovado interés a nivel mundial durante las últimas dos décadas por
    [Show full text]
  • A Citrus Blackfly Parasitoid, Encarsia Perplexa Huang and Polaszek (Insecta: Hymenoptera: Aphelinidae)1 Ru Nguyen and T
    EENY242 A Citrus Blackfly Parasitoid, Encarsia perplexa Huang and Polaszek (Insecta: Hymenoptera: Aphelinidae)1 Ru Nguyen and T. R. Fasulo2 Introduction Encarsia perplexa Huang & Polaszek is one of the most effective parasitoids of the citrus blackfly, Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae). It was originally misidentified as Encarsia opulenta (Silvestri), but was later determined to be a new species (Huang and Polaszek 1998). In 1950, E. perplexa from Saharanpur (India) were released for the control of A. woglumi in Mexico (Flanders 1969). The parasite was then introduced to Texas in 1971 (Summy et al. 1983), and Florida in 1976 (Hart et al. 1978) to suppress and maintain under the economic threshold the population of the citrus blackfly in these states. Distribution Encarsia perplexa is reported as native to Asia (Vietnam and India) (Silvestri 1927; Smith et al. 1964), (Huang and Polaszek 1998), and was introduced to Barbados, Cuba, Salvador, Kenya, Jamaica, Oman, Mexico, Venezuela, and Figure 1. A) Adult Encarsia perplexa Huang & Polaszek; and (B) pupal the United States (Texas and Florida) to control the citrus cases of the citrus blackfly, Aleurocanthus woglumi Ashby, from blackfly. In Florida, the parasite is found in south and which parasitoids have emerged (see roundish black holes). Normal central Florida where citrus blackfly occurs (Nguyen et al. emergence of an adult blackfly would leave a T-shaped split in the 1983). pupal case. Credits: Division of Plant Industry 1. This document is EENY242 (originally published as DPI Entomology Circular 301), one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date October 2001.
    [Show full text]
  • Tea: Biological Control of Insect and Mite Pests in China ⇑ Gong-Yin Ye A, , Qiang Xiao B, Mao Chen C, Xue-Xin Chen A, Zhi-Jun Yuan B, David W
    Biological Control 68 (2014) 73–91 Contents lists available at SciVerse ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Tea: Biological control of insect and mite pests in China ⇑ Gong-Yin Ye a, , Qiang Xiao b, Mao Chen c, Xue-xin Chen a, Zhi-jun Yuan b, David W. Stanley d, Cui Hu a a Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China b Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China c Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA d USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, 1503 S. Providence Road, Columbia, MO 65203, USA highlights graphical abstract More than 1100 species of natural enemies recorded in China have been summarized. Biological characteristics of some dominant natural enemies have been well reviewed. Various biocontrol measures combined with other IPM approaches have been reviewed. The future researches and policy implementation of tea pests are suggested. article info abstract Article history: Tea is one of the most economically important crops in China. To secure its production and quality, bio- Available online 3 July 2013 logical control measures within the context of integrated pest management (IPM) has been widely pop- ularized in China. IMP programs also provide better control of arthropod pests on tea with less chemical Keywords: insecticide usage and minimal impact on the environment. More than 1100 species of natural enemies Tea ecosystem including about 80 species of viruses, 40 species of fungi, 240 species of parasitoids and 600 species of Biological control predators, as well as several species of bacteria have been recorded in tea ecosystems in China.
    [Show full text]