Regulatory Entomology and Biological Control: a Tribute to Reece Sailer

Total Page:16

File Type:pdf, Size:1020Kb

Regulatory Entomology and Biological Control: a Tribute to Reece Sailer 244 Florida Entomologist 87(2) June 2004 REGULATORY ENTOMOLOGY AND BIOLOGICAL CONTROL: A TRIBUTE TO REECE SAILER HAROLD A. DENMARK, CHIEF (RETIRED) Bureau of Entomology, Division of Plant Industry, Florida Department of Agriculture and Consumer Services Dr. Reece I. Sailer joined the faculty of the En- though the Bureau was not conducting biological tomology and Nematology Department, Univer- control programs at that time, I was inspired by sity of Florida, Institute of Food and Agricultural this opportunity to build for the future. Sciences in early 1973, an opportune time to con- The Florida State Collection of Arthropods duct biological control research (Fig. 1). He en- (FSCA) had less than 30,000 specimens prior to tered arguably the nations largest entomological 1953, most of them poorly pinned and without la- community with a well-developed research and bels. Today, it is one of the best collections in regulatory infrastructure. His research in insect North America with more than eight million spec- biological control required taxonomists to provide imens well-pinned, labeled and identified to spe- authoritative identifications and an associated li- cies. The professionally-curated collection also brary, well-curated collections of specimens iden- contains partially identified specimens, 344,000 tified to species, and a secure building with in vials of alcohol and 340,000 mounted on slides. limited access to contain exotic arthropods and Of the specimens on slides, 100,000 are mites. arthropod pathogens. I committed my career to There are 30,000 bulk samples in alcohol that the creation of this kind of infrastructure for Flor- contain millions of specimens collected across ida and, with the help of a dedicated staff, ob- much of the world to be sorted, identified, labeled tained and managed many of the resources that and added to the collection. Now the fifth largest supported Dr. Sailer. This work began 49 years arthropod collection in the U.S., it is curated by ago, in July 1953, when I left the Entomology De- eight full-time taxonomists, one quarantine ento- partment of the University of Florida and ac- mologist, six technicians, and five assistants. Dr. cepted a position as an Entomologist in the Howard Weems developed the supporting FSCA Entomology Bureau of the State Plant Board Research Associates program that has grown to (SPB). I had been teaching biological control and more than 300 members. The taxonomic library is apiculture, and was interested in insect taxon- one of the most complete in North American, con- omy. Ed Ayers, the recently appointed Plant Com- taining both American and European journals. missioner, directed me to build an Entomology These FSCA resources at the Florida Department Bureau with an extensive insect collection and a of Agriculture and Consumer Services (DACS), regulatory capability second to no other state. Al- Division of Plant Industry (DPI) are available to the staff, University of Florida faculty and stu- dents, and cooperators. In 1870, Germany was the first country to pass a quarantine law, perhaps due in part to the threat posed by the Colorado potato beetle, Lepti- notarsa decemlineata (Say). This pest was first described by Thomas Say as an obscure chry- somelid found feeding on a wild solanaceous plant known as buffalo bur or sand bur that grows along the eastern slopes of the Rocky Mountains from Canada to Texas (Say 1824). For 30 years it continued to be of no economic importance until the pioneer settlers brought Irish potatoes into the area. The beetle quickly accepted the potato as a new source of food and became known as the Colorado potato beetle. It swept steadily east- ward and arrived at the Atlantic Coast in 1874. This event did not go unnoticed in Germany but, with the help of man, the beetle found its way into Europe and eventually Germany in spite of the quarantine law. The Florida Plant Act was passed on April 30, 1915 (Yonge 1915), soon after the U.S. enacted the Federal Plant Quarantine Act in 1912 and Cali- fornia became the first state to have regulatory Fig. 1. Dr. Reece I. Sailer. authority, also in 1912. Regulations were re- Pioneer Lecture 245 quired to control the spread of citrus canker that olia cardinalis (Mulsant), introduced into Florida was found in Jefferson County on September 30, from California in 1899 to control the cottony 1912. Some citrus was grown in the panhandle of cushion scale, Icerya purchasi Maskell (Berger Florida at that time, particularly Satsuma or- 1915). The vedalia beetle had been imported pre- anges. The Florida Department of Port and Rail- viously from Australia into California where it way Inspection of the SPB was created in June had become a very successful classical biological 1915 to inspect incoming ships and trains. The control agent. The SPB maintained a colony of the SPB was in charge of port inspections in Florida vedalia beetle until the mid 1930s and sold them until 1958. It was administered by the Board of to citrus growers and nurserymen at 10 beetles Control of the University of Florida and furnished per dollar. Cottony cushion scale is no longer a office space on the fifth and sixth floors of the Sea- pest in Florida probably because the vedalia bee- gle Building until moving to the Doyle Conner tle is still present and suppressing it to very low Building in 1967 (Fig. 2). The SPB became the population levels. This classic example of biologi- DPI, one of the 11 divisions of DACS in 1960. The cal control caught my attention as a student and U.S. Department of Agriculture (USDA) also had I have been interested in the field ever since. their personnel at ports in Florida and, in 1958, In addition to intentionally introducing insects accepted full responsibility for 100% inspection of for whatever purpose, some pests have arrived ac- all incoming cargo. Since 1960, the percentage of cidentally on agricultural products. The gypsy inspected cargo has steadily decreased to only 2- moth, Lymantria dispar (L.), was imported into 3% today. This decline was due to a large increase the Northeast from Europe in about 1869 to im- in the volume of cargo entering U.S. ports, includ- prove silk production. Egg masses are routinely ing plants, other agricultural products, and pas- found in Florida on campers and travel trailers senger baggage. that arrive in the fall from infested areas. How- Prior to the Florida Plant Act, there was no ever, due to Florida’s warm climate, this pest does regulatory authority to control non-indigenous not become established. The European corn borer, species in Florida, introduced or adventive, in- Ostrinia nubilalis (Hubner), was accidentally in- cluding biological control agents. Comprehensive troduced in about 1908 on broomcorn from Italy records were not kept but it is estimated that or Hungary. By 1938, it had spread over practi- about 35 species of parasites or predators were re- cally all of New England. It reached the Florida leased in Florida from 1899 to 1964, based on in- Panhandle in 1975 when it was found in seven formation from the SPB, University of Florida, counties by DPI inspectors. The Japanese beetle, and USDA. The first was the vedalia beetle, Rod- Popillia japonica Newman, was introduced into Fig. 2. The Seagle Building (A) and Doyle Conner Building (B) in Gainesville, Florida successively housed the State Plant Board. 246 Florida Entomologist 87(2) June 2004 New Jersey on roots of nursery stock in about During this period, only 20 flies were trapped in 1916 from Japan and spread south into Georgia Dade, Broward, Palm Beach and Lee Counties. in the late 1980s. It has been found in Florida as This species was not detected again in Florida un- a hitchhiker but has not become established. til April 23, 1965 at Miami Springs, and it subse- Among the more recent invasive pests is the quently infested Surinam cherries in the same sugarcane rootstalk weevil, Diaprepes abbrevia- area. Federal personnel who worked in Puerto tus (L.), first found in the Apopka area (Woodruff Rico thought that the caribfly was only a pest of 1964). It is a native of the West Indies with many ripe grapefruit, so it could not overwinter in Flor- host plants, including ornamental nursery stock. ida. Malathion (LV 95%) applied at the rate of 2 oz Initially, only one specimen was discovered on a per acre and 5 oz (25% WP) plus 1 pint of SIB No. nursery plant, but an infestation was subse- 7 bait per acre were tested on 200 acre blocks at quently detected in a nearby citrus grove Miami in 1965. Both sprays provided control suf- (Poucher 1968). The adults feed and lay eggs on ficient for eradication of the Caribbean fruit fly. the leaves of more than 200 hosts and larvae The Florida Legislature offered $1 million for an cause serious damage by feeding on roots. Larvae eradication program; however, it was deemed un- are difficult to control with insecticides after the necessary based on information provided by the first instar, even when chlordane, aldrin and di- USDA, APHIS. Within a year, the caribfly spread eldrin were available. A hymenopteran parasite, to 30 counties and we have had to learn to live Quadrastichus haitiensis (Gahan) was released with it. in the Apopka area but it was not effective be- The citrus blackfly, Aleurocanthus woglumi cause it could not overwinter. More recently, Dr. Ashby, first detected and eradicated in 1935 at Jorge Peña reported that the egg parasites, Q. Key West, was found a second time on January haitiensis, Ceratogramma etiennei Delvare and 28, 1976 in Broward County. A survey indicated Aprostocetus vaquitarum (Wolcott), have been re- that Dade and Palm Beach Counties were also in- leased and recovered in the southern part of the fested.
Recommended publications
  • Homoptera: Psyllidae) in Hawaii
    Vol. 31, December 31,1992 177 Taxonomic Status and Host Range of Three HeteropsyUa spp. (Homoptera: Psyllidae) in Hawaii WALTER T. NAGAMINE, BERNARR R. KUMASH1RO, and LARRY M. NAKAHARA1 ABSTRACT. The laxonomic status of two species of Hftrrvpsytla in Hawaii was clarified after confusion arose because of inadequate identification keys and the collection of mixed popu lations from a common host plant. A third species of llrtrmfisylla was also discovered for the first time in Hawaii (hiring January 1986. Most range tests were conducted with nine leguminous plants, lletemfisylla rubana Crawford, a senior synonym of //. inetia (Sulc), completed its development on leucaena (Ijnuarna UucocephaUt (l.am.) de Wit) and monkeypod (Samanea saman (Jacq.) Mem); //. huasachae Caldwell on koa (Acacia koa Gray), monkeypcxl, and slender mimosa (Desmanlhus virgatus (I.) Willd.); and //. fusca Crawford on klu {Acacia farnesiana (1..) Willcl.). Clarification of the taxonomic status of two HeteropsyUa spp. present in Hawaii was made recently. The close resemblance of the species within this genus, in addition to the collection of mixed populations from a common host plant, led to some early confusion. At that time, the need for revision of the HeteropsyUa group precluded their identifications. Later, with the revision work completed (Brown 1985, Burckhardt 1986, 1987) and with assistance of collaborators R. Brown and I. Hodkinson2, D. Burckhardt3, D. Hollis4, and D. Miller and L. Russell5, the determinations of two HeteropsyUa spp., H. cubana Crawford and H. huasachae Caldwell, were made. A third species, H. fusca Crawford, was later identified by I. Hodkinson, R. Brown, and D. Hollis. A summary of the three psyllids in Hawaii is presented below.
    [Show full text]
  • An Annotated Checklist of the Cook Islands Psyllids with Keys to the Species and Two New Records (Hemiptera, Psylloidea)
    A peer-reviewed open-access journal ZooKeys 811: 91–108An annotated(2018) checklist of the Cook Islands psyllids with keys to the species... 91 doi: 10.3897/zookeys.811.28829 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research An annotated checklist of the Cook Islands psyllids with keys to the species and two new records (Hemiptera, Psylloidea) Francesco Martoni1,2, Samuel D. J. Brown3 1 Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand 2 Agriculture Victoria Research, AgriBio Centre, 5 Ring road, Bundoora 3083, Victoria, Australia 3 The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre 1142, New Zealand Corresponding author: Francesco Martoni ([email protected]) Academic editor: James Zahniser | Received 3 August 2018 | Accepted 21 November 2018 | Published 31 December 2018 http://zoobank.org/7FC5DEBE-4589-4AD4-8D7A-69C5615FA737 Citation: Martoni F, Brown SDJ (2018) An annotated checklist of the Cook Islands psyllids with keys to the species and two new records (Hemiptera, Psylloidea). ZooKeys 811: 91–108. https://doi.org/10.3897/zookeys.811.28829 Abstract An annotated checklist of the psyllids of the Cook Islands is presented. The presence ofSyntomoza tahuata (Klyver, 1932) and Trioza alifumosa Klyver, 1932 in the archipelago, based on new material collected, is reported for the first time. This is the first record from these islands of the genusSyntomoza and the family Liviidae. An identification key to the psyllid species known from the Cook Islands is provided, and their origin and provenance are discussed in relation to their biogeographic implications.
    [Show full text]
  • Catalog of the Encarsia of the World (2007)
    Catalog of the Encarsia of the World (2007) John Heraty, James Woolley and Andrew Polaszek (a work in progress) Note: names in parentheses refer to species groups, not subgenera. Encarsia Foerster, 1878. Type species: Encarsia tricolor Foerster, by original designation. Aspidiotiphagus Howard, 1894a. Type species: Coccophagus citrinus Craw, by original designation. Synonymy by Viggiani & Mazzone, 1979[144]: 44. Aspidiotiphagus Howard, 1894a. Type species: Coccophagus citrinus Craw, by original designation. Synonymy by Viggiani & Mazzone, 1979[144]: 44. Prospalta Howard, 1894b. Type species: Coccophagus aurantii Howard. Subsequently designated by ICZN, Opinion 845, 1968: 12-13. Homonym; discovered by ??. Encarsia of the World 2 Prospalta Howard, 1894b. Type species: Coccophagus aurantii Howard. Homonym of Prospalta Howard; discovered by ??. Encarsia; Howard, 1895b. Subsequent description. Prospaltella Ashmead, 1904[238]. Replacement name; synonymy by Viggiani & Mazzone, 1979[144]: 44. Prospaltella Ashmead, 1904[238]. Replacement name for Prospalta Howard Viggiani & Mazzone, 1979[144]: 44. Mimatomus Cockerell, 1911. Type species: Mimatomus peltatus Cockerell, by monotypy. Synonymy by Girault, 1917[312]: 114. Doloresia Mercet, 1912. Type species: Prospaltella filicornis Mercet, by original designation. Synonymy by Mercet, 1930a: 191. Aspidiotiphagus; Mercet, 1912a. Subsequent description. Encarsia; Mercet, 1912a. Subsequent description. Prospaltella; Mercet, 1912a. Subsequent description. Prospaltoides Bréthes, 1914. Type species: Prospaltoides
    [Show full text]
  • Life-History Parameters of Encarsia Formosa, Eretmocerus Eremicus and E
    Eur. J. Entomol. 101: 83–94, 2004 ISSN 1210-5759 Life-history parameters of Encarsia formosa, Eretmocerus eremicus and E. mundus, aphelinid parasitoids of Bemisia argentifolii (Hemiptera: Aleyrodidae) YU TONG QIU, JOOP C. VAN LENTEREN, YVONNE C. DROST and CONNIE J.A.M. POSTHUMA-DOODEMAN Laboratory of Entomology, Wageningen University; P.O.Box 8031, 6700 EH Wageningen, The Netherlands e-mails: [email protected]; [email protected] Key words. Hymenoptera, Aphelinidae, Homoptera, Aleyrodidae, whiteflies, Encarsia formosa, Eretmocerus eremicus, Eretmocerus mundus, biological control, life history, longevity, development time Abstract. Life-history parameters (juvenile development time, adult longevity, host instar preference and rate of parasitism) of four parasitoids of Bemisia argentifolii (two strains of Encarsia formosa (D and B), Eretmocerus eremicus and Eretmocerus mundus) were studied in the laboratory. At 15°C juvenile development time was the shortest for E. formosa B (48 days), longest for E. ere- micus (79.3 days) and intermediate for E. formosa D (62.8 days) and E. mundus (64 days) at 15°C. With increase in temperature, development time decreased to around 14 days for all species/strains at 32°C. The lower developmental threshold for development was 11.5, 8.1, 13.0 and 11.5°C for E. formosa D, E. formosa B, E. eremicus and E. mundus, respectively. E. formosa D and B, and E. mundus all appeared to prefer to parasitize 3rd instar nymphs. The presence of hosts shortened adult longevity in most of the para- sitoids, with the exception of E. formosa B, which lived longer than other species/strains irrespective of the presence of hosts.
    [Show full text]
  • Control Biológico De Insectos: Clara Inés Nicholls Estrada Un Enfoque Agroecológico
    Control biológico de insectos: Clara Inés Nicholls Estrada un enfoque agroecológico Control biológico de insectos: un enfoque agroecológico Clara Inés Nicholls Estrada Ciencia y Tecnología Editorial Universidad de Antioquia Ciencia y Tecnología © Clara Inés Nicholls Estrada © Editorial Universidad de Antioquia ISBN: 978-958-714-186-3 Primera edición: septiembre de 2008 Diseño de cubierta: Verónica Moreno Cardona Corrección de texto e indización: Miriam Velásquez Velásquez Elaboración de material gráfico: Ana Cecilia Galvis Martínez y Alejandro Henao Salazar Diagramación: Luz Elena Ochoa Vélez Coordinación editorial: Larissa Molano Osorio Impresión y terminación: Imprenta Universidad de Antioquia Impreso y hecho en Colombia / Printed and made in Colombia Prohibida la reproducción total o parcial, por cualquier medio o con cualquier propósito, sin autorización escrita de la Editorial Universidad de Antioquia. Editorial Universidad de Antioquia Teléfono: (574) 219 50 10. Telefax: (574) 219 50 12 E-mail: [email protected] Sitio web: http://www.editorialudea.com Apartado 1226. Medellín. Colombia Imprenta Universidad de Antioquia Teléfono: (574) 219 53 30. Telefax: (574) 219 53 31 El contenido de la obra corresponde al derecho de expresión del autor y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. El autor asume la responsabilidad por los derechos de autor y conexos contenidos en la obra, así como por la eventual información sensible publicada en ella. Nicholls Estrada, Clara Inés Control biológico de insectos : un enfoque agroecológico / Clara Inés Nicholls Estrada. -- Medellín : Editorial Universidad de Antioquia, 2008. 282 p. ; 24 cm. -- (Colección ciencia y tecnología) Incluye glosario. Incluye bibliografía e índices.
    [Show full text]
  • IAS Strategy for Caribbean Netherlands
    Key Elements Towards a Joint Invasive Alien Species Strategy for the Dutch Caribbean S.R. Smith, W.J. van der Burg, A.O. Debrot, G. van Buurt, J.A. de Freitas Report number C020/14 PRI report number 550 IMARES Wageningen UR Institute for Marine Resources & Ecosystem Studies Client: The Dutch Ministry of Economic Affairs (EZ) Drs. Paul Hoetjes P.O. Box 20401 2500 EK The Netherlands BO-11-011.05-024 Publication date: February 14th, 2014 IMARES is: an independent, objective and authoritative scientific institute; an institute that provides knowledge necessary for an integrated sustainable protection, exploitation and spatial use of the sea and coastal zones; a key, proactive player in national and international marine networks (including ICES and EFARO). This research is part of the Wageningen University BO research program (BO-11-011.05-024) and was financed by the Dutch Ministry of Economic Affairs (EZ) under project number 4308701025. This report is the result of a joint IMARES/PRI project. Photo description cover page: Left image: Lionfish, Pterois miles/volitans, a top invasive predator in many coral reef environments. Courtesy of M.J.A Vemeij. Center image: Giant African landsnail, Achatina fulica, a recent (2013) accidental introduction to St. Eustatius. Courtesy of R. Hensen. Right image: Pedilanthus tithymaloides, a recent invader of Boven area on St Eustatius W. Joost van der Burg. P.O. Box 68 P.O. Box 77 P.O. Box 57 P.O. Box 167 1970 AB IJmuiden 4400 AB Yerseke 1780 AB Den Helder 1790 AD Den Burg Texel Phone: +31 (0)317 48
    [Show full text]
  • Orange Spiny Whitefly, Aleurocanthus Spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S
    EENY341 Orange Spiny Whitefly, Aleurocanthus spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S. Hodges2 Introduction Africa (Van den Berg et al. 1990). More recently, orange spiny whitefly was reported from Italy (2008), Croatia Orange spiny whitefly, Aleurocanthus spiniferus Quaintance, (2012), and Montenegro (2013) (Radonjic et al. 2014). is a native pest of citrus in tropical Asia. In the early 1920s, Established populations of orange spiny whitefly are not yet pest outbreak infestation levels caused Japan to begin a known to occur in the continental US. biological control program. Primarily, orange spiny whitefly affects host plants by sucking the sap but it also causes indirect damage by producing honeydew and subsequently Description and Life History promoting the growth of sooty mold. Sooty mold is a Whiteflies have six developmental stages: egg, crawler (1st black fungus that grows on honeydew. Heavy infestations instar), two sessile nymphal instars (2nd and 3rd instars), of orange spiny whitefly, or other honeydew-producing the pupa (4th instar), and adult. Identification of the insects such as scales, mealybugs, aphids, and other whitefly Aleyrodidae is largely based upon characters found in the species, can cause sooty mold to completely cover the leaf pupal (4th instar) stage. The duration of the life cycle and surface and negatively affect photosynthesis. the number of generations per year are greatly influenced by the prevailing climate. A mild temperature with high Distribution relative humidity provides ideal conditions for growth and development. About four generations per year have The orange spiny whitefly has spread to Africa, Australia, been recorded in Japan (Kuwana et al.
    [Show full text]
  • Biological Control of the Leucaena Psyllid Heteropsylla Cubana in New
    Reprint from LEUCAENA RESEARCH REPORTS Volume 11 : 9 (1990) NEW CALEDONIA Chazeau, J., E. Bouye and L. Bonnet de Larbogne. Institute Francals de Recherche Scientilique pour la Developpement en Cooperation, a.p. M, Noumea Cedex. Nouvelle Caledonie, BIOLOGICAL CONTROL OF THE LEUCAENA PSYLLlD HETEROPSYILA CUBANA IN NEW CALEDONIA Heteropsylla cubana Crawford (Hemiptera, Psyllidae) is native in tropical America and the Caribbean. It invaded the tropical Pacific islands, Australasia, and South-East Asia between 1984 and 1988. The lack of effective natural enemies of the psyllid in infested areas resulted in severe defoliation or death of the main host plant Leucaena leucocephala (Lam.) de Wit and subsequent heavy economic losses. The parasite was detected in October, 1985 in New Caledonia, where leucaena is used extensively for cattle fodder and is appreciated for its role in soil conservation. Heavy impact on the host plant was soon observed. The coccinellid Olla v-nigrum Mulsant (Coleoptera) was introduced from Tahiti to control the psyllid. Few adults were released before the species became established: 282 adults from the first and second generations, between January and March, 1987 in Noumea and Paita areas. Olla has been found in these areas since May, 1987. The predator was present in most parts of New Caledonia in July, 1989. O. v-nigrum is known to feed on many different preys and to colonize various biotopes. At 25:rC the duration of the life cycle was 16.8 days (Egg 2.7; L1 2.1; L2 1.6; L3 1.9; lA 4.8; Ny 3.8). The rate of egg hatching was 0.76 for wild females; during the establishment of a life table based on 29 females, hatch rate was observed to decrease to 0.05 at the end of the oviposition period.
    [Show full text]
  • 94: Frank & Mccoy Intro. 1 INTRODUCTION to INSECT
    Behavioral Ecology Symposium ’94: Frank & McCoy Intro. 1 INTRODUCTION TO INSECT BEHAVIORAL ECOLOGY : THE GOOD, THE BAD, AND THE BEAUTIFUL: NON-INDIGENOUS SPECIES IN FLORIDA INVASIVE ADVENTIVE INSECTS AND OTHER ORGANISMS IN FLORIDA. J. H. FRANK1 AND E. D. MCCOY2 1Entomology & Nematology Department, University of Florida, Gainesville, FL 32611-0620 2Biology Department and Center for Urban Ecology, University of South Florida, Tampa, FL 33620-5150 ABSTRACT An excessive proportion of adventive (= “non-indigenous”) species in a community has been called “biological pollution.” Proportions of adventive species of fishes, am- phibia, reptiles, birds and mammals in southern Florida range from 16% to more than 42%. In Florida as a whole, the proportion of adventive plants is about 26%, but of in- sects is only about 8%. Almost all of the vertebrates were introduced as captive pets, but escaped or were released into the wild, and established breeding populations; few arrived as immigrants (= “of their own volition”). Almost all of the plants also were in- troduced, a few arrived as immigrants (as contaminants of shipments of seeds or other cargoes). In contrast, only 42 insect species (0.3%) were introduced (all for bio- logical control of pests, including weeds). The remainder (about 946 species, or 7.6%) arrived as undocumented immigrants, some of them as fly-ins, but many as contami- nants of cargoes. Most of the major insect pests of agriculture, horticulture, human- made structures, and the environment, arrived as hitchhikers (contaminants of, and stowaways in, cargoes, especially cargoes of plants). No adventive insect species caus- ing problems in Florida was introduced (deliberately) as far as is known.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Descripciones De Dos Especies Nuevas De Encarsia Förster (Hymenoptera: Aphelinidae) Y Nuevos Registros De Especies De Este Género Para Chiapas Y Jalisco, México
    Acta Zoológica Mexicana (n.s.) 24(2): 101-114 (2008) DESCRIPCIONES DE DOS ESPECIES NUEVAS DE ENCARSIA FÖRSTER (HYMENOPTERA: APHELINIDAE) Y NUEVOS REGISTROS DE ESPECIES DE ESTE GÉNERO PARA CHIAPAS Y JALISCO, MÉXICO Myartseva S.N.1 y A. GONZÁLEZ-HERNÁNDEZ2 1 División de Estudios de Postgrado e Investigación, UAM Agronomía y Ciencias, Universidad Autónoma de Tamaulipas, Cd. Victoria, 87149, Tamaulipas, MÉXICO. 2 Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de Los Garza, Monterrey, Nuevo León, MÉXICO. [email protected]; [email protected] RESUMEN Se describen e ilustran dos nuevas especies del género Encarsia Förster, colectadas en Chiapas y Jalisco: Encarsia clavata sp.n. y Encarsia verticina sp.n.. Nueve registros nuevos de las especies de este género son presentadas para los estados de Chiapas y Jalisco, incluyendo dos registros nuevos para México. Palabras clave: Aphelinidae, Encarsia, especies nuevas, Chiapas, Jalisco, México. ABSTRACT Two new species of genus Encarsia Förster collected in Chiapas and Jalisco are described and illustrated: Encarsia clavata sp.n. and Encarsia verticina sp.n.. Nine new records of species of this genus are given for the states of Chiapas and Jalisco, including two new records for Mexico. Key words: Aphelinidae, Encarsia, new species, Chiapas, Jalisco, Mexico. INTRODUCCIÓN Encarsia Förster, 1878, es uno de los géneros más ricos en especies de la familia Aphelinidae. Este género cosmopolita contiene actualmente cerca de 280 especies descritas, divididas en más de 20 grupos de especies (de acuerdo a Hayat 1998). La primera lista de referencias de Aphelinidae de México incluyó 30 especies del género Encarsia (Myartseva y Ruíz Cancino 2000) y el último registro de Encarsia de México incluyó 38 especies (Myartseva et al.
    [Show full text]
  • Encarsia Catalog of World Species
    Last updated: August 2020 Notes on catalog: This catalog was produced using Biological and Systematic Information System (BASIS 3.0a developed by Gary Gibson and Jennifer Read (ECORC, Agriculture Canada Ottawa). This catalog of Encarsia is in development and no information presented herein regarding name changes should be considered as valid until properly published. If errors are discovered, please contact the primary author at [email protected]. Production of this catalog has been supported in part by National Science Foundation Grant DEB 1257733 and 1555808, University of California, van den Bosch Scholarship, and hatch project funds. Catalog of the Encarsia Förster of the World Robert L. Kresslein, John Heraty, James Woolley and Andrew Polaszek * Other Hosts: Aphelinidae, Aphididae, Cicadellidae, Coccidae, Plataspidae, Platygastridae, Pseudococcidae, Pyralidae Encarsia of the World — Contents _____________________________________________________________________________________________ Contents Encarsia Förster ............................................................................................................................................. 1 Unplaced Species............................................................................................................................................ 2 Albiscutellum Species Group ...................................................................................................................... 18 Aurantii Species Group ..............................................................................................................................
    [Show full text]