WO 2017/055322 Al O

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/055322 Al O (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/055322 Al 6 April 2017 (06.04.2017) W P O PCT (51) International Patent Classification: Umrsl l38, Equipe 13, 15 rue de l'Ecole de Medecine, C12Q 1/68 (2006.01) 75006 Paris (FR). (21) International Application Number: (74) Agent: COLLIN, Matthieu; Inserm Transfert 7 rue Watt, PCT/EP2016/073053 75013 Paris (FR). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 28 September 2016 (28.09.201 6) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, EP15306521.4 29 September 2015 (29.09.2015) EP MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, EP16305886.0 12 July 2016 (12.07.2016) EP OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (71) Applicants: INSERM (INSTITUT NATIONAL DE LA SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, SANTE ET DE LA RECHERCHE MEDICALE) TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, [FR/FR]; 101, rue de Tolbiac, 75013 Paris (FR). UNI¬ ZW. VERSITE PARIS DIDEROT - PARIS 7 [FR/FR]; 5, rue (84) Designated States (unless otherwise indicated, for every Thomas Mann, 75013 Paris (FR). UNIVERSITE kind of regional protection available): ARIPO (BW, GH, PIERRE ET MARIE CURIE (PARIS 6) [FR/FR]; 4, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, place Jussieu, 75005 Paris (FR). UNIVERSITE PARIS TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, DESCARTES [FR/FR]; 12, rue de l'Ecole de Medecine, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 75006 Paris (FR). LIGUE NATIONALE CONTRE LE DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, CANCER [FR/FR]; 14 rue Corvisart, 7501 3 Paris (FR). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, ASSISTANCE PUBLIQUE-HOPITAUX DE PARIS SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (APHP) [FR/FR]; 3, avenue Victoria, 75004 Paris (FR). GW, KM, ML, MR, NE, SN, TD, TG). (72) Inventors: FRD3MAN, Wolf Herman; Centre de Recher Published: che les Cordeliers / Inserm U 1138, 15 rue de l'Ecole de — with international search report (Art. 21(3)) Medecine, 75270 Paris (FR). DE REYNIES, Aurelien; Ligue Nationale Contre le Cancer, Programme CIT, 14 rue Corvisart, 75013 Paris (FR). BECHT, Etienne; Inserm © o- (54) Title: METHODS FOR QUANTIFYING THE POPULATION OF NEUTROPHILS IN A TISSUE SAMPLE (57) Abstract: The present invention relates to methods for quantifying the population of neutrophils in a tissue sample. In particu- lar, the present invention relates to a method for quantifying the population of neutrophils in a tissue sample obtained from a subject comprising determining the expression level of at least one gene selected from the group consisting of CXCR2, VNN3, CYP4F3, HAL, GENE 1, FCGR3B, KCNJ15, CXCR1, STEAP4 and TNFRSF10C. METHODS FOR QUANTIFYING THE POPULATION OF NEUTROPHILS IN A TISSUE SAMPLE FIELD OF THE INVENTION: The present invention relates to methods for quantifying the population of neutrophils in a tissue sample. BACKGROUND OF THE INVENTION: Tumors grow within a microenvironment composed of immune cells, endothelial cells, fibroblasts and adjacent normal tissue. The composition of the tumor microenvironment is of paramount importance during tumor development. Notably, infiltration by cells of the adaptive immune system helps control tumor growth and correlate with a favorable clinical outcome in most cancers. A consensual result is that infiltration with memory CD8+ T cells is associated with a favorable patient's outcome. However, there are exceptions to this rule. Notably, in clear cell renal cell carcinoma (ccRCC), where angiogenesis is highly due to mutations disrupting the HIF pathway regulating the cellular response to hypoxia, tumor-infiltration by CD8+ T cells is associated with a poor prognosis for the patient. To understand this surprising result, the inventors recently performed a comprehensive characterization of the microenvironmental components associated to CD8+ T cells' infiltration in ccRCC. It appeared that in this malignancy, CD8+ T cells infiltration is associated with a strong infiltration by other immune cells, including B cells and cells of monocytic origin. Conversely, in colorectal cancer (CRC), it is well known that infiltration by CD8+ T cells is associated with a favorable outcome. This disease is also highly heterogeneous in terms of tumor-cell phenotypes, as up to six molecular subgroups have been described, which differ in carcinogenesis pathways, methylation profile, DNA mutational burden, and prognosis. The subgroup with the best prognosis featured a strong infiltration by cytotoxic lymphocytes. Surprisingly, the worst-prognosis subgroup also displayed a strong immune infiltration, with intermediate expression of lymphocytes' markers and a strong myeloid component, as well as a high signature of endothelial cells and fibroblasts. Further analysis revealed an increased expression of pro-inflammatory and pro-angiogenic molecules in this subgroup, which appear to originate from microenvironment's fibroblasts. Altogether, these data underline the importance of a full characterization of the immune, endothelial and fibroblastic components of the microenvironment to decipher interactions between these cell types and deliver therapies aimed at orienting inflammatory microenvironments towards a more immuneresponsive state. SUMMARY OF THE INVENTION: The present invention relates to methods for quantifying the population of neutrophils in a tissue sample. In particular, the present invention is defined by the claims. DETAILED DESCRIPTION OF THE INVENTION: The tumor microenvironment is a complex tissue which contains many distinct cell populations, and whose composition may predict prognosis and response to therapies. In the present disclosure, using samples of purified cell populations, the inventors defined specific and robust transcriptomic markers of the immune and stromal cell populations of the tumor microenvironment, and they quantitatively validated them in an in-vitro R A mixture model. For this purpose, they developed the 'Microenvironment Cell Populations-counter' (MCP-counter) method, which, using transcriptomic data, allows a robust quantification of the abundance of immune and stromal populations in cellularly heterogeneous tissues. They present in-vitro and ex-vivo data supporting the validity of this method's estimates and they apply MCP-counter to draw a global picture of immune infiltrates across human healthy tissues and non-hematopoietic tumors, and to confirm recently-identified microenvironment-based cancer stratifications associated with overall-survival in lung adenocarcinoma, colorectal, and breast cancers. Accordingly a first object of the present invention relates to a method for quantifying the population of neutrophils in a tissue sample obtained from a subject comprising determining the expression level of at least one gene selected from the group consisting of CXCR2, VNN3, CYP4F3, HAL, GENE 1, FCGR3B, KCNJ15, CXCR1, STEAP4 and TNFRSF10C wherein the determined expression level indicates the quantity of the population of neutrophils in the tissue sample. As used herein, the term "neutrophils" also known as "granulocytes" has its general meaning in the art. Neutrophils are a category of white blood cells characterized by the presence of granules in their cytoplasm. They are also called polymorphonuclear leukocytes (PMN, PML, or PMNL) because of the varying shapes of the nucleus, which is usually lobed into three segments. This distinguishes them from the mononuclear agranulocytes. In common parlance, the term polymorphonuclear leukocyte often refers specifically to neutrophil granulocytes, the most abundant of the granulocytes; the other types (eosinophils, basophils, and mast cells) have lower numbers. Neutrophils are produced via granulopoiesis in the bone marrow. As used herein, the term "subject" denotes a mammal such as a rodent, a feline, a canine and a primate. Preferably, a subject according to the invention is a human. As used herein, the term "tissue", when used in reference to a part of a body or of an organ, generally refers to an aggregation or collection of morphologically similar cells and associated accessory and support cells and intercellular matter, including extracellular matrix material, vascular supply, and fluids, acting together to perform specific functions in the body. There are generally four basic types of tissue in animals and humans including muscle, nerve, epithelial, and connective tissues. In some embodiments, when the subject suffers from a cancer, the tissue sample is a tumor tissue sample. As used herein, the term "tumor tissue sample" means any tissue tumor sample derived from the patient. Said tissue sample is obtained for the purpose of the in vitro evaluation. In some embodiments, the tumor sample may result from the tumor resected from the patient. In some embodiments, the tumor sample may result from a biopsy performed in the primary tumour of the patient or performed in metastatic sample distant from the primary tumor of the patient. In some embodiments, the tumor tissue sample encompasses a global primary tumor (as a whole), a tissue sample from the center of the tumor, a tumor tissue sample collected prior surgery (for follow-up of patients after treatment for example), and a distant metastasis. The tumor tissue sample can, of course, be subjected to a variety of well-known post-collection preparative and storage techniques (e.g., fixation, storage, freezing, etc.). The sample can be fresh, frozen, fixed (e.g., formalin fixed), or embedded (e.g., paraffin embedded.
Recommended publications
  • Downloaded the Normalized Gene Expression Profile from the GEO (Package Geoquery (5))
    1 SUPPLEMENTARY MATERIALS 2 Supplementary Methods 3 Study design 4 The workflow to identify and validate the TME risk score and TME subtypes in gastric cancer is 5 depicted in Fig. S1. We first estimated the absolute abundance levels of the major stromal and 6 immune cell types in the TME using bulk gene expression data, and assessed the prognostic 7 effect of these cells in a discovery cohort. Next, we constructed a TME risk score and validated it 8 in two independent gene expression validation cohorts and three immunohistochemistry 9 validation cohorts. Finally, we stratified patients into four TME subtypes and examined their 10 genomic and molecular features and relation to established molecular subtypes. 11 Gene expression data 12 To explore the prognostic landscape of the TME, we used four gene expression profile (GEP) 13 datasets of resected gastric cancer patients with publicly available clinical information, namely, 14 ACRG (GSE62254) (1), GSE15459 (2), GSE84437 (3), and TCGA stomach adenocarcinoma 15 (STAD). Specifically, the raw microarray data in the ACRG cohort and GSE15459 were retrieved 16 from the Gene Expression Omnibus (GEO), and normalized by the RMA algorithm (package affy) 17 using custom chip definition files (Brainarray version 23 (4)) that convert Affymetrix probesets to 18 Entrez gene IDs. For GSE84437 dataset, which was measured by the Illumina platform, we 19 downloaded the normalized gene expression profile from the GEO (package GEOquery (5)). The 20 Illumina probes were also mapped to Entrez genes. For multiple probes mapping to the same 21 Entrez gene, we selected the one with the maximum mean expression level as the surrogate for 22 the Entrez gene using the function of collapseRows (6) (package WGCNA).
    [Show full text]
  • This Is an Author Produced Version of a Paper Published in Immunology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications from Karolinska Institutet This is an author produced version of a paper published in Immunology. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. Pubmed citation for the paper: Immunology. 2014 May 6. [Epub ahead of print] Ligation of human Fc receptor like-2 (FCRL2) by monoclonal antibodies downregulates B cell receptor mediated signaling. Shabani M, Bayat AA, Jeddi-Tehrani M, Rabbani H, Hojjat-Farsangi M, Ulivieri C, Amirghofran Z, Baldari CT, Shokri F. URL: http://dx.doi.org/10.1111/imm.12311 Access to the published version may require subscription. Published with permission from: Wiley Ligation of human Fc receptor like-2 (FCRL2) by monoclonal antibodies downregulates B cell receptor mediated signaling Mahdi Shabania,b, Ali Ahmad Bayata, Mahmood Jeddi-Tehrania, Hodjatallah Rabbania,c, Mohammad Hojjat-Farsangid, Cristina Ulivierie, Zahra Amirghofranb, Cosima Tatiana Baldarie and Fazel Shokria,f* a Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran b Department of Immunology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran c Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden d Immune and Gene Therapy Laboratory, Cancer Centre Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm e Department of Life Sciences, University of Siena, Siena, Italy f Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran *Corresponding author: Fazel Shokri, Ph.D., Professor, Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, P.O.
    [Show full text]
  • Long, Noncoding RNA Dysregulation in Glioblastoma
    cancers Review Long, Noncoding RNA Dysregulation in Glioblastoma Patrick A. DeSouza 1,2 , Xuan Qu 1, Hao Chen 1,3, Bhuvic Patel 1 , Christopher A. Maher 2,4,5,6 and Albert H. Kim 1,6,* 1 Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; [email protected] (P.A.D.); [email protected] (X.Q.); [email protected] (H.C.); [email protected] (B.P.) 2 Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; [email protected] 3 Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA 4 Department of Biomedical Engineering, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA 5 McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA 6 Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA * Correspondence: [email protected] Simple Summary: Developing effective therapies for glioblastoma (GBM), the most common primary brain cancer, remains challenging due to the heterogeneity within tumors and therapeutic resistance that drives recurrence. Noncoding RNAs are transcribed from a large proportion of the genome and remain largely unexplored in their contribution to the evolution of GBM tumors. Here, we will review the general mechanisms of long, noncoding RNAs and the current knowledge of how these impact heterogeneity and therapeutic resistance in GBM. A better understanding of the molecular drivers required for these aggressive tumors is necessary to improve the management and outcomes Citation: DeSouza, P.A.; Qu, X.; of this challenging disease.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • Supplementary Table 1 Genes Tested in Qrt-PCR in Nfpas
    Supplementary Table 1 Genes tested in qRT-PCR in NFPAs Gene Bank accession Gene Description number ABI assay ID a disintegrin-like and metalloprotease with thrombospondin type 1 motif 7 ADAMTS7 NM_014272.3 Hs00276223_m1 Rho guanine nucleotide exchange factor (GEF) 3 ARHGEF3 NM_019555.1 Hs00219609_m1 BCL2-associated X protein BAX NM_004324 House design Bcl-2 binding component 3 BBC3 NM_014417.2 Hs00248075_m1 B-cell CLL/lymphoma 2 BCL2 NM_000633 House design Bone morphogenetic protein 7 BMP7 NM_001719.1 Hs00233476_m1 CCAAT/enhancer binding protein (C/EBP), alpha CEBPA NM_004364.2 Hs00269972_s1 coxsackie virus and adenovirus receptor CXADR NM_001338.3 Hs00154661_m1 Homo sapiens Dicer1, Dcr-1 homolog (Drosophila) (DICER1) DICER1 NM_177438.1 Hs00229023_m1 Homo sapiens dystonin DST NM_015548.2 Hs00156137_m1 fms-related tyrosine kinase 3 FLT3 NM_004119.1 Hs00174690_m1 glutamate receptor, ionotropic, N-methyl D-aspartate 1 GRIN1 NM_000832.4 Hs00609557_m1 high-mobility group box 1 HMGB1 NM_002128.3 Hs01923466_g1 heterogeneous nuclear ribonucleoprotein U HNRPU NM_004501.3 Hs00244919_m1 insulin-like growth factor binding protein 5 IGFBP5 NM_000599.2 Hs00181213_m1 latent transforming growth factor beta binding protein 4 LTBP4 NM_001042544.1 Hs00186025_m1 microtubule-associated protein 1 light chain 3 beta MAP1LC3B NM_022818.3 Hs00797944_s1 matrix metallopeptidase 17 MMP17 NM_016155.4 Hs01108847_m1 myosin VA MYO5A NM_000259.1 Hs00165309_m1 Homo sapiens nuclear factor (erythroid-derived 2)-like 1 NFE2L1 NM_003204.1 Hs00231457_m1 oxoglutarate (alpha-ketoglutarate)
    [Show full text]
  • (Q36.1;Q24) with a Concurrent Submicroscopic Del(4)(Q23q24) in an Adult with Polycythemia Vera
    cancers Case Report A Novel Acquired t(2;4)(q36.1;q24) with a Concurrent Submicroscopic del(4)(q23q24) in An Adult with Polycythemia Vera Eigil Kjeldsen Cancer Cytogenetic Section, HemoDiagnostic Laboratory, Department of Hematology, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 Aarhus C, Denmark; [email protected]; Tel.: +45-7846-7398; Fax: +45-7846-7399 Received: 6 June 2018; Accepted: 21 June 2018; Published: 25 June 2018 Abstract: Background: Polycythemia vera (PV) is a clonal myeloid stem cell disease characterized by a growth-factor independent erythroid proliferation with an inherent tendency to transform into overt acute myeloid malignancy. Approximately 95% of the PV patients harbor the JAK2V617F mutation while less than 35% of the patients harbor cytogenetic abnormalities at the time of diagnosis. Methods and Results: Here we present a JAK2V617F positive PV patient where G-banding revealed an apparently balanced t(2;4)(q35;q21), which was confirmed by 24-color karyotyping. Oligonucleotide array-based Comparative Genomic Hybridization (aCGH) analysis revealed an interstitial 5.4 Mb large deletion at 4q23q24. Locus-specific fluorescent in situ hybridization (FISH) analyses confirmed the mono-allelic 4q deletion and that it was located on der(4)t(2;4). Additional locus-specific bacterial artificial chromosome (BAC) probes and mBanding refined the breakpoint on chromosome 2. With these methods the karyotype was revised to 46,XX,t(2;4)(q36.1;q24)[18]/46,XX[7]. Conclusions: This is the first report on a PV patient associated with an acquired novel t(2;4)(q36.1;q24) and a concurrent submicroscopic deletion del(4)(q23q24).
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Supplementary Table S1. List of Differentially Expressed
    Supplementary table S1. List of differentially expressed transcripts (FDR adjusted p‐value < 0.05 and −1.4 ≤ FC ≥1.4). 1 ID Symbol Entrez Gene Name Adj. p‐Value Log2 FC 214895_s_at ADAM10 ADAM metallopeptidase domain 10 3,11E‐05 −1,400 205997_at ADAM28 ADAM metallopeptidase domain 28 6,57E‐05 −1,400 220606_s_at ADPRM ADP‐ribose/CDP‐alcohol diphosphatase, manganese dependent 6,50E‐06 −1,430 217410_at AGRN agrin 2,34E‐10 1,420 212980_at AHSA2P activator of HSP90 ATPase homolog 2, pseudogene 6,44E‐06 −1,920 219672_at AHSP alpha hemoglobin stabilizing protein 7,27E‐05 2,330 aminoacyl tRNA synthetase complex interacting multifunctional 202541_at AIMP1 4,91E‐06 −1,830 protein 1 210269_s_at AKAP17A A‐kinase anchoring protein 17A 2,64E‐10 −1,560 211560_s_at ALAS2 5ʹ‐aminolevulinate synthase 2 4,28E‐06 3,560 212224_at ALDH1A1 aldehyde dehydrogenase 1 family member A1 8,93E‐04 −1,400 205583_s_at ALG13 ALG13 UDP‐N‐acetylglucosaminyltransferase subunit 9,50E‐07 −1,430 207206_s_at ALOX12 arachidonate 12‐lipoxygenase, 12S type 4,76E‐05 1,630 AMY1C (includes 208498_s_at amylase alpha 1C 3,83E‐05 −1,700 others) 201043_s_at ANP32A acidic nuclear phosphoprotein 32 family member A 5,61E‐09 −1,760 202888_s_at ANPEP alanyl aminopeptidase, membrane 7,40E‐04 −1,600 221013_s_at APOL2 apolipoprotein L2 6,57E‐11 1,600 219094_at ARMC8 armadillo repeat containing 8 3,47E‐08 −1,710 207798_s_at ATXN2L ataxin 2 like 2,16E‐07 −1,410 215990_s_at BCL6 BCL6 transcription repressor 1,74E‐07 −1,700 200776_s_at BZW1 basic leucine zipper and W2 domains 1 1,09E‐06 −1,570 222309_at
    [Show full text]
  • The Centromeric Part of the Human NK Gene Complex: Linkage of LOX-1 and LY49L with the CD94/NKG2 Region
    Genes and Immunity (2000) 1, 280–287 2000 Macmillan Publishers Ltd All rights reserved 1466-4879/00 $15.00 www.nature.com/gene The centromeric part of the human NK gene complex: linkage of LOX-1 and LY49L with the CD94/NKG2 region C Bull1, Y Sobanov2,BRo¨hrdanz1, J O’Brien1, H Lehrach1 and E Hofer2 1Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany; 2Department of Vascular Biology and Thrombosis Research, Vienna International Research Cooperation Center, University of Vienna, Brunnerstrasse 59, A-1235 Vienna, Austria The natural killer (NK) gene complex is a genomic region containing lectin-type receptor genes. We have established a contig of PAC and BAC clones comprising about 1 Mb of the centromeric part of the NK gene complex. This region extends from the LOX-1 gene, which encodes a receptor for oxidized LDL and was found within 100 kb telomeric of the STS marker D12S77, contains the CD94 and NKG2 NK receptor genes and reaches beyond D12S852 on the proximal side. In this part we have mapped the human LY49L gene, a homologue of the rodent Ly49 genes, which encode important MHC class I receptors for the regulation of NK cell activity in rodents. The LY49L gene is localized 100 to 200 kb centromeric of the NKG2 gene cluster and 300 to 400 kb telomeric of the STS marker D12S841. Genomic sequencing of the complete gene including promoter and intron sequences confirmed that the structure is similar to the mouse Ly49 genes. Screening of several cDNA libraries did not detect any transcripts of putative additional human LY49 genes.
    [Show full text]
  • Gene Section Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology INIST -CNRS OPEN ACCESS JOURNAL Gene Section Review KLRK1 (killer cell lectin-like receptor subfamily K, member 1) Lewis L Lanier UCSF, Department of Microbiology and Immunology, San Francisco, CA 94143-0414, USA (LLL) Published in Atlas Database: June 2014 Online updated version : http://AtlasGeneticsOncology.org/Genes/KLRK1ID41094ch12p13.html DOI: 10.4267/2042/56407 This article is an update of : Lanier LL. KLRK1 (killer cell lectin-like receptor subfamily K, member 1). Atlas Genet Cytogenet Oncol Haematol 2008;12(1):47- 49. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2015 Atlas of Genetics and Cytogenetics in Oncology and Haematology Abstract DNA/RNA KLRK1 encodes a type II transmembrane-anchored Note glycoprotein that is expressed as a disulfide-linked KLRK1 is present on chromosome 12 within a homodimer on the surface of Natural Killer (NK) cluster of genes referred to as the "NK complex" cells, gamma/delta TcR+ T cells, CD8+ T cells, and (NKC) because several genes that are preferentially a minor subset of CD4+ T cells. It associates non- expressed by Natural Killer (NK) cells are located covalently with the DAP10 signaling protein and in this region, including on the centromeric side provides activating or costimulatory signals to NK KLRD1 (CD94) and on the telomeric side KLRC4 cells and T cells. NKG2D binds to a family of (NKG2F), KLRC3 (NKG2E), KLRC2 (NKG2C), glycoproteins, in humans the MICA, MICB, and and KLRC1 (NKG2A) (Houchins et al., 1991). ULBP1-6 membrane proteins, which are frequently Description expressed on cells that have become infected with pathogens or undergone transformation.
    [Show full text]