July 2013 Damoiseau-A

Total Page:16

File Type:pdf, Size:1020Kb

July 2013 Damoiseau-A A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JULY 2013 DAMOISEAU-A Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA February 24, 2013 05:05-05:45 UT, 15 cm refl, 170x, seeing 7-8/10 I observed this area on the evening of Feb. 23/24, 2013 after the moon hid kappa Cancri. This area is just south-east of Grimaldi. Lunar librations were favorable for it that evening. Damoiseau A has a low but complete rim from its south end counter-clockwise around to its west side where it meets Damoiseau D. Southward from D, the rim of A becomes ill-defined and peters out, leaving a gap in its south end. Damoiseau D is an egg-shaped crater with its tapered end to the south. Damoiseau AA is the small pit inside the north rim of Damoiseau A, and Damoiseau AB is the similar pit to the east. The floor of Damoiseau A otherwise appears very smooth. Low ridges and strips of shadow protrude from various points on its rim. The southeast rim of Damoiseau A merges smoothly into a strip of dark shadow that ends at Damoiseau F. The Lunar Quadrant map shows a fault there. A small crater is just south of F and a larger shallower crater is to i s east. Neither of these two craters are shown on the Lunar Quadrant map. A shadowless bright spot and a tiny peak are also in this area. An attention-getting crater chain is farther south. From west to east, the three largest craters are Damoiseau C, BB and B. Damoiseau B and BB overlap, but no rim is evident between them. Two modest craters are between Damoiseau C and BB, and three smaller ones are east of Damoiseau 1 B. A low mound and a small bright spot are east of this group. Damoiseau CA is the small, shallow crater west of Damoiseau C. A low ridge is farther to the south. A dark strip of shadow starts south of Damoiseau C, winds between C and CA, and angles toward F, but peters out before reaching that crater. This strip is bright on its sunward side south of C, but not farther north. The Lunar Quadrant map actually shows a fault to be continuous between Damoiseau A and C, but I didn't see it that way. There is a dusky area between the crater chain and Damoiseau F, merging with the fault's interruption. More dusky areas are south of the crater chain. ***************************************** LUNAR CALENDAR JULY-AUGUST 2013 (UT) July 06 12:00 Moon 3.7 Degrees S of Mars July 07 00:37 Moon at Apogee (406,491 km – 252,582 miles) July 07 02:00 Moon 3.6 Degrees SSW of Jupiter July 08 07:15 New Moon (Start of Lunation 1120) July 08 12:00 Moon 0.14 Degrees NW of Mercury July 10 19:00 Moon 6.7 Degrees SSW of Venus July 16 03:19 First Quarter July 16 24:00 Moon 3.2 Degrees SSW of Saturn July 20 03:12 Extreme South Declination July 21 09:00 Moon 1.2 Degrees NW of Pluto July 21 20:28 Moon at Perigee (358,401 km – 222,700 miles) July 22 18:15 Full Moon July 25 02:00 Moon 5.4 Degrees NNW of Neptune July 27 22:00 Moon 3.3 Degrees N of Uranus July 29 17:44 Last Quarter Aug. 03 08:54 Moon at Apogee (405,833 km – 252,173 miles) Aug. 03 22:00 Moon 4.0 Degrees S of Jupiter Aug. 04 09:00 Moon 5.2 Degrees SSW of Mars Aug. 05 05:00 Moon 4.3 Degrees SSW of Mercury Aug. 06 21:50 New Moon (Start of Lunation 1121) Aug. 09 23:00 Moon 4.8 Degrees SSW of Venus Aug. 13 05:00 Moon 3.0 Degrees SW of Saturn Aug. 14 10:56 First Quarter Aug. 16 12:12 Extreme South Declination Aug. 17 20:00 Moon 1.6 Degrees NE of Pluto Aug. 19 01:27 Moon at Perigee (362,264 km – 225,100 miles) Aug. 21 01:44 Full Moon Aug. 21 12:00 Moon 5.3 Degrees NNW of Neptune Aug. 22 22:00 Moon 1.9 Degrees SE of asteroid 324-Bamberga Aug. 24 03:00 Moon 3.2 Degrees NNW of Uranus Aug. 28 09:35 Last Quarter Aug. 29 17:06 Extreme North Declination Aug. 30 23:47 Moon at Apogee (404,882 km – 251,582 miles) Aug. 31 17:00 Moon 4.5 Degrees S of Jupiter 2 AN INVITATION TO JOIN THE A.L.P.O. The Lunar Observer is a publication of the Association of Lunar and Planetary Observers that is available for access and participation by non-members free of charge, but there is more to the A.L.P.O. than a monthly lunar newsletter. If you are a nonmember you are invited to join our organization for its many other advantages. We have sections devoted to the observation of all types of bodies found in our solar system. Section coordinators collect and study members’ observations, correspond with observers, encourage beginners, and contribute reports to our Journal at appropriate intervals. Our quarterly journal, The Strolling Astronomer, contains the results of the many observing programs which we sponsor including the drawings and images produced by individual amateurs. Additional information about the A.L.P.O. and its Journal is on-line at: http://www.alpoastronomy.org/index.htm I invite you to spend a few minutes browsing the Section Pages to learn more about the fine work being done by your fellow amateur astronomers. To learn more about membership in the A.L.P.O. go to: http://www.alpo-astronomy.org/main/member.html which now also provides links so that you can enroll and pay your membership dues online. 3 When submitting observations to the A.L.P.O. Lunar Section In addition to information specifically related to the observing program being addressed, the following data should be included (Bold items are required): Name and location of observer Name of feature Date and time (UT) of observation Size and type of telescope used Magnification (for sketches) Orientation of image: (North/South - East/West) Seeing: 1 to 10 (1-Worst 10-Best) Transparency: 1 to 6 Medium employed (for photos and electronic images) Additional commentary accompanying images is always welcome. CALL FOR OBSERVATIONS: FOCUS ON: Mons Rumker Focus on is a bi-monthly series of articles, which includes observations received for a specific feature or class of features. The subject for the September 2013 edition will be Mons Rumker. Mons Rumker is most visible on observations close to the terminator, although observations at all phases and of all kinds (electronic or film based images, drawings, etc.) are welcomed and invited. Keep in mind that observations do not have to be recent ones, so search your files and/or add this to your observing list and send your favorites to: Wayne Bailey - [email protected] Deadline for inclusion in the Mons Rumker article is August 20, 2013 FUTURE FOCUS ON ARTICLES: In order to provide more lead time for potential contributors the following targets have been selected: Subject TLO Issue Deadline Schickard-Wargentin November 2013 October 20, 2013 Aristarchus January 2014 December 20, 2013 4 ALCon 2013 In Atlanta This year, the annual ALPO meeting will again be held in conjunction with the Astronomical League’s ALCon, Wednesday July 24, 2013 through Saturday July 27, 2013 at Fernbank Science Center, near Atlanta, GA. Detailed information can be found in the JALPO vol. 55, #2, Spring 2013, which is freely available at http://www.alpo-astronomy.org/djalpo/55-2/JALPO55-2 - FREE with ALCon 2013 Registration.pdf or on the Astronomical League’s website http://alcon2013.astroleague.org/. A discounted room rate is available at the Emory Conference Center Hotel. This year, all technical papers will be mainstreamed and presented at one location. Previously, the ALPO technical papers were presented separately from the others. Papers will be presented on Wednesday, July 24, and Thursday, July 25. If you would like to present a paper please submit by June 15, 2013, the following: • Title of the paper being presented. • A four- or five-sentence abstract of each paper. • The format in which the presentation will be. • A 100-word biography and a recent photograph of the presenter for posting on the ALCon 2013 website and inclusion in the printed program guide. E-mail is the preferred method for contact: [email protected]. If regular mail must be used, address all materials to: ALCon 2013 c/o Ken Poshedly 1741 Bruckner Court Snellville, Georgia 30078 USA The preferred format is Microsoft PowerPoint, though 35mm slides are also acceptable. The final presentation should not exceed 20 minutes in length, to be followed by no more than five (5) minutes of questions from the audience. A hard-copy version of the paper should be made available for future web site publication. Three side-trips are also available: Deerlick Astronomy Village; Agnes Scott College Bradley Observatory for the Star BBQ; and the Atlanta Astronomy Club’s Walter F. Barber Observatory. In addition to these attractions, vendors will be available to discuss their exhibits, wares and services. The ALPO board meeting, which is open to all members, will be held Friday morning.
Recommended publications
  • Report Resumes
    REPORT RESUMES ED 019 218 88 SE 004 494 A RESOURCE BOOK OF AEROSPACE ACTIVITIES, K-6. LINCOLN PUBLIC SCHOOLS, NEBR. PUB DATE 67 EDRS PRICEMF.41.00 HC-S10.48 260P. DESCRIPTORS- *ELEMENTARY SCHOOL SCIENCE, *PHYSICAL SCIENCES, *TEACHING GUIDES, *SECONDARY SCHOOL SCIENCE, *SCIENCE ACTIVITIES, ASTRONOMY, BIOGRAPHIES, BIBLIOGRAPHIES, FILMS, FILMSTRIPS, FIELD TRIPS, SCIENCE HISTORY, VOCABULARY, THIS RESOURCE BOOK OF ACTIVITIES WAS WRITTEN FOR TEACHERS OF GRADES K-6, TO HELP THEM INTEGRATE AEROSPACE SCIENCE WITH THE REGULAR LEARNING EXPERIENCES OF THE CLASSROOM. SUGGESTIONS ARE MADE FOR INTRODUCING AEROSPACE CONCEPTS INTO THE VARIOUS SUBJECT FIELDS SUCH AS LANGUAGE ARTS, MATHEMATICS, PHYSICAL EDUCATION, SOCIAL STUDIES, AND OTHERS. SUBJECT CATEGORIES ARE (1) DEVELOPMENT OF FLIGHT, (2) PIONEERS OF THE AIR (BIOGRAPHY),(3) ARTIFICIAL SATELLITES AND SPACE PROBES,(4) MANNED SPACE FLIGHT,(5) THE VASTNESS OF SPACE, AND (6) FUTURE SPACE VENTURES. SUGGESTIONS ARE MADE THROUGHOUT FOR USING THE MATERIAL AND THEMES FOR DEVELOPING INTEREST IN THE REGULAR LEARNING EXPERIENCES BY INVOLVING STUDENTS IN AEROSPACE ACTIVITIES. INCLUDED ARE LISTS OF SOURCES OF INFORMATION SUCH AS (1) BOOKS,(2) PAMPHLETS, (3) FILMS,(4) FILMSTRIPS,(5) MAGAZINE ARTICLES,(6) CHARTS, AND (7) MODELS. GRADE LEVEL APPROPRIATENESS OF THESE MATERIALSIS INDICATED. (DH) 4:14.1,-) 1783 1490 ,r- 6e tt*.___.Vhf 1842 1869 LINCOLN PUBLICSCHOOLS A RESOURCEBOOK OF AEROSPACEACTIVITIES U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION K-6) THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY. 1919 O O Vj A PROJECT FUNDED UNDER TITLE HIELEMENTARY AND SECONDARY EDUCATION ACT A RESOURCE BOOK OF AEROSPACE ACTIVITIES (K-6) The work presentedor reported herein was performed pursuant to a Grant from the U.
    [Show full text]
  • Ann Merchant Boesgaard Publications Merchant, A. E., Bodenheimer, P., and Wallerstein, G
    Ann Merchant Boesgaard Publications Merchant, A. E., Bodenheimer, P., and Wallerstein, G. (1965). “The Lithium Isotope Ratio in Two Hyades F Stars.” Ap. J., 142, 790. Merchant, A. E. (1966). “Beryllium in F- and G-Type Dwarfs.” Ap. J., 143, 336. Hodge, P. W., and Merchant, A. E. (1966). “Photometry of SO Galaxies II. The Peculiar Galaxy NGC 128.” Ap. J., 144, 875. Merchant, A. E. (1967). “The Abundance of Lithium in Early M-Type Stars.” Ap. J., 147, 587. Merchant, A. E. (1967). “Measured Equivalent Widths in Early M-Type Stars.” Lick Obs. Bull. No. 595 (Univ. of California Press). Boesgaard, A. M. (1968). “Isotopes of Magnesium in Stellar Atmosphere.” Ap. J., 154, 185. Boesgaard, A. M. (1968). “Observations of Beryllium in Stars.” Highlights of Astron- omy, ed. L. Perek (Dordrecht: D. Reidel), p. 237. Boesgaard, A. M. (1969). “Intensity Variation in Ca Emission in an MS Star.” Pub. A. S. P., 81, 283. Boesgaard, A. M. (1969). “Observational Clues to the Evolution of M Giant Stars.” Pub. A. S. P., 81, 365. Boesgaard, A. M. (1970). “The Lithium Isotope Ratio in δ Sagittae.” Ap. J., 159, 727. Boesgaard, A. M. (1970). “The Ratio of Titanium to Zirconium in Late-Type Stars.” Ap. J., 161, 163. Boesgaard, A. M. (1970). “On the Lithium Content in Late-Type Giants.” Ap. Letters, 5, 145. Boesgaard, A. M. (1970). “Lithium in Heavy-Metal Red Giants.” Ap. J., 161, 1003. Boesgaard, A. M. (1971). “The Lithium Content of Capella.” Ap. J., 167, 511. Boesgaard, A. M. (1973). “Iron Emission Lines in a Orionis.” In Stellar Chromospheres, eds.
    [Show full text]
  • EPSC-DPS2011-1845, 2011 EPSC-DPS Joint Meeting 2011 C Author(S) 2011
    EPSC Abstracts Vol. 6, EPSC-DPS2011-1845, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Analysis of mineralogy of an effusive volcanic lunar dome in Marius Hills, Oceanus Procellarum. A.S. Arya, Guneshwar Thangjam, R.P. Rajasekhar, Ajai Space Applications Centre, Indian Space Research Organization, Ahmedabad-380 015 (India). Email:[email protected] Abstract found on the lunar surface. As a part of initiation of the study of mineralogy of MHC, an effusive dome Domes are analogous to the terrestrial shield located in the south of Rima Galilaei, near the volcanoes and are among the important volcanic contact of Imbrian and Eratosthenian geological units features found on the lunar surface indicative of is taken up for the present study. The morphology, effusive vents of primary volcanism within Mare rheology and the possible dike parameters have regions. Marius Hills Complex (MHC) is one of the already been studied and reported [5]. most important regions on the entire lunar surface, having a complex geological setting and largest distribution of volcanic constructs with an abundant number of volcanic features like domes, cones and rilles. The mineralogical study of an effusive dome located in the south of Rima Galilaei, near the contact of Imbrian and Eratosthenian geological units is done using hyperspectral band parameters and spectral plots so as to understand the compositional variation, the nature of the volcanism and relate it to the rheology of the dome. Fig. 1: Distribution of dome in MHC (Red-the dome under study, Green- from Virtual Moon Atlas, Magenta [6]) and the Study area showing the dome under study on M3 1.
    [Show full text]
  • OMNI Magazine Interview, July 1992)
    ALIEN CITY ON MARS? TiTil W i^ -A Im; SCENES Lji U *' Ul EDITOR IN CHIEF & DESIGN DIRECTOR: BOB GUCCIONE PRESIDENT a C.O.O.: KATHY KEETON VP/EDITOR' KEITH FERRELL EXECUTIVE VP/GBAPHICS DIRECTOR- FRANK DEVINO MANAGING EDITOR: CAROLINE DARK ART DIRECTOR: CATHRYN MEZZO First Word Continuum By Dana Rohrabacher 42 Fighting for Opening the X-Files U.S. patent rights By David Bischoff S Mulder and Scully know Communications something is m out there—and so do their Funds many fans. A behind- By Linda Marsa the-scenes lool< at this fas- Cashing in on collectibles cinating and m increasingly popular Electronic Universe new show. By Grsgg Keizer ArchiTreIc Medicine Designing Generations By Anita Bartholomew By Herman Zimmerman m and Philip Thomas Edgerly .Sounds Boldly going where By Steve Nadis few. production designers Sounds of the silent have gone before: 22 designing the Star Trek Eanii By Melanie Menagh Choices Fiction: S.4 Dying Virtual Realities [Vlichael IVlarshall Smith By Tom Dworetzl<y 7^ 23 Cartoon Feature Artificial Intelligence . By Steve Nadis Interview: 32 Richard hioa gland Mind By Steve Nadis By Steve Nadis A close-up lool< at the Hallucinations, man behind delusions, the face on Mars and schizophrenia SS 33 Tsuneo Sanda's cover painting, On Patrol, made possible by Antimatter the PI" I p Edge ly Age cy n a'^sar qt on witi ZD^sgn Copyrght Pa amount PcturesCorporaticn Games (Additional art rred t"^ page 110) By bi, iff Morris SR1''6ril7'iBn FIRST UUORD INVENTING AMERICA: Patent laws and the protection of individual rights By Dana Rohrabacher merica's greatest asset side.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • TRANSIENT LUNAR PHENOMENA: REGULARITY and REALITY Arlin P
    The Astrophysical Journal, 697:1–15, 2009 May 20 doi:10.1088/0004-637X/697/1/1 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY Arlin P. S. Crotts Department of Astronomy, Columbia University, Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027, USA Received 2007 June 27; accepted 2009 February 20; published 2009 April 30 ABSTRACT Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a “feature” as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi.
    [Show full text]
  • October 2006
    OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area.
    [Show full text]
  • Milan Dimitrijevic Avgust.Qxd
    1. M. Platiša, M. Popović, M. Dimitrijević, N. Konjević: 1975, Z. Fur Natur- forsch. 30a, 212 [A 1].* 1. Griem, H. R.: 1975, Stark Broadening, Adv. Atom. Molec. Phys. 11, 331. 2. Platiša, M., Popović, M. V., Konjević, N.: 1975, Stark broadening of O II and O III lines, Astron. Astrophys. 45, 325. 3. Konjević, N., Wiese, W. L.: 1976, Experimental Stark widths and shifts for non-hydrogenic spectral lines of ionized atoms, J. Phys. Chem. Ref. Data 5, 259. 4. Hey, J. D.: 1977, On the Stark broadening of isolated lines of F (II) and Cl (III) by plasmas, JQSRT 18, 649. 5. Hey, J. D.: 1977, Estimates of Stark broadening of some Ar III and Ar IV lines, JQSRT 17, 729. 6. Hey, J. D.: Breger, P.: 1980, Stark broadening of isolated lines emitted by singly - ionized tin, JQSRT 23, 311. 7. Hey, J. D.: Breger, P.: 1981, Stark broadening of isolated ion lines by plas- mas: Application of theory, in Spectral Line Shapes I, ed. B. Wende, W. de Gruyter, 201. 8. Сыркин, М. И.: 1981, Расчеты электронного уширения спектральных линий в теории оптических свойств плазмы, Опт. Спектроск. 51, 778. 9. Wiese, W. L., Konjević, N.: 1982, Regularities and similarities in plasma broadened spectral line widths (Stark widths), JQSRT 28, 185. 10. Konjević, N., Pittman, T. P.: 1986, Stark broadening of spectral lines of ho- mologous, doubly ionized inert gases, JQSRT 35, 473. 11. Konjević, N., Pittman, T. P.: 1987, Stark broadening of spectral lines of ho- mologous, doubly - ionized inert gases, JQSRT 37, 311. 12. Бабин, С.
    [Show full text]
  • A Study About a Lunar Dome Near Hortensius: Morphometry and Mode of Formation
    47th Lunar and Planetary Science Conference (2016) 1005.pdf A study about a lunar dome near Hortensius: Morphometry and mode of formation. M. Wirths1, R. Lena2 , A. Mallama3 - Geologic Lunar Research (GLR) Group. 1km 67 Camino Observatorio, Baja California, Mexico; [email protected]; 2 Via Cartesio 144, sc. D, 00137 Rome, Italy; [email protected]; 314012 Lancaster Lane, Bowie, MD, 20715, USA, [email protected] Introduction: Lunar mare domes formed during the later stages of volcanic episode on the Moon, char- acterized by a decreasing rate of lava extrusion and comparably low eruption temperatures, resulted in the formation of effusive domes. Important clusters of lu- nar domes are observed in the Hortensius/Milichius/T. Mayer region in Mare Insularum and in Mare Tranquillitatis around the craters Arago and Cauchy. The region west of Copernicus extending from Hortensius to Milichius and to Tobias Mayer contains large numbers of lunar domes and cones, evidence of past volcanism on the lunar surface [1-3]. A compre- hensive map of the area was produced by GLR group, including the six lunar domes north of Hortensius and three lower domes to the south of Hortensius [4]. Fig. 1. Telescopic image acquired on May 1, 2012, at 03:44 In this contribution we provide an analysis of an- UT with a 450 mm aperture Starmaster driven Dobsonian other low dome to the east of Hortensius, termed H11, (M. Wirths). Morphometric properties of the domes H1-H7 located at 26.87° W and 6.88° N and with a prominent have been examined in previous studies [1, 3].
    [Show full text]
  • Cfa in the News ~ Week Ending 3 January 2010
    Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis.
    [Show full text]
  • Student ID ______TA Name ______Section ______[8 PAGES - 44 QUESTIONS]
    Full Name _____________________________________________ Date --12/08/14-- Student ID ____________ TA Name ___________________________________________Section ______ [8 PAGES - 44 QUESTIONS] 1. Here is a series of moon phases, top row, starting with the new moon on November 22, a full moon on December 6, and a new moon on December 22. What does today’s moon phase look like? Choose among those phases labeled “A, B, C, D, or E” – all are labeled December 8, but only 1 is correct. Figure 1. Phases of the Moon from November 22 to December 22, 2014 The phases of the moon progress smoothly. “C” is the correct answer, and if you examine the full moon just above, you will see that “C” is not a perfect circle. Besides, it is just 2 days past the full moon. “B” cannot be right because there are 6 days between the 8th and the 14th when there is a 3rd quarter moon – and the moon takes about 7 days between full and 3rd quarter. 2. No matter where you live on Earth, there is a location that has the same latitude but is 180° away in longitude (on the opposite side of Earth). The next new moon for us is December 22. When is the next new moon for people living on the opposite side of the Earth? a. December 8 (today) b. December 15 c. December 22 d. December 29 3. First, remove Earth’s atmosphere; then, climb to the roof of the UW Tower and drop a hammer and a feather. What is the physical explanation for the objects falling at exactly the same acceleration? a.
    [Show full text]
  • Lunar Sourcebook : a User's Guide to the Moon
    4 LUNAR SURFACE PROCESSES Friedrich Hörz, Richard Grieve, Grant Heiken, Paul Spudis, and Alan Binder The Moon’s surface is not affected by atmosphere, encounters with each other and with larger planets water, or life, the three major agents for altering throughout the lifetime of the solar system. These terrestrial surfaces. In addition, the lunar surface has orbital alterations are generally minor, but they not been shaped by recent geological activity, because ensure that, over geological periods, collisions with the lunar crust and mantle have been relatively cold other bodies will occur. and rigid throughout most of geological time. When such a collision happens, two outcomes are Convective internal mass transport, which dominates possible. If “target” and “projectile” are of comparable the dynamic Earth, is therefore largely absent on the size, collisional fragmentation and annihilation Moon, and so are the geological effects of such occurs, producing a large number of much smaller internal motions—volcanism, uplift, faulting, and fragments. If the target object is very large compared subduction—that both create and destroy surfaces on to the projectile, it behaves as an “infinite halfspace,” Earth. The great contrast between the ancient, stable and the result is an impact crater in the target body. Moon and the active, dynamic Earth is most clearly For collisions in the asteroid belt, many of the shown by the ages of their surfaces. Nearly 80% of the resulting collisional fragments or crater ejecta escape entire solid surface of Earth is <200 m.y. old. In the gravitational field of the impacted object; many of contrast, >99% of the lunar surface formed more than these fragments are then further perturbed into 3 b.y.
    [Show full text]