OMNI Magazine Interview, July 1992)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report Resumes
REPORT RESUMES ED 019 218 88 SE 004 494 A RESOURCE BOOK OF AEROSPACE ACTIVITIES, K-6. LINCOLN PUBLIC SCHOOLS, NEBR. PUB DATE 67 EDRS PRICEMF.41.00 HC-S10.48 260P. DESCRIPTORS- *ELEMENTARY SCHOOL SCIENCE, *PHYSICAL SCIENCES, *TEACHING GUIDES, *SECONDARY SCHOOL SCIENCE, *SCIENCE ACTIVITIES, ASTRONOMY, BIOGRAPHIES, BIBLIOGRAPHIES, FILMS, FILMSTRIPS, FIELD TRIPS, SCIENCE HISTORY, VOCABULARY, THIS RESOURCE BOOK OF ACTIVITIES WAS WRITTEN FOR TEACHERS OF GRADES K-6, TO HELP THEM INTEGRATE AEROSPACE SCIENCE WITH THE REGULAR LEARNING EXPERIENCES OF THE CLASSROOM. SUGGESTIONS ARE MADE FOR INTRODUCING AEROSPACE CONCEPTS INTO THE VARIOUS SUBJECT FIELDS SUCH AS LANGUAGE ARTS, MATHEMATICS, PHYSICAL EDUCATION, SOCIAL STUDIES, AND OTHERS. SUBJECT CATEGORIES ARE (1) DEVELOPMENT OF FLIGHT, (2) PIONEERS OF THE AIR (BIOGRAPHY),(3) ARTIFICIAL SATELLITES AND SPACE PROBES,(4) MANNED SPACE FLIGHT,(5) THE VASTNESS OF SPACE, AND (6) FUTURE SPACE VENTURES. SUGGESTIONS ARE MADE THROUGHOUT FOR USING THE MATERIAL AND THEMES FOR DEVELOPING INTEREST IN THE REGULAR LEARNING EXPERIENCES BY INVOLVING STUDENTS IN AEROSPACE ACTIVITIES. INCLUDED ARE LISTS OF SOURCES OF INFORMATION SUCH AS (1) BOOKS,(2) PAMPHLETS, (3) FILMS,(4) FILMSTRIPS,(5) MAGAZINE ARTICLES,(6) CHARTS, AND (7) MODELS. GRADE LEVEL APPROPRIATENESS OF THESE MATERIALSIS INDICATED. (DH) 4:14.1,-) 1783 1490 ,r- 6e tt*.___.Vhf 1842 1869 LINCOLN PUBLICSCHOOLS A RESOURCEBOOK OF AEROSPACEACTIVITIES U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION K-6) THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY. 1919 O O Vj A PROJECT FUNDED UNDER TITLE HIELEMENTARY AND SECONDARY EDUCATION ACT A RESOURCE BOOK OF AEROSPACE ACTIVITIES (K-6) The work presentedor reported herein was performed pursuant to a Grant from the U. -
EPSC-DPS2011-1845, 2011 EPSC-DPS Joint Meeting 2011 C Author(S) 2011
EPSC Abstracts Vol. 6, EPSC-DPS2011-1845, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Analysis of mineralogy of an effusive volcanic lunar dome in Marius Hills, Oceanus Procellarum. A.S. Arya, Guneshwar Thangjam, R.P. Rajasekhar, Ajai Space Applications Centre, Indian Space Research Organization, Ahmedabad-380 015 (India). Email:[email protected] Abstract found on the lunar surface. As a part of initiation of the study of mineralogy of MHC, an effusive dome Domes are analogous to the terrestrial shield located in the south of Rima Galilaei, near the volcanoes and are among the important volcanic contact of Imbrian and Eratosthenian geological units features found on the lunar surface indicative of is taken up for the present study. The morphology, effusive vents of primary volcanism within Mare rheology and the possible dike parameters have regions. Marius Hills Complex (MHC) is one of the already been studied and reported [5]. most important regions on the entire lunar surface, having a complex geological setting and largest distribution of volcanic constructs with an abundant number of volcanic features like domes, cones and rilles. The mineralogical study of an effusive dome located in the south of Rima Galilaei, near the contact of Imbrian and Eratosthenian geological units is done using hyperspectral band parameters and spectral plots so as to understand the compositional variation, the nature of the volcanism and relate it to the rheology of the dome. Fig. 1: Distribution of dome in MHC (Red-the dome under study, Green- from Virtual Moon Atlas, Magenta [6]) and the Study area showing the dome under study on M3 1. -
A Study About a Lunar Dome Near Hortensius: Morphometry and Mode of Formation
47th Lunar and Planetary Science Conference (2016) 1005.pdf A study about a lunar dome near Hortensius: Morphometry and mode of formation. M. Wirths1, R. Lena2 , A. Mallama3 - Geologic Lunar Research (GLR) Group. 1km 67 Camino Observatorio, Baja California, Mexico; [email protected]; 2 Via Cartesio 144, sc. D, 00137 Rome, Italy; [email protected]; 314012 Lancaster Lane, Bowie, MD, 20715, USA, [email protected] Introduction: Lunar mare domes formed during the later stages of volcanic episode on the Moon, char- acterized by a decreasing rate of lava extrusion and comparably low eruption temperatures, resulted in the formation of effusive domes. Important clusters of lu- nar domes are observed in the Hortensius/Milichius/T. Mayer region in Mare Insularum and in Mare Tranquillitatis around the craters Arago and Cauchy. The region west of Copernicus extending from Hortensius to Milichius and to Tobias Mayer contains large numbers of lunar domes and cones, evidence of past volcanism on the lunar surface [1-3]. A compre- hensive map of the area was produced by GLR group, including the six lunar domes north of Hortensius and three lower domes to the south of Hortensius [4]. Fig. 1. Telescopic image acquired on May 1, 2012, at 03:44 In this contribution we provide an analysis of an- UT with a 450 mm aperture Starmaster driven Dobsonian other low dome to the east of Hortensius, termed H11, (M. Wirths). Morphometric properties of the domes H1-H7 located at 26.87° W and 6.88° N and with a prominent have been examined in previous studies [1, 3]. -
Glossary of Lunar Terminology
Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites. -
A Study About Two Unlisted Domes Near Promontorium Laplace
EEEDDDIIITTTOOORRRIIIAAALLL Selenology Today #1 Welcome to the first issue of Selenology Today. Selenology Today is a new online journal devoted to studies of the Moon, mainly of observational, geological, and historical nature. It will appear twice per year. Despite the fact that the Moon has been visited by six manned missions and a multitude of unmanned spacecraft, its surface is far from being completely explored. After the last manned mission, Apollo 17, which took place in 1972, it was not before 1994 that the Moon was visited by a spacecraft again: Clementine performed a nearly complete multispectral mapping with state-of-the-art imaging sensors in the visible, near and mid infrared wavelength range. The Clementine mission as well as the Lunar Prospector spacecraft launched in 1998 have stimulated a broad range of scientific activities dealing with the geology and surface composition of the lunar surface. The Clementine image data, however, are largely unsuitable for photogeologic and topographic analyses due to the low phase angles and high illumination angles at which most of them were acquired. Hence, the best available set of spacecraft images globally covering the lunar surface, taken under low to moderate illumination angles and thus revealing the relief of the lunar surface, is still that obtained during the Lunar Orbiter programme in the mid-1960s. The ongoing Smart 1 mission, which is intended to be terminated by a spectacular crash of the spacecraft on the lunar surface at the end of September 2006, will provide the first high-resolution set of orbital lunar images acquired with modern sensory devices primarily at oblique illumination. -
Helical Turbine for Hydropower
Tidewalker Engineering / Optimization of GHT Production Marine and Hydrokinetic Technology Readiness Advancement Initiative Funding Opportunity Announcement Number: DE-FOA-0000293 CFDA Number: 81.087 PROJECT NARRATIVE Tidewalker Engineering Trescott, Maine Title: Optimization of Gorlov Helical Turbine Production June 2010 Table of Contents: SUBJECT PAGE NUMBER Introduction: Project Narrative 2 Project Objectives 3 Merit Review Criteria Discussion 7 Project Timetable 13 Relevance and Outcomes / Impacts 14 Role of Participants 14 Facilities and Other Resources 15 Equipment 15 Bibliography and References 16 Appendix- A / Letter of Commitment 17 Appendix – B / Velocity Measurements 18 Appendix – C / GHT Applications 19 Appendix – D / Cost Sharing Grant 32 1 Tidewalker Engineering / Optimization of GHT Production Project Narrative: Under this proposal Tidewalker Engineering with the assistance of Dr. Alexander Gorlov and other specialists will investigate the feasibility of placing a hydro-kinetic device into a flexible dam system to generate electricity from tidal flows at sites with a substantial tidal range (average value of 18’). The study will also include the design of a turbo-generator unit which optimizes electrical production from this proposed mode of operation. Environmental issues associated with the placement of a flexible dam into a tidal flow will be analyzed in terms of regulatory licensing requirements. The applicability of this proposed mode of operation will be addressed as part of expected project benefits from the development potential of this concept. The eligibility standard as expressed in published responses within the Federal Connect network for this grant application directly addressed the issue of diversionary structures as excerpted below: DOE will not consider any application under this FOA for the development of a technology that would require blocking or severely altering existing tidal or river flows, as this would be considered a dam or diversionary structure. -
Friday July 14, 1995
7±14±95 Friday Vol. 60 No. 135 July 14, 1995 Pages 36203±36338 Briefings on How To Use the Federal Register For information on briefing in Washington, DC, see announcement on the inside cover of this issue. federal register 1 II Federal Register / Vol. 60, No. 135 / Friday, July 14, 1995 SUBSCRIPTIONS AND COPIES PUBLIC Subscriptions: Paper or fiche 202±512±1800 FEDERAL REGISTER Published daily, Monday through Friday, Assistance with public subscriptions 512±1806 (not published on Saturdays, Sundays, or on official holidays), by Online: the Office of the Federal Register, National Archives and Records Telnet swais.access.gpo.gov, login as newuser <enter>, no Administration, Washington, DC 20408, under the Federal Register > Act (49 Stat. 500, as amended; 44 U.S.C. Ch. 15) and the password <enter ; or use a modem to call (202) 512±1661, login as swais, no password <enter>, at the second login as regulations of the Administrative Committee of the Federal Register > > (1 CFR Ch. I). Distribution is made only by the Superintendent of newuser <enter , no password <enter . Documents, U.S. Government Printing Office, Washington, DC Assistance with online subscriptions 202±512±1530 20402. Single copies/back copies: The Federal Register provides a uniform system for making Paper or fiche 512±1800 available to the public regulations and legal notices issued by Assistance with public single copies 512±1803 Federal agencies. These include Presidential proclamations and Executive Orders and Federal agency documents having general FEDERAL AGENCIES applicability and legal effect, documents required to be published Subscriptions: by act of Congress and other Federal agency documents of public interest. -
What's Hot on the Moon Tonight?: the Ultimate Guide to Lunar Observing
What’s Hot on the Moon Tonight: The Ultimate Guide to Lunar Observing Copyright © 2015 Andrew Planck All rights reserved. No part of this book may be reproduced in any written, electronic, recording, or photocopying without written permission of the publisher or author. The exception would be in the case of brief quotations embodied in the critical articles or reviews and pages where permission is specifically granted by the publisher or author. Although every precaution has been taken to verify the accuracy of the information contained herein, the publisher and author assume no responsibility for any errors or omissions. No liability is assumed for damages that may result from the use of information contained within. Books may be purchased by contacting the publisher or author through the website below: AndrewPlanck.com Cover and Interior Design: Nick Zelinger (NZ Graphics) Publisher: MoonScape Publishing, LLC Editor: John Maling (Editing By John) Manuscript Consultant: Judith Briles (The Book Shepherd) ISBN: 978-0-9908769-0-8 Library of Congress Catalog Number: 2014918951 1) Science 2) Astronomy 3) Moon Dedicated to my wife, Susan and to my two daughters, Sarah and Stefanie Contents Foreword Acknowledgments How to Use this Guide Map of Major Seas Nightly Guide to Lunar Features DAYS 1 & 2 (T=79°-68° E) DAY 3 (T=59° E) Day 4 (T=45° E) Day 5 (T=24° E.) Day 6 (T=10° E) Day 7 (T=0°) Day 8 (T=12° W) Day 9 (T=21° W) Day 10 (T= 28° W) Day 11 (T=39° W) Day 12 (T=54° W) Day 13 (T=67° W) Day 14 (T=81° W) Day 15 and beyond Day 16 (T=72°) Day 17 (T=60°) FINAL THOUGHTS GLOSSARY Appendix A: Historical Notes Appendix B: Pronunciation Guide About the Author Foreword Andrew Planck first came to my attention when he submitted to Lunar Photo of the Day an image of the lunar crater Pitatus and a photo of a pie he had made. -
The Inventory of the Richard Lourie Collection #1355
The Inventory of the Richard Lourie Collection #1355 Howard Gotlieb Archival Research Center lourie.r LOURIE, RICHARD 194O- 241C Deposit January 1988 OUTLINE OF INVENTORY 7 Boxes I. MANUSCRIPTS 1973, 1985-1987. A. Novels B. Translations c. Short Fiction D. Poetry E. Film Script F. Essay G. Translated Short Prose II. PRINTED REVIEWS, 1973-1986. III. CORRESPONDENCE, 1979-1988. IV. FINANCIAL STATEMENTS, 1986-1987. 1 LOURIE, RICHARD Deposit from Author June 1987, January 1988 I. MANUSCRIPTS 1973, 1985-1987 A. Novels, 1973, 1985, 1987 Box 1 1. FIRST LOYALTY. Harcourt Brace Jovanovich, 1985. a. Holograph on legal notepads (7), ca. 275 p. (#1) b. Draft. Under title STOLAT. Typescript with holo. corr., ca. 400 p. (#2) Box 1/2 c. Setting copy. Typescript with holo. corr., ca. 540 p. including front matter. (Box 1, #3; Box 2, #1) Box 2 d. Misc. draft pages. Typescript with holo. corr., 6 p. (#2) e. Outline. Holograph, 7 p. on 6 leaves. (#2) 2. SAGITTARIUS IN WARSAW. Vanguard Press, 1973. a. Setting copy. Typescript photocopy and typescript, both with holo. corr. 164 p. including front matter. (#3) b. Galley proofs. (#4) 3. ZERO GRAVITY. Harcourt Brace Jovanovich, 1987. a. Outlines and draft pages. 5 legal notepads, holograph, 141 p. (#5 - 6) b. Miscellaneous draft pages and notes. Typescript with holo. corr. and holograph, ca. 55 p. (#7) Box 3 c. Miscellaneous draft pages. Typescript with holo. corr. and holograph, ca. 65 p. (#1) d. Miscellaneous draft pages. Typescript with holo. corr., photocopy of typescript with holo. corr., and holograph, ca. 400 p. (#2) e. -
Hydroelectric Power Generator
HYDROELECTRIC POWER GENERATOR MIME 1501 Technical Design Report Hydroelectric Power Generator Project #SP02 Final Report Design Advisor: Prof. Gorlov Design Team Anthony Chesna, Tony DiBella, Tim Hutchins, Saralyn Kropf, Jeff Lesica, Jim Mahoney May 29, 2002 Department of Mechanical, Industrial and Manufacturing Engineering College of Engineering, Northeastern University Boston, MA 02115 5 HYDROELECTRIC POWER GENERATOR FOR SMALL VESSELS AND REMOTE STATIONS LOCATED NEAR WATER Design Team Anthony Chesna, Tony Dibella, Timothy Hutchins Saralyn Kropf, Jeff Lesica, James Mahoney Design Advisor Prof. A. M. Gorlov Abstract The objective of this Northeastern University Capstone Design project is to design a hydroelectric power generator to charge batteries on small water vessels. This product will replace devices using non- renewable fossil fuels by utilizing the Gorlov Helical turbine to capture kinetic energy from moving water. Power consumption of a sailing vessel could be 250 Watts or higher. Sailing vessels currently use their engines to recharge on-board batteries, which supply the sailing vessel with electrical power. A renewable electrical production device would allow sailing vessels to recharge on board batteries without having to continually restock fuel and burn fossil fuels. The use of the Gorlov Helical Turbine provides the means to harness the power of moving water with an efficiency of 30 percent or greater. The increased efficiency of the turbine is a direct result of the helical arrangement of the airfoil blades, which eliminates the vibration problems of its predecessor, the Darrieus Turbine. Eliminating vibration increases the life of the turbine by decreasing fatigue and creating a steady flow of electrical current. The design consists of an electrical generator, a transmission system, a supporting structure and the Gorlov Helical Turbine. -
March 2020 March the Monthly Newsletter of the Bays Mountain Astronomy Club
March 2020 March The Monthly Newsletter of the Bays Mountain Astronomy Club More on Edited by Adam Thanz this image. See FN1 Chapter 1 Cosmic Reflections William Troxel - BMAC Chair More on this image. See FN2 William Troxel More on Cosmic Reflections this image. See FN3 Greetings BMACers. March is here. The other day I was reading Planetarium, this was why I asked Adam and Jason if we could an article while getting my tires changed. It was about the do a program. If you did not get to come attend, and if the concept of time in our society. The article expressed that we, as members want, I will try to get another meeting in the future to Earth people, feel like we have less time. Because we are highlight the theater again. amateur astronomers, we understand time in a bit broader field. I March is a real busy month. You know that we will be holding our am not sure where I heard the following, however "We all have SunWatch solar viewing on clear Saturdays and Sundays thru the same amount of time, it is more about how we chose to the last week of October. The official time is 3 p.m. to 3:30 p.m. spend the time we have." I want to encourage each of you to at the Dam. If the weather is poor, the SunWatch is cancelled. always face each day learning as much as you can. March also starts the Spring session of the StarWatch night The February meeting had a wonderful turnout and we enjoyed viewing programs on the Saturday evenings of March and April one of the wonderful shows in the Park's Planetarium. -
The End Game Richard C. Hoagland
[Update 2009] The End Game Richard C. Hoagland ehold one of the ancient and forgotten “Crystal Cities of Barsoom.” B For decades, ever since the Independent Mars Investigation in 1983, when we began looking at those first enigmaticViking images of Cydonia and wondered… we’ve been searching for the proverbial “smoking gun.” That one NASA image which would allow even a totally non-scientific, totally non- technical person to exclaim: “Yikes, those are buildings down there!” Well, after almost 30 years, this is it. This official MRO image—archived on a publicly-accessible NASA website —is indeed the “smoking gun” we have been seeking for decades. 26 Dark Mission This close-up, taken from a much larger official NASA image shows what for all the world looks exactly like the crumbling remains of a set of modern apartment buildings. It was taken by NASA’s Mars Reconnaissance Orbiter (MRO) spacecraft in May, 2008 and is but one of multitudes of MRO photo strips acquired during the spacecraft’s almost 2-year mission. This particular image is of the floor of the immense Hellas Basin – the largest and deepest of the massive impact scars left over from Mars’ ancient planetary history. A composite version combines this amazing NASA image (remember, of the surface of Mars) with an aerial photograph taken here on Earth, of a location that’s now all-too-familiar, if not also all-too tragic—New York’s Ground Zero. The End Game – Richard Hoagland 27 Eerily, each set of independent architecture – the one in Lower Manhattan and the one on an entirely different planet- impossibly share almost identical geometric characteristics, not the least being that they both exhibit virtually identical patterns of total structural collapse.