Ann Merchant Boesgaard Publications Merchant, A. E., Bodenheimer, P., and Wallerstein, G

Total Page:16

File Type:pdf, Size:1020Kb

Ann Merchant Boesgaard Publications Merchant, A. E., Bodenheimer, P., and Wallerstein, G Ann Merchant Boesgaard Publications Merchant, A. E., Bodenheimer, P., and Wallerstein, G. (1965). “The Lithium Isotope Ratio in Two Hyades F Stars.” Ap. J., 142, 790. Merchant, A. E. (1966). “Beryllium in F- and G-Type Dwarfs.” Ap. J., 143, 336. Hodge, P. W., and Merchant, A. E. (1966). “Photometry of SO Galaxies II. The Peculiar Galaxy NGC 128.” Ap. J., 144, 875. Merchant, A. E. (1967). “The Abundance of Lithium in Early M-Type Stars.” Ap. J., 147, 587. Merchant, A. E. (1967). “Measured Equivalent Widths in Early M-Type Stars.” Lick Obs. Bull. No. 595 (Univ. of California Press). Boesgaard, A. M. (1968). “Isotopes of Magnesium in Stellar Atmosphere.” Ap. J., 154, 185. Boesgaard, A. M. (1968). “Observations of Beryllium in Stars.” Highlights of Astron- omy, ed. L. Perek (Dordrecht: D. Reidel), p. 237. Boesgaard, A. M. (1969). “Intensity Variation in Ca Emission in an MS Star.” Pub. A. S. P., 81, 283. Boesgaard, A. M. (1969). “Observational Clues to the Evolution of M Giant Stars.” Pub. A. S. P., 81, 365. Boesgaard, A. M. (1970). “The Lithium Isotope Ratio in δ Sagittae.” Ap. J., 159, 727. Boesgaard, A. M. (1970). “The Ratio of Titanium to Zirconium in Late-Type Stars.” Ap. J., 161, 163. Boesgaard, A. M. (1970). “On the Lithium Content in Late-Type Giants.” Ap. Letters, 5, 145. Boesgaard, A. M. (1970). “Lithium in Heavy-Metal Red Giants.” Ap. J., 161, 1003. Boesgaard, A. M. (1971). “The Lithium Content of Capella.” Ap. J., 167, 511. Boesgaard, A. M. (1973). “Iron Emission Lines in a Orionis.” In Stellar Chromospheres, eds. S. D. Jordan and E. H. Avrett (Washington, D. C.: NASA SP-317), p. 153. Boesgaard, A. M. (1973). “Ca II Emission in a Centauri A and B.” In Stellar Chro- mospheres, eds. S. D. Jordan and E. H. Avrett (Washington, D.C.: NASA SP-317), p. 295. Boesgaard, A. M. and Heacox, W. D. (1973). “The Abundances of Boron, Beryllium, and Lithium in the Peculiar A Star Kappa Cancri.” Ap. J. (Letters), 185, L27. Boesgaard, A. M. (1974). “Measurements of Magnetic Fields in Young Stars.” Ap. J., 188, 567. Boesgaard, A. M. and Hagen, W. (1974). “The Age of Alpha Centauri.” Ap. J., 189, 85. Boesgaard, A. M. and Fesen, R. A. (1974). “A Search for Technetium in the Ba II Star ζ Capricorni.” Pub. A. S. P., 86, 76. Boesgaard, A. M. (1974). “The Abundance of Interstellar Beryllium.” Astr. Ap., 34, 9. 1 Boesgaard, A. M., Praderie, F., Leckrone, D., Fragiana, R., and Hack, M. (1974). “The Abundance of Boron and Beryllium in Alpha Lyrae.” Ap. J. (Letters), 194, L143. Boesgaard, A. M. and Magnan, C. (1975). “The Circumstellar Shell of Alpha Orionis from a Study of the Fe II Emission Lines.” Ap. J., 198, 369. Boesgaard, A. M., Chesley, D. C., and Preston, G. W. (1975). “Magnetic Field Mea- surements in ξ Boo A.” Pub. A. S. P., 87, 353. Boesgaard, A. M. and Boesgaard, H. (1976). “Ultraviolet Fe II Emission Lines in Late- Type Stars.” Ap. J., 205, 448. Boesgaard, A. M. (1976). “Beryllium in Main-Sequence Stars.” Ap. J., 210, 466. Boesgaard, A. M. and Chesley, S. E. (1976). “Beryllium and Post-Main Sequence Evolution.” Ap. J., 210, 475. Boesgaard, A. M. (1976). “Stellar Abundances of Lithium, Beryllium, and Boron.” Pub. A. S. P., 88, 353. Heacox, W. D., Wolff, S. C., and Boesgaard, A. M. (1976). “Beryllium in Hg-Mn Type Ap Stars.” Pub. A. S. P., 88, 607. Praderie, F., Boesgaard, A. M., Milliard, B., and Pitois, M. L. (1977). “The Abundance of Boron in Vega and Sirius.” Ap. J., 214, 130. Boesgaard, A. M., Heacox, W. D., and Conti, P. S. (1977). “Beryllium in the Hyades.” Ap. J., 214, 124. Boesgaard, A. M. (1977). “Decay of Light Elements in Stellar Envelopes.” In Highlights of Astronomy, ed. E. A. Muller (Dordrecht: D. Reidel), Vol. 4, p. 209. Boesgaard, A. M., Chesley, D. M., and Kunasz, P. (1977). “Emission Line Profiles Studies in a Scorpii.” Pub. A. S. P., 89, 613. Boesgaard, A. M. and Heacox, W. D. (1978). “The Abundance of Boron in B- and A-Type Stars.” Ap. J., 226, 888. Boesgaard, A. M. and Hagen, W. (1979). “The Circumstellar Shells of M Giants.” Ap. J., 231, 128. Boesgaard, A. M. (1979). “Velocity Fields in the Shell of Alpha Orionis.” Ap. J., 232, 485. Tully, R. B., Boesgaard, A. M., and Schempp, W. V. (1979). “The Nearby Blue Compact Galaxy VII Zw 403.” In Photometry, Kinematics and Dynamics of Galaxies, ed. David S. Evans (Austin: University of Texas/Astron. Dept.), p. 325. Boesgaard, A. M. and Praderie, F. (1981). “Boron and Beryllium in γ Geminorum.” Ap. J., 245, 219. Tully, R. B., Boesgaard, A. M., Dyck, H. M., and Schempp, W. V. (1981). “Star Formation and Abundances in the Nearby Irregular Galaxy VII Zw 403.” Ap. J., 246, 38. Boesgaard, A. M. (1981). “Velocity Fields in the Shell of the M Giant Star, Beta Pegasi.” Ap. J., 251, 564. Boesgaard, A. M., Edwards, S., and Heidmann, J. (1982). “Star Formation and Chem- ical Abundances in Clumpy Irregular Galaxies.” Ap. J., 252, 487. 2 Boesgaard, A. M. and Simon, T. (1981). “Ultraviolet Observations of Young Field Stars.” In Second Cambridge Workshop on Cool Stars, eds. M. Giampapa and L. Golub, Vol. II, p. 161. Praderie, F., Talavera, A., Felenbok, P., Czarny, J., and Boesgaard, A. M. (1982). “The Chromosphere and Wind of the Herbig Ae Star, AB Aur.” Ap. J., 254, 658. Boesgaard, A. M., Heacox, W. D., Wolff, S. C., Borsenberger, J., and Praderie, F. (1982). “Beryllium Abundances in Hg-Mn Stars.” Ap. J., 259, 723. Boesgaard, A. M. and Praderie, F. (1982). “Temporal Changes in the Ultraviolet Spec- trum of AB Aur.” BAAS, 14, 879. Boesgaard, A. M. (1982). “Abundances in the Be-Deficient F Stars.” Pub. A. S. P., 94, 749. Simon, T. and Boesgaard, A. M. (1983). “IUE Observations of Chromospheric Activity- Age Relation in Young Solar-Type Stars.” In IAU Symposium 102, Solar and Stellar Mag- netic Field: Origins and Coronal Effects, ed. J. O. Stenflo (Dordrecht: D. Reidel), p. 16. Boesgaard, A. M. (1983). “High-Resolution Spectra of T Tauri Stars.” Pub. A. S. P., 95, 586. Praderie, F., Boesgaard, A. M., et al. (1983). “Active Phenomenon in the Herbig Star AB Aur.” Second France-Japan Seminar, ed. J. C. Pecker and Y. Uchida (Paris: CNRS), p. 132. Boesgaard, A. M. (1983). “High Resolution Studies of Spectral Variability in T Tauri Stars.” BAAS, 15, 967. Boesgaard, A. M. and Simon, T. (1984). “Rotational Modulation of the Chromospheric Activity in χ-1 Orionis (GO V).” Ap. J., 277, 241. Boesgaard, A. M. (1984). “High Resolution Observations of the T Tauri Star, RU Lupi.” A. J., 89, 1635. Boesgaard, A. M. and Tripicco, M. J. (1984). “Lithium in Population I Early F Dwarfs.” Pub. A. S. P., 96, 784. Boesgaard, A. M. (1985). “Interstellar Beryllium.” Pub. A. S. P., 97, 37. Simon, T., Herbig, G. H., and Boesgaard, A. M. (1985). “The Evolution of Chromo- spheric Activity and the Spin-Down of Solar-Type Stars.” Ap. J., 293, 551. Boesgaard, A. M. (1985). “Lithium in Halo Dwarfs.” Pub. A. S. P., 97, 784. Boesgaard, A. M., and Steigman, G. (1985). “Big Bang Nucleosynthesis: Theories and Observations.” Ann. Rev. Astr. Ap., 23, 319. Praderie, F., Simon, T., Boesgaard, A. M., Felenbok, P., Catala, C., Czarny, T., and Talavera, A. (1985). “Active Phenomena in the Pre-Main Sequence Star AB Aur.” In The Origin of Nonradiative Heating/Momentum in Hot Stars, ed., A. B. Underhill and A. G. Michalitsianos, NASA Conference Publication #2358, p. 82. Boesgaard, A. M., and Tripicco, M. J. (1986). “Lithium in the Hyades” Ap. J. (Letters), 302, L49. 3 Praderie, F., Catala, C., Simon, T., and Boesgaard, A. M. (1986). “Short-Term Spectral Variability in AB Aur: Clues for Activity in Herbig Ae Stars.” Ap. J., 303, 311. Boesgaard, A. M. and Tripicco, M. J. (1986). “Lithium in Early F Dwarfs.” Ap. J., 303, 724. Catala, C., Felenbok, P., Czarny, J., Talavera, A., and Boesgaard, A. M. (1986). “Short- Term Spectral Variability in AB Aur: Clues for Activity in Herbig Ae Stars. II. The Ca II K Line.” Ap. J., 308, 216. Boesgaard, A. M. and Lavery, R. J. (1986). “Abundances in Beryllium Deficient Stars.” Ap. J., 309, 762. Wolff, S. C., Boesgaard, A. M., and Simon, T. (1986). “Activity in F Stars.” Ap. J., 310, 360. Wolff, S. C., Simon, T., and Boesgaard, A. M. (1986). “Activity in F Stars.” In Cool Stars, Stellar Systems, and the Sun, ed., M. Zeilik and D. M. Gibson (Berlin: Springer- Verlag), p. 53. Boesgaard, A. M. and Tripicco, M. J. (1987). “Lithium in F Stars of Known Age.” Ap. J., 313, 389. Boesgaard, A. M. (1987). “Lithium in the Coma Star Cluster.” Ap. J., 321, 967. Boesgaard, A. M. (1987). “Lithium and Rotation in the Hyades F Dwarfs” Pub. A. S. P., 99, 1067. Boesgaard, A. M., Budge, K. G., and Burck, E. E. (1988). “Lithium and Metallicity in the Ursa Major Group.” Ap. J., 325, 749. Boesgaard, A. M. (1988). “Abundance Signatures of Internal Stellar Structure.” In IAU Symposium #132 (Dordrecht: Kluwer Academic), p. 273. Budge, K. G., Boesgaard, A. M., and Varsik, J. (1988). “Beryllium Abundances in F Dwarfs.” In IAU Symposium #132, (Dordrecht: Kluwer Academic), p. 585. Boesgaard, A. M., Budge, K. G., and Ramsay, M. E. (1988). “Lithium in the Pleiades and Alpha Persei Clusters.” Ap. J., 327, 389. Boesgaard, A. M. (1988). “Abundances of Light Elements as Probes of Stellar Structure and Evolution.” In Vistas of Astronomy, (London: Pergamon Press), 31, 167.
Recommended publications
  • Urania Nr 3/2005
    > /2005 (717) urania 3/tom LXXVI maj—czerwiec mhćirn iVlich jp f f l owiek, który świat nauczył rnier> życe(?) wokóf planetoid Fotome anzytów za pomocą rnaiych Europejskie Obserwatorium Południowe leskopami pomocniczymi (AT) o średnicy a dalej ogromne budynki mieszczące wiel­ (ESO) zbudowało w latach 1988-2002, na 1,8 m, które mogą zajmować 30 różnych kie teleskopy i 2 kopuły teleskopów pomoc­ ściętym wierzchołku góry Cerro Paranal pozycji, będą stanowiły ciągle rozbudowy­ niczych (obecnie są 2 AT, będzie ich 8). (2635 m n.p.m.) na pustyni Atacama w Chi­ wany instrument interferometryczny (VLTI) Na górnym zdjęciu widzimy teleskop „z gó­ le, Bardzo Duży Teleskop (VLT). Składa o bazie sięgającej przeszło 200 m, które­ ry" wraz z okolicznym krajobrazem, toro­ się on z czterech teleskopów o średnicy go rozdzielczość (0,001 sekundy łuku) bę­ wiskami teleskopów AT i drogami kanałów 8,2 m, mogących kierować zebrane świa­ dzie tak wielka, że można by widzieć nim optycznych prowadzących zebrane świa­ tło do wspólnego ogniska. Razem zbierają astronautę na Księżycu. Dolne zdjęcie tło do wspólnego ogniska interferometru one tyle światła, ile zbierałby teleskop przedstawia ogólny, obecny (2005 r.) wi­ oznaczonego gwiazdką. Idea i zasady o średnicy 16 m, a pracując w systemie dok tego obserwatorium. Na pierwszym działania tego instrumentu wywodzą się interferometrycznym, stanowią teleskop planie widzimy torowisko i stanowiska ob­ z odkryć i prac Alberta Michelsona. o średnicy prawie 130 m. Wspomagane te­ serwacyjne dla teleskopów pomocniczych, Zdjęcia ESO U R A N IA - POSTtPY ASTRONOMII 3/2005 Szanowni i Drodzy Czytelnicy, Interferometria, jako technika badawcza, zdobywa coraz szersze pola zastosowań w astronomii.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Stars and Telescopes : a Resource Book for Teachers of Lower School Science
    Edith Cowan University Research Online ECU Publications Pre. 2011 1981 Stars and telescopes : a resource book for teachers of lower school science Clifton L. Smith Follow this and additional works at: https://ro.ecu.edu.au/ecuworks Part of the Science and Mathematics Education Commons Smith, C. (1981). Stars and telescopes : a resource book for teachers of lower school science. Nedlands, Australia: Nedlands College of Advanced Education. This Book is posted at Research Online. https://ro.ecu.edu.au/ecuworks/7034 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
    [Show full text]
  • Milan Dimitrijevic Avgust.Qxd
    1. M. Platiša, M. Popović, M. Dimitrijević, N. Konjević: 1975, Z. Fur Natur- forsch. 30a, 212 [A 1].* 1. Griem, H. R.: 1975, Stark Broadening, Adv. Atom. Molec. Phys. 11, 331. 2. Platiša, M., Popović, M. V., Konjević, N.: 1975, Stark broadening of O II and O III lines, Astron. Astrophys. 45, 325. 3. Konjević, N., Wiese, W. L.: 1976, Experimental Stark widths and shifts for non-hydrogenic spectral lines of ionized atoms, J. Phys. Chem. Ref. Data 5, 259. 4. Hey, J. D.: 1977, On the Stark broadening of isolated lines of F (II) and Cl (III) by plasmas, JQSRT 18, 649. 5. Hey, J. D.: 1977, Estimates of Stark broadening of some Ar III and Ar IV lines, JQSRT 17, 729. 6. Hey, J. D.: Breger, P.: 1980, Stark broadening of isolated lines emitted by singly - ionized tin, JQSRT 23, 311. 7. Hey, J. D.: Breger, P.: 1981, Stark broadening of isolated ion lines by plas- mas: Application of theory, in Spectral Line Shapes I, ed. B. Wende, W. de Gruyter, 201. 8. Сыркин, М. И.: 1981, Расчеты электронного уширения спектральных линий в теории оптических свойств плазмы, Опт. Спектроск. 51, 778. 9. Wiese, W. L., Konjević, N.: 1982, Regularities and similarities in plasma broadened spectral line widths (Stark widths), JQSRT 28, 185. 10. Konjević, N., Pittman, T. P.: 1986, Stark broadening of spectral lines of ho- mologous, doubly ionized inert gases, JQSRT 35, 473. 11. Konjević, N., Pittman, T. P.: 1987, Stark broadening of spectral lines of ho- mologous, doubly - ionized inert gases, JQSRT 37, 311. 12. Бабин, С.
    [Show full text]
  • Cfa in the News ~ Week Ending 3 January 2010
    Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis.
    [Show full text]
  • Student ID ______TA Name ______Section ______[8 PAGES - 44 QUESTIONS]
    Full Name _____________________________________________ Date --12/08/14-- Student ID ____________ TA Name ___________________________________________Section ______ [8 PAGES - 44 QUESTIONS] 1. Here is a series of moon phases, top row, starting with the new moon on November 22, a full moon on December 6, and a new moon on December 22. What does today’s moon phase look like? Choose among those phases labeled “A, B, C, D, or E” – all are labeled December 8, but only 1 is correct. Figure 1. Phases of the Moon from November 22 to December 22, 2014 The phases of the moon progress smoothly. “C” is the correct answer, and if you examine the full moon just above, you will see that “C” is not a perfect circle. Besides, it is just 2 days past the full moon. “B” cannot be right because there are 6 days between the 8th and the 14th when there is a 3rd quarter moon – and the moon takes about 7 days between full and 3rd quarter. 2. No matter where you live on Earth, there is a location that has the same latitude but is 180° away in longitude (on the opposite side of Earth). The next new moon for us is December 22. When is the next new moon for people living on the opposite side of the Earth? a. December 8 (today) b. December 15 c. December 22 d. December 29 3. First, remove Earth’s atmosphere; then, climb to the roof of the UW Tower and drop a hammer and a feather. What is the physical explanation for the objects falling at exactly the same acceleration? a.
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • Doppler Imaging of the Helium-Variable Star a Centauri*
    A&A 520, A44 (2010) Astronomy DOI: 10.1051/0004-6361/201014157 & c ESO 2010 Astrophysics Doppler imaging of the helium-variable star a Centauri D. A. Bohlender1,J.B.Rice2, and P. Hechler2 1 National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada e-mail: [email protected] 2 Department of Physics and Astronomy, Brandon University, Brandon, MB R7A 6A9, Canada e-mail: [email protected] Received 29 January 2010 / Accepted 14 June 2010 ABSTRACT Aims. The helium-peculiar star a Cen exhibits interesting line profile variations of elements such as iron, nitrogen and oxygen in addition to its well-known extreme helium variability. The objective of this paper is to use new high signal-to-noise, high-resolution spectra to perform a quantitative measurement of the helium, iron, nitrogen and oxygen abundances of the star and determine the relation of the concentrations of the heavier elements on the surface of the star to the helium concentration and perhaps to the magnetic field orientation. Methods. Doppler images have been created for the elements helium, iron, nitrogen and oxygen using the programs described in earlier papers by Rice and others. An alternative surface abundance mapping code has been used to model the helium line variations after our Doppler imaging of certain individual helium lines produced mediocre results. Results. Doppler imaging of the helium abundance of a Cen confirms the long-known existence of helium-rich and helium-poor hemispheres on the star and we measure a difference of more than two orders of magnitude in helium abundance from one side of the star to the other.
    [Show full text]
  • On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach
    Atoms 2014, 2, 357-377; doi:10.3390/atoms2030357 OPEN ACCESS atoms ISSN 2218-2004 www.mdpi.com/journal/atoms Article On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach Milan S. Dimitrijević 1,2,* and Sylvie Sahal-Bréchot 2 1 Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia 2 Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique, Observatoire de Paris, UMR CNRS 8112, UPMC, 5 Place Jules Janssen, 92195 Meudon Cedex, France; E-Mail: [email protected] (S.S.-B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +381-64-297-8021; Fax: +381-11-2419-553. Received: 5 May 2014; in revised form: 20 June 2014 / Accepted: 16 July 2014 / Published: 7 August 2014 Abstract: The significance of Stark broadening data for problems in astrophysics, physics, as well as for technological plasmas is discussed and applications of Stark broadening parameters calculated using a semiclassical perturbation method are analyzed. Keywords: Stark broadening; isolated lines; impact approximation 1. Introduction Stark broadening parameters of neutral atom and ion lines are of interest for a number of problems in astrophysical, laboratory, laser produced, fusion or technological plasma investigations. Especially the development of space astronomy has enabled the collection of a huge amount of spectroscopic data of all kinds of celestial objects within various spectral ranges. Consequently, the atomic data for trace elements, which had not been
    [Show full text]
  • Final Report the Goddard High Resolution Spectrograph Scientific
    NASA-CR-204980 Final Report The Goddard High Resolution Spectrograph Scientific Support Contract NAS5-32494 December 13, 1993 - December 12, 1996 Computer Sciences Corporation 4061 Powder Mill Road Calverton, MD 20705 GHRS SSC Final Report i Contents List of Acronyms iv I. Introduction II. Summary of Activities 4 1 Project Support - Subtask 1 4 1.1 Proposal Preparation and Tracking ..................... 4 1.2 SMOV and Post-COSTAR Calibration ................... 5 1.3 In-Orbit Performance Papers ........................ 7 1.4 Operations Studies .............................. 7 1.4.1 GHRS Efficiency ........................... 7 1.4.2 GHRS Low-Noise Orbits ....................... 8 1.5 Meetings and Information Distribution ................... 9 1.6 Public Information .............................. 9 1.7 The World Wide Web ............................ 10 1.8 The GHRS Science Symposium ....................... 11 2 Data Analysis Facility - Subtask 2 12 2.1 Facility Management ............................. 12 2.2 GHRS Archive ................................ 13 2.3 GHRS Team Software ............................ 15 2.4 General Software Support .......................... 15 2.5 Data Bases .................................. 16 2.6 Data Reduction and Analysis Assistance .................. 17 3 Extragalactic Imagery- Subtask 3 17 3.1 Analysis of R136 ............................... 17 3.2 Eta Carinae .................................. 19 3.3 Star Clusters in M33 ............................. 19 3.3.1 NGC 595 ............................... 20 3.3,2
    [Show full text]