Galactic and Extragalactic Studies, Xxiii. Opacity of the Southern Milky Way Dust Clouds by Harlow Shapley and Jacqueline Sweeney

Total Page:16

File Type:pdf, Size:1020Kb

Galactic and Extragalactic Studies, Xxiii. Opacity of the Southern Milky Way Dust Clouds by Harlow Shapley and Jacqueline Sweeney GALACTIC AND EXTRAGALACTIC STUDIES, XXIII. OPACITY OF THE SOUTHERN MILKY WAY DUST CLOUDS BY HARLOW SHAPLEY AND JACQUELINE SWEENEY HARVARD COLLEGE OBSERVATORY Communicated June 3, 1955 The greater richness of the southern celestial hemisphere when compared with the northern is illustrated by its brightest constellations, Scorpius, Sagittarius, Centaurus, and Crux, and in such stellar giants of brightness and size as Sirius, Antares, Canopus, and Achernar. It is the hemisphere of the nearest external galaxies (the Magellanic Clouds) and of the central nucleus of our Milky Way. A consequence of the latter is that more than four-fifths of the known globular star clusters, including the two brightest, Omega Centauri and 47 Tucanae, are also southern, as is the heavily obscured Messier 4, probably the nearest of all globular clusters. But perhaps the most outstanding features of the southern sky are the brilliance of the gaseous nebulosities in Orion, Carina, and Sagittarius and the darkness of the large obscurations among the Milky Way star clouds, especially the darkness of the Coalsack and of the complex of obscurities around Rho Ophi- uchi. An examination of the opacity of these discrete dark nebulosities, and of the general cosmic dust that obscures the distant parts of the southern Milky Way, is reported in this communication. 1. On the basis of galaxy counts on photographs made with the Mount Wilson reflectors, E. P. Hubble published in 1934 his well-known picture of the distribution of faint galaxies. He was able to take his sampling survey southward only to dec- lination -30°. Hubble's work on northern galaxies is now being reinforced, or actually supplanted, by the full-coverage atlas of the northern sky by C. D. Shane and his co-workers at the Lick Observatory and by the Schmidt camera atlas pre- pared on Mount Palomar with the collaboration of the National Geographic Society. The Lick survey extends into the southern sky as far as declination -23°; the National Geographic Society-Palomar Observatory Sky Atlas, to declination -27 °. Farther south the only general coverage is that provided by the Bruce telescope at the Boyden Station, with some support provided in recent years by the Armagh- Dunsink-Harvard Baker-Schmidt reflector at that station. The principal value of Hubble's survey was its outlining of the Region or Zone of "Avoidance." The term, incidentally, is a misnomer. It was used by the senior author in pointing out the apparent absence of globular clusters in galactic latitudes lower than + 5° and was later adopted by Hubble in describing the similar but wider "avoidance" of the Milky Way by the galaxies. Properly speaking, in both cases, we are dealing with a Region of Obscuration. Behind the dust clouds of the Milky Way there is undoubtedly a more or less uniform population of external galaxies, and probably in the direction of the galactic center there are un- discovered low-latitude globular star clusters. 2. The plates available at the Harvard Observatory provide for a thorough check on the Region of Obscuration, both for the northern sky, where, however, the work can now best be furthered through the Lick and Palomar surveys, and for the southern sky, where the Bruce plates provide complete coverage.' The 837 Downloaded by guest on September 28, 2021 838 ASTRONOMY: SHAPLEY AND SWEENEY PROC. N. A. S. present report deals with the galaxy distribution, and the derivation of dust-cloud opacity, for a region that covers one-fifth of the whole sky. The survey extends in galactic longitude from 2000 to 3400, in galactic latitude from +30° to -30°. More than four hundred long-exposure photographs have been used and approxi- mately sixty thousand galaxies marked. The plates record stars fainter than the eighteenth magnitude and galaxies to magnitudes between 17.5 and 18.0, the limits depending on the speed of the photographic emulsions and the sky condi- tions. We adopt in this survey 17;7 as the average photographic magnitude limit for galaxies. In latitudes lower than 4 20' we cannot satisfactorily use the star-count method to set up magnitude sequences or to determine on each plate magnitudes for the faintest stars or galaxies. We have therefore in this survey assumed that all plates are equally penetrating when proper corrections are made for exposure time and plate quality. In this respect our method follows that used by Hubble in his sampling surveys. For 9 per cent of the plates exposure lengths deviate appreciably from the standard 3 hours, and corrections have been made to the galaxy counts, as follows: Exposure Time No. of Correction (Min.) Plates Factor 100-120- 2 1.5 120-150 10 1:.25 >210 26 0.8 The results of the survey are best shown in the -diagrams' of Figures 1 and 3, de- scribed below. They extend, in a sense, Hubble's northern survey in low lati- tudes to the remainder of the Milky Way, but with a much fuller coverage. The tabular presentation of the data used for the diagrams will soon be published in the Harvard Observatory Annals, 106, No. l2. 3. In addition to the 415 Bruce plates represented in the diagrams, a large num- ber of additional long-exposure plates, and some plates made with other telescopes, have been used'for checking. The earliest of the plates was made in 1898, but only eighteen were made prior to 1910, and therefore the work depends chiefly on modern emulsions-Cramer Hi-Speed and Eastman 103a-O. Most of the photo- graphic work was done under the supervision of Dr. John S. Paraskevopoulos, late superintendent of the Boyden Station. 'The examination of the plates has been carried through by a number of assistants all of whom have had extensive experience in the detecting of galaxy images; but the principal workers in the examination of plates and. the construction of the diagrams have-.been Miss Jacqueline Sweeney, Pedro Kokaras, Miss Ann B. Hearn, and Miss Catherine M. Hanley. The senior author has examined and qualified all'plates and examined also nearly all the galaxy images. The qualification of the plates has been made on an arbitrary scale that considers stellar image form and size and the nature of the background. Qualities have been reduced to "good" by the following scheme: No. of Correction No. of Correction Quality Plates Factor Quality Plates Factor 10 44 1.0 6 34 1.8 9 104 1.0 5 11 2.2 8 141 1.0 4 1 2.6 7 80 1.4 The correction factors are applied to the galaxy counts. Downloaded by guest on September 28, 2021 VOL. 41, 1955 ASTRONOMY: SHAPLEY AND SWEENEY 839 "0 kk i 0s cu XTTr 3 W .1. .X GO 0.. C) w! * 0 \*- bo a) le -D 0 0 0 05 A N~ 'Ua) m 0 a) ,C)~~~~~~~~~~~~~~ ,* 0 105 05 0 ce a) 0L .) as L- 0 (I)Q) W.__! a- ._ ,G *e CV ...L- ,_,.F'1_ _,_ ss S . = 4 Qf) 5 w I '*t' ,@*-qB_-o,. * w S X2 [email protected] * * . o .z o o o .s se O o rnt,.[--t.cx .m_..r1 - _ Downloaded by guest on September 28, 2021 fii....... 840 ASTRONOMY: SHAPLEY AND SWEENEY PROC. N. A. S. 4. For the construction of Figure 1 we have used the adjusted numbers of galaxies per square degree, R9, for the central nine square degrees on each plate (a square three degrees on a side). In this central area the magnitudes and nebular counts need no correction for image deformation. For eighty-seven of the plates the coverage is increased by using the adjusted numbers of galaxies per square degree for the central twenty-one square degrees (see Fig. 2). This greater coverage was derived only for plates of the higher qualities centered at declinations south of -27°. North of that declination the fuller survey is left to northern telescopes. S 13 14 15 12 I 2 3 16 I1 4 5 6 17 E I0 7 8 9 18 I -I -- I 21 20 19 FIG. 2.-Diagram of the numbering in the central twenty-one square-degree area of the Bruce plates. The counts for the outer twelve degrees in these enlarged areas were adjusted for distance from the center before they were combined with the Ng data for the construction of Figure 1. The appropriate mean correction for distance from plate center for the twelve outlying square degrees was found by simply deriving (for the thirty-four most populous plates) the ratios of the number of galaxies in each of these outlying square degrees to the number per square degree in the central nine square degrees. The ratios are so nearly alike that we have used the mean ratio and applied it inversely to the total numbers for the outer twelve square degrees of each plate. The factor does vary slightly from square to square, as follows: ~~~-SQUARE ---- 10 11 12 13 14 15 16 17 18 19 20 21 Mean ratio 0.70 0.81 0.77 0.73 0.79 0.63 0.67 0.84 0.81 0.79 0.81 0.74 Mean error 0.06 0.06 0.06 0.09 0.07 0.04 0.06 0.05 0.07 0.08 0.07 0.05 Downloaded by guest on September 28, 2021 VOL. 41, 1955 ASTRONOMY: SHAPLEY AND SWEENEY 841 The average mean ratio for all twelve squares is 0.76; it corresponds to an average magnitude loss in these outer regions of 5m = 0.20. The correction has been ap- plied only to those plates (higher latitudes) where N9 > 16.
Recommended publications
  • Ann Merchant Boesgaard Publications Merchant, A. E., Bodenheimer, P., and Wallerstein, G
    Ann Merchant Boesgaard Publications Merchant, A. E., Bodenheimer, P., and Wallerstein, G. (1965). “The Lithium Isotope Ratio in Two Hyades F Stars.” Ap. J., 142, 790. Merchant, A. E. (1966). “Beryllium in F- and G-Type Dwarfs.” Ap. J., 143, 336. Hodge, P. W., and Merchant, A. E. (1966). “Photometry of SO Galaxies II. The Peculiar Galaxy NGC 128.” Ap. J., 144, 875. Merchant, A. E. (1967). “The Abundance of Lithium in Early M-Type Stars.” Ap. J., 147, 587. Merchant, A. E. (1967). “Measured Equivalent Widths in Early M-Type Stars.” Lick Obs. Bull. No. 595 (Univ. of California Press). Boesgaard, A. M. (1968). “Isotopes of Magnesium in Stellar Atmosphere.” Ap. J., 154, 185. Boesgaard, A. M. (1968). “Observations of Beryllium in Stars.” Highlights of Astron- omy, ed. L. Perek (Dordrecht: D. Reidel), p. 237. Boesgaard, A. M. (1969). “Intensity Variation in Ca Emission in an MS Star.” Pub. A. S. P., 81, 283. Boesgaard, A. M. (1969). “Observational Clues to the Evolution of M Giant Stars.” Pub. A. S. P., 81, 365. Boesgaard, A. M. (1970). “The Lithium Isotope Ratio in δ Sagittae.” Ap. J., 159, 727. Boesgaard, A. M. (1970). “The Ratio of Titanium to Zirconium in Late-Type Stars.” Ap. J., 161, 163. Boesgaard, A. M. (1970). “On the Lithium Content in Late-Type Giants.” Ap. Letters, 5, 145. Boesgaard, A. M. (1970). “Lithium in Heavy-Metal Red Giants.” Ap. J., 161, 1003. Boesgaard, A. M. (1971). “The Lithium Content of Capella.” Ap. J., 167, 511. Boesgaard, A. M. (1973). “Iron Emission Lines in a Orionis.” In Stellar Chromospheres, eds.
    [Show full text]
  • Urania Nr 3/2005
    > /2005 (717) urania 3/tom LXXVI maj—czerwiec mhćirn iVlich jp f f l owiek, który świat nauczył rnier> życe(?) wokóf planetoid Fotome anzytów za pomocą rnaiych Europejskie Obserwatorium Południowe leskopami pomocniczymi (AT) o średnicy a dalej ogromne budynki mieszczące wiel­ (ESO) zbudowało w latach 1988-2002, na 1,8 m, które mogą zajmować 30 różnych kie teleskopy i 2 kopuły teleskopów pomoc­ ściętym wierzchołku góry Cerro Paranal pozycji, będą stanowiły ciągle rozbudowy­ niczych (obecnie są 2 AT, będzie ich 8). (2635 m n.p.m.) na pustyni Atacama w Chi­ wany instrument interferometryczny (VLTI) Na górnym zdjęciu widzimy teleskop „z gó­ le, Bardzo Duży Teleskop (VLT). Składa o bazie sięgającej przeszło 200 m, które­ ry" wraz z okolicznym krajobrazem, toro­ się on z czterech teleskopów o średnicy go rozdzielczość (0,001 sekundy łuku) bę­ wiskami teleskopów AT i drogami kanałów 8,2 m, mogących kierować zebrane świa­ dzie tak wielka, że można by widzieć nim optycznych prowadzących zebrane świa­ tło do wspólnego ogniska. Razem zbierają astronautę na Księżycu. Dolne zdjęcie tło do wspólnego ogniska interferometru one tyle światła, ile zbierałby teleskop przedstawia ogólny, obecny (2005 r.) wi­ oznaczonego gwiazdką. Idea i zasady o średnicy 16 m, a pracując w systemie dok tego obserwatorium. Na pierwszym działania tego instrumentu wywodzą się interferometrycznym, stanowią teleskop planie widzimy torowisko i stanowiska ob­ z odkryć i prac Alberta Michelsona. o średnicy prawie 130 m. Wspomagane te­ serwacyjne dla teleskopów pomocniczych, Zdjęcia ESO U R A N IA - POSTtPY ASTRONOMII 3/2005 Szanowni i Drodzy Czytelnicy, Interferometria, jako technika badawcza, zdobywa coraz szersze pola zastosowań w astronomii.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 a Good Way to Start – Find North
    The expression "dog days" refers to the period from July 3 through Aug. 11 when our brightest night star, SIRIUS (aka the dog star), rises in conjunction* with the sun. Conjunction, in astronomy, is defined as the apparent meeting or passing of two celestial bodies. TAAS Fabulous Fifty A program for those new to astronomy Friday Evening, July 20, 2018, 8:00 pm All TAAS and other new and not so new astronomers are welcome. What is the TAAS Fabulous 50 Program? It is a set of 4 meetings spread across a calendar year in which a beginner to astronomy learns to locate 50 of the most prominent night sky objects visible to the naked eye. These include stars, constellations, asterisms, and Messier objects. Methodology 1. Meeting dates for each season in year 2018 Winter Jan 19 Spring Apr 20 Summer Jul 20 Fall Oct 19 2. Locate the brightest and easiest to observe stars and associated constellations 3. Add new prominent constellations for each season Tonight’s Schedule 8:00 pm – We meet inside for a slide presentation overview of the Summer sky. 8:40 pm – View night sky outside The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 A Good Way to Start – Find North Polaris North Star Polaris is about the 50th brightest star. It appears isolated making it easy to identify. Circumpolar Stars Polaris Horizon Line Albuquerque -- 35° N Circumpolar Stars Capella the Goat Star AS THE WORLD TURNS The Circle of Perpetual Apparition for Albuquerque Deneb 1 URSA MINOR 2 3 2 URSA MAJOR & Vega BIG DIPPER 1 3 Draco 4 Camelopardalis 6 4 Deneb 5 CASSIOPEIA 5 6 Cepheus Capella the Goat Star 2 3 1 Draco Ursa Minor Ursa Major 6 Camelopardalis 4 Cassiopeia 5 Cepheus Clock and Calendar A single map of the stars can show the places of the stars at different hours and months of the year in consequence of the earth’s two primary movements: Daily Clock The rotation of the earth on it's own axis amounts to 360 degrees in 24 hours, or 15 degrees per hour (360/24).
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • OBSERVING BASICS by GUY MACKIE
    OBSERVING BASICS by GUY MACKIE Observing Reports The colorful and detailed photographs we see of celestial objects are not at all like the ubiquitous "fuzzy blobs" we see at the eyepiece. Nevertheless, you are freezing your buns off and loosing much needed sleep for work, the next day so why not make a description of your observations that will make the hunt worthwhile. Here are some suggestions to fill the empty spaces in your logbook and to imprint the observing experience more deeply in your memory. The Basics Your website www.m51.ca has a downloadable log sheet template that is just super, but you can also make up one for yourself or customize the website version to your own needs. The main things to start your report should be the circumstances under which you observed: Observing Location Time (of observing session and of the observation of each object) Optics (type of instrument, eyepiece, filters, power of magnification) Transparency (page 56 of the Observers Handbook) Seeing (for me this is a subjective rating of the atmospheric stability based on Planet features and double star observations) It is good to know the field of view (FOV) of each of your eyepieces in minutes of degree, then you can estimate the approximate size of the object. The sketchpad I use has the FOV for every eyepiece I use taped to the back, a handy reference. To calculate your field of view there are websites that will punch out the both the magnification and the FOV for most eyepieces. You can do it yourself: With any motor drives turned off, place a star near the celestial equator just outside the field of view in the eyepiece so that it will drift across the middle of the field of view.
    [Show full text]
  • Stars and Telescopes : a Resource Book for Teachers of Lower School Science
    Edith Cowan University Research Online ECU Publications Pre. 2011 1981 Stars and telescopes : a resource book for teachers of lower school science Clifton L. Smith Follow this and additional works at: https://ro.ecu.edu.au/ecuworks Part of the Science and Mathematics Education Commons Smith, C. (1981). Stars and telescopes : a resource book for teachers of lower school science. Nedlands, Australia: Nedlands College of Advanced Education. This Book is posted at Research Online. https://ro.ecu.edu.au/ecuworks/7034 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]
  • A New View of Supernova Remnants in the L\:Fagellanic Clouds from David Clark
    690 Nature Vol. 294 24/31 December 1981 Finally, whatofTRF4? Aftermanyyears functions early (proliferative phase). The given by a current report describing a start of difficulty, created in part by the ability relationship to the newly described B cell on molecular biological studies of IL2. of factors like IL2 and the B cell growth growth factor awaits further experiments. Given several T cell tumour lines which can factor to replace T cells indirectly, assays In both cases, a clearer understanding of be induced to generate high levels of IL2 which clearly distinguish between IL2 and the roles of several lymphokines now (several thousand times the amounts pro­ TRF are now in hand. And the take-home exists, and perhaps more important, the duced by normal lymphocytes), it has been message is that, indeed, TRF exists12 • It tools and approaches necessary for more possible to follow the lead of workers in the acts at the time when B cells, having sophisticated analysis are evident. interferon field, by looking for mRNA undergone clonal expansion following An indication of future directions is coding for the lymphokine, and then antigenic stimulation, are to begin attempting to clone its complementary secreting high levels of immunoglobulin. I. OiSabato, G .• Chen, 0.-M. & Erickson . .1.W. Cell. DNA. The EL4 variant cell line originally Then, as proposed years ago by Dutton and lmmun. 17,495 (1975). described by Farrar and colleagues at 2. Gillis. S. & Smith, K.A. Nature 268, 154 (1977). 13 colleagues, TRF can replace T cells in ). Ruscetti, F.W., Morgan, D.A. & Gallo, R.C.
    [Show full text]
  • The Messier Catalog
    The Messier Catalog Messier 1 Messier 2 Messier 3 Messier 4 Messier 5 Crab Nebula globular cluster globular cluster globular cluster globular cluster Messier 6 Messier 7 Messier 8 Messier 9 Messier 10 open cluster open cluster Lagoon Nebula globular cluster globular cluster Butterfly Cluster Ptolemy's Cluster Messier 11 Messier 12 Messier 13 Messier 14 Messier 15 Wild Duck Cluster globular cluster Hercules glob luster globular cluster globular cluster Messier 16 Messier 17 Messier 18 Messier 19 Messier 20 Eagle Nebula The Omega, Swan, open cluster globular cluster Trifid Nebula or Horseshoe Nebula Messier 21 Messier 22 Messier 23 Messier 24 Messier 25 open cluster globular cluster open cluster Milky Way Patch open cluster Messier 26 Messier 27 Messier 28 Messier 29 Messier 30 open cluster Dumbbell Nebula globular cluster open cluster globular cluster Messier 31 Messier 32 Messier 33 Messier 34 Messier 35 Andromeda dwarf Andromeda Galaxy Triangulum Galaxy open cluster open cluster elliptical galaxy Messier 36 Messier 37 Messier 38 Messier 39 Messier 40 open cluster open cluster open cluster open cluster double star Winecke 4 Messier 41 Messier 42/43 Messier 44 Messier 45 Messier 46 open cluster Orion Nebula Praesepe Pleiades open cluster Beehive Cluster Suburu Messier 47 Messier 48 Messier 49 Messier 50 Messier 51 open cluster open cluster elliptical galaxy open cluster Whirlpool Galaxy Messier 52 Messier 53 Messier 54 Messier 55 Messier 56 open cluster globular cluster globular cluster globular cluster globular cluster Messier 57 Messier
    [Show full text]
  • Large Magellanic Cloud, One of Our Busy Galactic Neighbors
    The Large Magellanic Cloud, One of Our Busy Galactic Neighbors www.nasa.gov Our Busy Galactic Neighbors also contain fewer metals or elements heavier than hydrogen and helium. Such an environment is thought to slow the growth The cold dust that builds blazing stars is revealed in this image of stars. Star formation in the universe peaked around 10 billion that combines infrared observations from the European Space years ago, even though galaxies contained lesser abundances Agency’s Herschel Space Observatory and NASA’s Spitzer of metallic dust. Previously, astronomers only had a general Space Telescope. The image maps the dust in the galaxy known sense of the rate of star formation in the Magellanic Clouds, as the Large Magellanic Cloud, which, with the Small Magellanic but the new images enable them to study the process in more Cloud, are the two closest sizable neighbors to our own Milky detail. Way Galaxy. Herschel is a European The Large Magellanic Cloud looks like a fiery, circular explosion Space Agency in the combined Herschel–Spitzer infrared data. Ribbons of dust cornerstone mission, ripple through the galaxy, with significant fields of star formation with science instruments noticeable in the center, center-left and top right. The brightest provided by consortia center-left region is called 30 Doradus, or the Tarantula Nebula, of European institutes for its appearance in visible light. and with important participation by NASA. NASA’s Herschel Project Office is based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. JPL contributed mission-enabling technology for two of Herschel’s three science instruments.
    [Show full text]
  • Doppler Imaging of the Helium-Variable Star a Centauri*
    A&A 520, A44 (2010) Astronomy DOI: 10.1051/0004-6361/201014157 & c ESO 2010 Astrophysics Doppler imaging of the helium-variable star a Centauri D. A. Bohlender1,J.B.Rice2, and P. Hechler2 1 National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada e-mail: [email protected] 2 Department of Physics and Astronomy, Brandon University, Brandon, MB R7A 6A9, Canada e-mail: [email protected] Received 29 January 2010 / Accepted 14 June 2010 ABSTRACT Aims. The helium-peculiar star a Cen exhibits interesting line profile variations of elements such as iron, nitrogen and oxygen in addition to its well-known extreme helium variability. The objective of this paper is to use new high signal-to-noise, high-resolution spectra to perform a quantitative measurement of the helium, iron, nitrogen and oxygen abundances of the star and determine the relation of the concentrations of the heavier elements on the surface of the star to the helium concentration and perhaps to the magnetic field orientation. Methods. Doppler images have been created for the elements helium, iron, nitrogen and oxygen using the programs described in earlier papers by Rice and others. An alternative surface abundance mapping code has been used to model the helium line variations after our Doppler imaging of certain individual helium lines produced mediocre results. Results. Doppler imaging of the helium abundance of a Cen confirms the long-known existence of helium-rich and helium-poor hemispheres on the star and we measure a difference of more than two orders of magnitude in helium abundance from one side of the star to the other.
    [Show full text]