E+FW Abstract Book
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Parkes H I Survey of the Magellanic System
A&A 432, 45–67 (2005) Astronomy DOI: 10.1051/0004-6361:20040321 & c ESO 2005 Astrophysics The Parkes H I Survey of the Magellanic System C. Brüns1,J.Kerp1, L. Staveley-Smith2, U. Mebold1,M.E.Putman3,R.F.Haynes2, P. M. W. Kalberla1,E.Muller4, and M. D. Filipovic2,5 1 Radioastronomisches Institut, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany e-mail: [email protected] 2 Australia Telescope National Facility, CSIRO, PO Box 76, Epping NSW 1710, Australia 3 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA 4 Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612, USA 5 University of Western Sydney, Locked Bag 1797, Penrith South, DC, NSW 1797, Australia Received 24 February 2004 / Accepted 27 October 2004 Abstract. We present the first fully and uniformly sampled, spatially complete H survey of the entire Magellanic System with high velocity resolution (∆v = 1.0kms−1), performed with the Parkes Telescope. Approximately 24 percent of the southern skywascoveredbythissurveyona≈5 grid with an angular resolution of HPBW = 14.1. A fully automated data-reduction scheme was developed for this survey to handle the large number of H spectra (1.5 × 106). The individual Hanning smoothed and polarization averaged spectra have an rms brightness temperature noise of σ = 0.12 K. The final data-cubes have an rms noise of σrms ≈ 0.05 K and an effective angular resolution of ≈16 . In this paper we describe the survey parameters, the data- reduction and the general distribution of the H gas. The Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) are associated with huge gaseous features – the = Magellanic Bridge, the Interface Region, the Magellanic Stream, and the Leading Arm – with a total H mass of M(H ) 8 2 4.87 × 10 M d/55 kpc ,ifallH gas is at the same distance of 55 kpc. -
VMC – the VISTA Survey of the Magellanic System Metallicity Of
Dr Maria‐Rosa Cioni VMC – the VISTA survey of the Magellanic System (Gal-Exgal survey) Metallicity of stellar populaons Moon of stellar populaons ESO spectroscopic survey workshop ESO-Garching, Germany, 9-10 March 2009 The VISTA survey of the Magellanic System ESO Public Survey 2009-2014 The most sensive near‐IR survey across the LMC, SMC, The team Bridge and part of the Stream M. Cioni, K. Bekki, G. Clemenni, W. de Blok, J. Emerson, C. Evans, R. de Grijs, B. Gibson, L. Girardi, M. Groenewegen, 4m Telescope V. Ivanov, M. Marconi, C. Mastropietro, B. Moore, R. Napiwotzki, T. Naylor, J. Oliveira, V. Ripepi, J. van Loon, M. Wilkinson, P. Wood 1.5 deg2 FOV United Kingdom, Italy, Belgium, Chile, France, Switzerland, South Africa, Australia http://star.herts.ac.uk/~mcioni/vmc/ 0. Observe the Magellanic System 2 ≈180 deg 3 filters ‐ YJKs 15 epochs (12 in KS and 3 in YJ; once simultaneous colours) S/N=10 at: Y=21.9, J=21.4, Ks=20.3 (Ks≈19 single epoch) Seeing 0.8 arcsec – average Spaal resoluon 0.34 pix/arcsec (0.51 arcsec instrument PSF) Service mode observing 1840 hours / 240 nights http://star.herts.ac.uk/~mcioni/vmc/ I. Derive the spaally resolved SFH Synthec diagram of a typical LMC stellar field as expected from VMC data. This field covers 1 VISTA detector! Accuracy: metallicity S/N=10 0.1 dex and age 20% in 0.1 deg2 Kerber et al 2009 http://star.herts.ac.uk/~mcioni/vmc/ II. Trace the 3D structure as a funcon of me The LMC is a few kpc thick and the SMC up to 20 kpc RR Lyrae stars are excellent distance indicators in the near‐IR First applicaon to the LMC bar to derive the LMC distance (Szewczyk et al 2008) – 0.2 kpc accuracy The structure of the Magellanic System will be measured using Cepheid variables, the red clump luminosity, the p of the red giant brach, etc. -
HI in the M31/M33 Environment
HI in the M31/M33 Environment A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Nicole L. Free November 2010 © 2010 Nicole L. Free. All Rights Reserved. 2 This thesis titled HI in the M31/M33 Environment by NICOLE L. FREE has been approved for the Department of Physics and Astronomy and the College of Arts and Sciences by Felix J. Lockman Adjunct Professor of Physics and Astronomy Joseph C. Shields Professor of Physics and Astronomy Benjamin M. Ogles Dean, College of Arts and Sciences 3 ABSTRACT FREE, NICOLE L., M.S., November 2010, Physics and Astronomy HI in the M31/M33 Environment (70 pp.) Director of Thesis: Felix J. Lockman and Joseph C. Shields With recent debate about a reported neutral hydrogen, HI, streamer between M33 and M31, we set out to determine the existence of the HI streamer. Using the National Radio Astronomy Observatory’s 100 m Green Bank Telescope, with 9.1´ angular resolution, we mapped the HI in the region from Wright’s Cloud and M33 through the location of the streamer features, as reported by Braun and Thilker (2004). To verify the findings of Braun and Thilker, we also performed pointed observations at two of the three local maxima within their maps. From our observations, we were able to confirm the existence of the three local maxima points. The three features have column densities ranging from 2.3 to 5.4 , with most being of the order of magnitude of the latter. -
ASKAP and Meerkat Surveys of the Magellanic Clouds
ASKAP and MeerKAT surveys of the Magellanic Clouds Jacco Th. van Loon Lennard-Jones Laboratories, Keele University, ST5 5BG, United Kingdom E-mail: [email protected] The GASKAP Team Hector Arce, Amanda Bailey, Indra Bains, Ayesha Begum, Kenji Bekki, Nadya Ben Bekhti, Joss Bland-Hawthorn, Kate Brooks, Chris Brunt, Michael Burton, James Caswell, Maria Cunningham, John Dickey, Kevin Douglas, Simon Ellingsen, Jayanne English, Robert Estalella, Alyson Ford, Tyler Foster, Bryan Gaensler, Jay Gallagher, Steven Gibson, José Girart, Paul Goldsmith, José F. Gómez, Yolanda Gómez, Anne Green, James Green, Matt Haffner, Carl Heiles, Fabian Heitsch, Patrick Hennebelle, Tomoya Hirota, Melvin Hoare, Hiroshi Imai, Hideyuki Izumiura, Gilles Joncas, Paul Jones, Peter Kalberla, Ji-hyun Kang, Akiko Kawamura, Jürgen Kerp, Charles Kerton, Bon-Chul Koo, Roland Kothes, Stan Kurtz, Maša Laki´cevi´c, Tom Landecker, Alex Lazarian, Nadia Lo, Felix Lockman, Loris Magnani, Naomi McClure-Griffiths, Karl Menten, Victor Migenes, Marc-Antoine Miville-Deschênes, Erik Muller, Akiharu Nakagawa, Hiroyuki Nakanishi, Jun-ichi Nakashima, David Nidever, Lou Nigra, Josh Peek, Miguel Pérez-Torres, Chris Phillips, Mary Putman, Anthony Remijan, Philipp Richter, Peter arXiv:1009.0717v1 [astro-ph.GA] 3 Sep 2010 Schilke, Yoshiaki Sofue, Snežana Stanimirovi´c, Daniel Tafoya, Russ Taylor, Wen-Wu Tian, Lucero Uscanga, Jacco van Loon, Maxim Voronkov, Bart Wakker, Andrew Walsh, Tobias Westmeier, Benjamin Winkel, Ellen Zweibel The MagiKAT Team Gemma Bagheri, Amanda Bailey, Sudhanshu Barway, -
Revealing the Ionization Properties of the Magellanic Stream Using Optical Emission
The Astrophysical Journal, 851:110 (26pp), 2017 December 20 https://doi.org/10.3847/1538-4357/aa992a © 2017. The American Astronomical Society. All rights reserved. Revealing the Ionization Properties of the Magellanic Stream Using Optical Emission K. A. Barger1,2 , G. J. Madsen3, A. J. Fox4 , B. P. Wakker5 , J. Bland-Hawthorn6 , D. Nidever7 , L. M. Haffner8,9 , Jacqueline Antwi-Danso1,10, Michael Hernandez1, N. Lehner2 , A. S. Hill11,12 , A. Curzons6, and T. Tepper-García6 1 Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA 2 Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA 3 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 4 Space Telescope Science Institute, Baltimore, MD 21218, USA 5 Supported by NASA/NSF, affiliated with Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706, USA 6 Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia 7 National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ, 85719, USA 8 Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706, USA 9 Space Science Institute, Boulder, CO 80301, USA 10 Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA 11 Departments of Physics and Astronomy, Haverford College, Haverford, PA 19041, USA 12 CSIRO Astronomy and Space Science, Marsfield, NSW 1710, Australia Received 2017 May 1; revised 2017 November 6; accepted 2017 November 6; published 2017 December 18 Abstract The Magellanic Stream, a gaseous tail that trails behind the Magellanic Clouds, could replenish the Milky Way (MW) with a tremendous amount of gas if it reaches the Galactic disk before it evaporates into the halo. -
The Magellanic System's Interactive Formations
Publ. Astron. Soc. Aust., 2000, 17, 1–5. The Magellanic System’s Interactive Formations M. E. Putman Research School of Astronomy & Astrophysics, Australian National University, Private Bag, Weston Creek PO, ACT 2611, Australia [email protected] Received 1999 November 17, accepted 2000 January 7 Abstract: The interaction between the Galaxy and the Magellanic Clouds has resulted in several high-velocity complexes which are connected to the Clouds. The complexes are known as the Magellanic Bridge, an HI connection between the Large and Small Magellanic Clouds, the Magellanic Stream, a 10 100 HI lament which trails the Clouds, and the Leading Arm, a diuse HI lament which leads the Clouds. The mechanism responsible for these features formation remains under some debate, with the lack of detailed HI observations being one of the limiting factors in resolving the issue. Here I present several large mosaics of HI Parkes All-Sky Survey (HIPASS) data which show the full extent of the three Magellanic complexes at almost twice the resolution of previous observations. These interactive features are connected, but unique in their spatial and velocity distribution. The dierences may shed light on their origin and present environment. Dense clumps of HI along the sightline to the Sculptor Group, which may or may not be associated with the Magellanic complexes, are also discussed. Keywords: intergalactic medium — Local Group — Magellanic Clouds — galaxies: HI 1 Introduction this by providing a marked improvement in spatial Almost every galaxy in the Universe is either resolution compared to previous HVC surveys (see currently, or was at some time, part of an interacting Putman & Gibson 1999), and revealing previously system. -
NASA Program & Budget Update
NASA Update AAAC Meeting | June 15, 2020 Paul Hertz Director, Astrophysics Division Science Mission Directorate @PHertzNASA Outline • Celebrate Accomplishments § Science Highlights § Mission Milestones • Committed to Improving § Inspiring Future Leaders, Fellowships § R&A Initiative: Dual Anonymous Peer Review • Research Program Update § Research & Analysis § ROSES-2020 Updates, including COVID-19 impacts • Missions Program Update § COVID-19 impact § Operating Missions § Webb, Roman, Explorers • Planning for the Future § FY21 Budget Request § Project Artemis § Creating the Future 2 NASA Astrophysics Celebrate Accomplishments 3 SCIENCE Exoplanet Apparently Disappears HIGHLIGHT in the Latest Hubble Observations Released: April 20, 2020 • What do astronomers do when a planet they are studying suddenly seems to disappear from sight? o A team of researchers believe a full-grown planet never existed in the first place. o The missing-in-action planet was last seen orbiting the star Fomalhaut, just 25 light-years away. • Instead, researchers concluded that the Hubble Space Telescope was looking at an expanding cloud of very fine dust particles from two icy bodies that smashed into each other. • Hubble came along too late to witness the suspected collision, but may have captured its aftermath. o This happened in 2008, when astronomers announced that Hubble took its first image of a planet orbiting another star. Caption o The diminutive-looking object appeared as a dot next to a vast ring of icy debris encircling Fomalhaut. • Unlike other directly imaged exoplanets, however, nagging Credit: NASA, ESA, and A. Gáspár and G. Rieke (University of Arizona) puzzles arose with Fomalhaut b early on. Caption: This diagram simulates what astronomers, studying Hubble Space o The object was unusually bright in visible light, but did not Telescope observations, taken over several years, consider evidence for the have any detectable infrared heat signature. -
On the Magellanic Stream, the Mass of the Galaxy and the Age of the Universe
ON THE MAGELLANIC STREAM, THE MASS OF THE GALAXY AND THE AGE OF THE UNIVERSE D. Lynden-Bell Institute of Astronomy, The Observatories, Cambridge CB3 OHA, England. The Magellanic stream has been fitted with high accuracy in both position and velocity by the tidal tearing of a Magellanic Cloud. To get the good fit to the high velocity at the stream's tip at a suitable distance from the Galaxy we need either a large mass for the Galaxy, or a large circular velocity for the Sun, or both. An extragalactic method of+determining the circular velocity yields the high value of V = 294 - 42 km/sec and an orbit of poor accuracy for the relative motion of the Galaxy and the Andromeda nebula. Very large masses are needed if Andromeda and the Galaxy were formed together. A new direct determination of Hubble's constant from the "superluminal11 expansion observed in VLB radio sources gives an age of the Universe of 9 billion years. Either larger masses still or smaller distances within the local group are necessary to bring Andromeda back towards us in so short a time. Discovery of optical objects^lying in the direction of the Magellanic Stream and other hydrogen clouds stimulated my interest in explaining the stream. Work by Hartwick and Sargent has since shown that the apparent coincidences are caused by projection since the velocities of the optical objects differ from those of the hydrogen. Nevertheless over the intervening years D.N.C. Lin and I have run some forty thousand test particle orbits comprising ,200 passages of a Magellanic Cloud clothed with 200 test particles ^ . -
A New View of Supernova Remnants in the L\:Fagellanic Clouds from David Clark
690 Nature Vol. 294 24/31 December 1981 Finally, whatofTRF4? Aftermanyyears functions early (proliferative phase). The given by a current report describing a start of difficulty, created in part by the ability relationship to the newly described B cell on molecular biological studies of IL2. of factors like IL2 and the B cell growth growth factor awaits further experiments. Given several T cell tumour lines which can factor to replace T cells indirectly, assays In both cases, a clearer understanding of be induced to generate high levels of IL2 which clearly distinguish between IL2 and the roles of several lymphokines now (several thousand times the amounts pro TRF are now in hand. And the take-home exists, and perhaps more important, the duced by normal lymphocytes), it has been message is that, indeed, TRF exists12 • It tools and approaches necessary for more possible to follow the lead of workers in the acts at the time when B cells, having sophisticated analysis are evident. interferon field, by looking for mRNA undergone clonal expansion following An indication of future directions is coding for the lymphokine, and then antigenic stimulation, are to begin attempting to clone its complementary secreting high levels of immunoglobulin. I. OiSabato, G .• Chen, 0.-M. & Erickson . .1.W. Cell. DNA. The EL4 variant cell line originally Then, as proposed years ago by Dutton and lmmun. 17,495 (1975). described by Farrar and colleagues at 2. Gillis. S. & Smith, K.A. Nature 268, 154 (1977). 13 colleagues, TRF can replace T cells in ). Ruscetti, F.W., Morgan, D.A. & Gallo, R.C. -
R. Wagner-Kaiser
R. Wagner-Kaiser Email: [email protected] • Phone: (269) 274-1318 LinkedIn: linkedin.com/in/rawagnerkaiser • GitHub: github.com/rwk506 Webpage: astro.ufl.edu/~rawagnerkaiser/Home.html Stellar Populations • Globular Clusters & Multiple Populations • Variable Stars My interests in astronomy are centered around utilizing the power of stellar populations to learn more about the characteristics of galaxies, from the Milky Way to the Local Group to even further away external galaxies. Through observations of star clusters, variable stars, and resolved galactic stellar populations, I hope to learn more about the formation and evolution of galaxies in our universe. Education University of Florida 2011 – Present M.S. Astronomy: 2013 Gainesville, FL PhD Astronomy: 2016; GPA: 4.0 Dissertation: Bayesian Analysis of Globular Clusters – using a sophisticated Bayesian statistical technique to compare multi- dimensional theoretical models to observed data to determine the most likely parameters that describe object of interest. Vassar College 2006 – 2010 B.A. Physics, B.A. Astronomy (2010) Poughkeepsie, NY Minor equivalent in Mathematics GPA: 3.62; Graduated with Honors First Author Papers • Submitted (10.6.16): Wagner-Kaiser, R. and Sarajedini, A., 2016, MNRAS, Ages in the Local Solar Neighborhood from the JK turndown. • Accepted (2.28.17): Wagner-Kaiser, R., Sarajedini, A., von Hippel, T., Anderson, J., et al., 2016, MNRAS, The ACS Survey of Galactic Globular Clusters XIV: Bayesian Analysis of “Single” Stellar Populations of 69 Globular Clusters. • Accepted (12.5.16): Wagner-Kaiser, R. and Sarajedini, A., 2016, MNRAS, The properties of the Magellanic Bridge Based on OGLE IV Photometry of RR Lyrae Stars. • Wagner-Kaiser, R., Stenning, D., Robinson, E., von Hippel, T., Sarajedini, A., van Dyk, D. -
Large Magellanic Cloud, One of Our Busy Galactic Neighbors
The Large Magellanic Cloud, One of Our Busy Galactic Neighbors www.nasa.gov Our Busy Galactic Neighbors also contain fewer metals or elements heavier than hydrogen and helium. Such an environment is thought to slow the growth The cold dust that builds blazing stars is revealed in this image of stars. Star formation in the universe peaked around 10 billion that combines infrared observations from the European Space years ago, even though galaxies contained lesser abundances Agency’s Herschel Space Observatory and NASA’s Spitzer of metallic dust. Previously, astronomers only had a general Space Telescope. The image maps the dust in the galaxy known sense of the rate of star formation in the Magellanic Clouds, as the Large Magellanic Cloud, which, with the Small Magellanic but the new images enable them to study the process in more Cloud, are the two closest sizable neighbors to our own Milky detail. Way Galaxy. Herschel is a European The Large Magellanic Cloud looks like a fiery, circular explosion Space Agency in the combined Herschel–Spitzer infrared data. Ribbons of dust cornerstone mission, ripple through the galaxy, with significant fields of star formation with science instruments noticeable in the center, center-left and top right. The brightest provided by consortia center-left region is called 30 Doradus, or the Tarantula Nebula, of European institutes for its appearance in visible light. and with important participation by NASA. NASA’s Herschel Project Office is based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. JPL contributed mission-enabling technology for two of Herschel’s three science instruments. -
Hydrogen Clouds in the Magellanic System
Hydrogen clouds in the Magellanic System Bi-Qing For ICRAR/UWA The Magellanic System (HI) Leading Arm(s) LMC SMC Magellanic Stream Magellanic Bridge Image credit: Nidever et al. (2010) 2 Leading Arm(s) & Magellanic Stream Studies For et al. (2013): GASS For et al. (2014): GASS+ATCA ● HVCs catalogs (morphology – head-tail etc) ● Investigating the the effects of interaction with the Galactic halo ● Formation mechanism and compare to simulations 33 Narrow line width HVCs • Narrow line width HVCs • Cold: how do cold clouds survive in the hot halo? For et al. (2013) 44 Two phase medium (stable) Cold cloud is surrounded by a warm envelope Follow up observation with ATCA: For et al (2016) 55 Probing Environmental Effect • Deriving the physical parameters and properties • Resolving multiphase structure 66 GASS 77 ATCA ● Red: 12% peak sensitivity ● P/k = nTk ● Tk: Linewidth ● n: assumed distance, measured angular diameter ● Phase diagram: P/k vs n 88 HVC phase diagram Filled: 25kpc Non-filled: 50 pc Wolfire et al. (1995) Stable two-phase medium: Pmin< P < Pmax 99 Halo Environment as a Function of Galactic Latitude • Assuming hydrostatic equilibrium: thermal P = external halo thermal P • Galactic latitude proxy of z • Clouds reside in a denser halo environment at higher Galactic latitude 1010 • • Decreasing z Evidence LA I (Venzmer et al. 2013) LAEvidence I(Venzmer HI clouds compact possibleof evidence First Denser In short distance gradientdistance in the LA using region 11 11 GASKAP: Milky Way disk + Magellanic System ● PIs: J. Dickey + N. McClure-Griffiths ● 21 cm line + three 18 cm lines of OH molecule ● HI absorption and emission ● Magellanic System: 13020 sq deg ● resolution (~30 arcsec), velocity line width (1 km/s) 12 GASKAP: Magellanic System Figure: The GASKAP MS survey area with axes labeled in MS coordinates and Hi column densities from the LAB survey in the background (Nidever et al.