Lgals3bp Cell Adhesion [GO:0007155] Extracellular Matrix [GO:0031012

Total Page:16

File Type:pdf, Size:1020Kb

Lgals3bp Cell Adhesion [GO:0007155] Extracellular Matrix [GO:0031012 Supplementary material Ann Rheum Dis Gene ontology (molecular Gene.NameGene ontology (biological process) Gene ontology (cellular component) function) extracellular matrix [GO:0031012]; extracellular region [GO:0005576]; extracellular space [GO:0005615]; membrane [GO:0016020]; scavenger receptor activity Lgals3bp cell adhesion [GO:0007155] proteinaceous extracellular matrix [GO:0005578] [GO:0005044] extracellular matrix structural extracellular matrix organization [GO:0030198]; endoplasmic reticulum [GO:0005783]; extracellular constituent [GO:0005201]; hydrogen peroxide catabolic process [GO:0042744]; matrix [GO:0031012]; extracellular space heme binding [GO:0020037]; oxidation-reduction process [GO:0055114]; [GO:0005615]; proteinaceous extracellular matrix metal ion binding [GO:0046872]; Pxdn response to oxidative stress [GO:0006979] [GO:0005578] peroxidase activity carbohydrate biosynthetic process [GO:0016051]; N-acetylgalactosamine 4-O- dermatan sulfate proteoglycan metabolic process Golgi membrane [GO:0000139]; integral component sulfotransferase activity Chst14 [GO:0050655] of membrane [GO:0016021] [GO:0001537] cell-cell adhesion [GO:0098609]; cell migration [GO:0016477]; cell recognition [GO:0008037]; heterophilic cell-cell adhesion via plasma membrane cell adhesion molecules [GO:0007157]; homophilic cell adhesion via plasma membrane adhesion cell adhesion molecule binding molecules [GO:0007156]; positive regulation of [GO:0050839]; dynein light chain natural killer cell mediated cytotoxicity directed binding [GO:0045503]; protein against tumor cell target [GO:0002860]; cell-cell adherens junction [GO:0005913]; cell homodimerization activity susceptibility to natural killer cell mediated surface [GO:0009986]; integral component of [GO:0042803]; receptor activity cytotoxicity [GO:0042271]; susceptibility to T cell plasma membrane [GO:0005887]; plasma [GO:0004872]; receptor binding Pvr mediated cytotoxicity [GO:0060370] membrane [GO:0005886] [GO:0005102] hydrolase activity [GO:0016787]; metal ion binding [GO:0046872]; nucleic acid binding [GO:0003676]; polysaccharide immune response [GO:0006955]; metabolic process binding [GO:0030247]; Enpp1 [GO:0008152] integral component of membrane [GO:0016021] scavenger receptor activity Wang G, et al. Ann Rheum Dis 2020; 79:1111–1120. doi: 10.1136/annrheumdis-2019-216911 Supplementary material Ann Rheum Dis angiogenesis [GO:0001525]; astrocyte cell migration [GO:0043615]; bone development [GO:0060348]; branching morphogenesis of an epithelial tube [GO:0048754]; cell migration [GO:0016477]; chondrocyte proliferation [GO:0035988]; collagen catabolic process [GO:0030574]; craniofacial suture morphogenesis [GO:0097094]; embryonic cranial skeleton morphogenesis [GO:0048701]; endochondral ossification [GO:0001958]; endodermal cell differentiation [GO:0035987]; endothelial cell proliferation [GO:0001935]; head development [GO:0060322]; lung development [GO:0030324]; male gonad development [GO:0008584]; negative regulation of focal adhesion assembly [GO:0051895]; negative regulation of Notch signaling pathway [GO:0045746]; ossification [GO:0001503]; ovarian follicle development [GO:0001541]; positive regulation of B cell differentiation [GO:0045579]; positive regulation of cell growth [GO:0030307]; positive regulation of cell migration [GO:0030335]; positive regulation of cytoplasmic vesicle [GO:0031410]; cytosol macrophage migration [GO:1905523]; positive [GO:0005829]; extracellular matrix [GO:0031012]; integrin binding [GO:0005178]; regulation of myotube differentiation [GO:0010831]; extracellular space [GO:0005615]; integral metalloaminopeptidase activity proteolysis [GO:0006508]; response to estrogen component of membrane [GO:0016021]; [GO:0070006]; [GO:0043627]; response to hormone [GO:0009725]; intermediate filament cytoskeleton [GO:0045111]; metalloendopeptidase activity response to hypoxia [GO:0001666]; response to macropinosome [GO:0044354]; melanosome [GO:0004222]; peptidase mechanical stimulus [GO:0009612]; response to [GO:0042470]; nucleus [GO:0005634]; plasma activator activity [GO:0016504]; Mmp14 odorant [GO:1990834]; response to organic cyclic membrane [GO:0005886] zinc ion binding [GO:0008270] integral component of membrane [GO:0016021]; cadherin binding [GO:0045296]; nucleolus [GO:0005730]; plasma membrane G-protein coupled receptor Gprc5a [GO:0005886]; vesicle [GO:0031982] activity [GO:0004930] prenylated protein catabolic process [GO:0030327]; extracellular region [GO:0005576]; vacuolar prenylcysteine oxidase activity Pcyox1 prenylcysteine catabolic process [GO:0030328] membrane [GO:0005774] [GO:0001735] Wang G, et al. Ann Rheum Dis 2020; 79:1111–1120. doi: 10.1136/annrheumdis-2019-216911 Supplementary material Ann Rheum Dis bradykinin catabolic process [GO:0010815]; calcitonin catabolic process [GO:0010816]; ear development [GO:0043583]; embryonic digit morphogenesis [GO:0042733]; endothelin maturation [GO:0034959]; heart development cell surface [GO:0009986]; early endosome endopeptidase activity [GO:0007507]; hormone catabolic process [GO:0005769]; endosome [GO:0005768]; external [GO:0004175]; [GO:0042447]; peptide hormone processing side of plasma membrane [GO:0009897]; Golgi metalloendopeptidase activity [GO:0016486]; pharyngeal system development apparatus [GO:0005794]; integral component of [GO:0004222]; protein [GO:0060037]; positive regulation of receptor membrane [GO:0016021]; perinuclear region of homodimerization activity recycling [GO:0001921]; protein processing cytoplasm [GO:0048471]; plasma membrane [GO:0042803]; zinc ion binding Ece1 [GO:0016485]; substance P catabolic process [GO:0005886]; Weibel-Palade body [GO:0033093] [GO:0008270] Wang G, et al. Ann Rheum Dis 2020; 79:1111–1120. doi: 10.1136/annrheumdis-2019-216911 Supplementary material Ann Rheum Dis behavioral response to ethanol [GO:0048149]; cardiac muscle hypertrophy [GO:0003300]; cellular response to dopamine [GO:1903351]; cellular response to heat [GO:0034605]; cellular response to hydrogen peroxide [GO:0070301]; cellular response to retinoic acid [GO:0071300]; cellular response to transforming growth factor beta stimulus [GO:0071560]; maintenance of chromatin silencing [GO:0006344]; negative regulation of dendritic spine development [GO:0061000]; negative regulation of DNA binding [GO:0043392]; negative regulation of DNA binding transcription factor activity [GO:0043433]; negative regulation of neuron projection development [GO:0010977]; negative heat shock protein binding regulation of peptidyl-lysine acetylation [GO:0031072]; histone [GO:2000757]; negative regulation of transcription deacetylase binding by RNA polymerase II [GO:0000122]; positive [GO:0042826]; metal ion binding regulation of cell proliferation [GO:0008284]; [GO:0046872]; NAD-dependent positive regulation of epithelial to mesenchymal histone deacetylase activity (H3- transition [GO:0010718]; positive regulation of K14 specific) [GO:0032041]; NF- interleukin-1 production [GO:0032732]; positive kappaB binding [GO:0051059]; regulation of oligodendrocyte differentiation promoter-specific chromatin [GO:0048714]; positive regulation of proteolysis binding [GO:1990841]; RNA [GO:0045862]; positive regulation of receptor polymerase II repressing biosynthetic process [GO:0010870]; positive transcription factor binding regulation of transcription by RNA polymerase II cytoplasm [GO:0005737]; ESC/E(Z) complex [GO:0001103]; sequence- [GO:0045944]; positive regulation of tumor necrosis [GO:0035098]; NuRD complex [GO:0016581]; Sin3 specific DNA binding Hdac2 factor production [GO:0032760]; positive regulation complex [GO:0016580] [GO:0043565] Wang G, et al. Ann Rheum Dis 2020; 79:1111–1120. doi: 10.1136/annrheumdis-2019-216911 Supplementary material Ann Rheum Dis adhesion of symbiont to host [GO:0044406]; cell adhesion [GO:0007155]; cell adhesion mediated by integrin [GO:0033627]; cellular response to glucose stimulus [GO:0071333]; cellular response to leukemia inhibitory factor [GO:1990830]; establishment of endothelial barrier [GO:0061028]; leukocyte cell-cell adhesion [GO:0007159]; leukocyte migration [GO:0050900]; membrane to membrane docking [GO:0022614]; negative regulation of endothelial cell apoptotic process [GO:2000352]; negative regulation of extrinsic apoptotic signaling pathway via death domain receptors [GO:1902042]; positive regulation of cellular extravasation [GO:0002693]; positive regulation of ERK1 and ERK2 cascade [GO:0070374]; external side of plasma membrane [GO:0009897]; receptor-mediated virion attachment to host cell extracellular exosome [GO:0070062]; extracellular [GO:0046813]; regulation of cell adhesion matrix [GO:0031012]; extracellular space [GO:0030155]; regulation of ruffle assembly [GO:0005615]; immunological synapse [GO:1900027]; T cell activation via T cell receptor [GO:0001772]; integral component of plasma Icam1 contact with antigen bound to MHC molecule on membrane [GO:0005887] integrin binding [GO:0005178] alpha-galactosidase activity [GO:0004557]; galactoside binding [GO:0016936]; protein homodimerization activity extracellular region [GO:0005576]; Golgi apparatus [GO:0042803]; receptor binding Gla oligosaccharide metabolic process [GO:0009311] [GO:0005794]; lysosome [GO:0005764] [GO:0005102] metal ion binding [GO:0046872]; N-acetylglucosamine-6-sulfatase activity [GO:0008449]; sulfuric ester hydrolase activity Gns glycosaminoglycan metabolic process [GO:0030203] lysosome [GO:0005764] [GO:0008484] Wang G, et al. Ann Rheum Dis 2020; 79:1111–1120. doi: 10.1136/annrheumdis-2019-216911 Supplementary
Recommended publications
  • Characterization of Α-L-Fucosidase and Other Digestive Hydrolases From
    Acta Tropica 141 (2015) 118–127 Contents lists available at ScienceDirect Acta Tropica journal homepage: www.elsevier.com/locate/actatropica Characterization of ␣-L-fucosidase and other digestive hydrolases from Biomphalaria glabrata Natalia N. Perrella a,b, Rebeca S. Cantinha c,d, Eliana Nakano c, Adriana R. Lopes a,∗ a Laboratory of Biochemistry and Biophysics—Instituto Butantan, São Paulo, Brazil b Programa de Pós Graduac¸ ão Interunidades em Biotecnologia PPIB, Universidade de São Paulo, São Paulo, SP, Brazil c Laboratory of Parasitology—Instituto Butantan, São Paulo, Brazil d Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil article info abstract Article history: Schistosoma mansoni is one of the major agents of the disease Schistosomiasis, which is one of the Received 10 February 2014 major global public health concerns. Biomphalaria glabrata is an obligate intermediate mollusc host of Received in revised form 3 July 2014 S. mansoni. Although the development of S. mansoni occurs in the snail hepatopancreas, studies that Accepted 12 August 2014 focus on this organ remain limited. In this study, we biochemically identified five distinct carbohy- Available online 16 September 2014 drases (amylase, maltase, ␣-glucosidase, trehalase, and ␣-L-fucosidase), lipases, and peptidases in the B. glabrata hepatopancreas and focused on the isolation and characterization of the activity of ␣-L- Keywords: fucosidase. The isolated ␣-L-fucosidase has a molecular mass of 141 kDa, an optimum pH of 5.8, and Hepatopancreas ␣ Enzymes is inhibited by Tris, fucose, and 1-deoxyfuconojirimycin. B. glabrata -L-fucosidase is an exoglycosidase ␮ ␣-L-Fucosidase that can hydrolyze the natural substrate fucoidan to fucose residues.
    [Show full text]
  • Glycoproteomics-Based Signatures for Tumor Subtyping and Clinical Outcome Prediction of High-Grade Serous Ovarian Cancer
    ARTICLE https://doi.org/10.1038/s41467-020-19976-3 OPEN Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer Jianbo Pan 1,2,3, Yingwei Hu1,3, Shisheng Sun 1,3, Lijun Chen1, Michael Schnaubelt1, David Clark1, ✉ Minghui Ao1, Zhen Zhang1, Daniel Chan1, Jiang Qian2 & Hui Zhang 1 1234567890():,; Inter-tumor heterogeneity is a result of genomic, transcriptional, translational, and post- translational molecular features. To investigate the roles of protein glycosylation in the heterogeneity of high-grade serous ovarian carcinoma (HGSC), we perform mass spectrometry-based glycoproteomic characterization of 119 TCGA HGSC tissues. Cluster analysis of intact glycoproteomic profiles delineates 3 major tumor clusters and 5 groups of intact glycopeptides. It also shows a strong relationship between N-glycan structures and tumor molecular subtypes, one example of which being the association of fucosylation with mesenchymal subtype. Further survival analysis reveals that intact glycopeptide signatures of mesenchymal subtype are associated with a poor clinical outcome of HGSC. In addition, we study the expression of mRNAs, proteins, glycosites, and intact glycopeptides, as well as the expression levels of glycosylation enzymes involved in glycoprotein biosynthesis pathways in each tumor. The results show that glycoprotein levels are mainly controlled by the expression of their individual proteins, and, furthermore, that the glycoprotein-modifying glycans cor- respond to the protein levels of glycosylation enzymes. The variation in glycan types further shows coordination to the tumor heterogeneity. Deeper understanding of the glycosylation process and glycosylation production in different subtypes of HGSC may provide important clues for precision medicine and tumor-targeted therapy.
    [Show full text]
  • Role of Phospholipases in Adrenal Steroidogenesis
    229 1 W B BOLLAG Phospholipases in adrenal 229:1 R29–R41 Review steroidogenesis Role of phospholipases in adrenal steroidogenesis Wendy B Bollag Correspondence should be addressed Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, USA to W B Bollag Department of Physiology, Medical College of Georgia, Augusta University (formerly Georgia Regents Email University), Augusta, GA, USA [email protected] Abstract Phospholipases are lipid-metabolizing enzymes that hydrolyze phospholipids. In some Key Words cases, their activity results in remodeling of lipids and/or allows the synthesis of other f adrenal cortex lipids. In other cases, however, and of interest to the topic of adrenal steroidogenesis, f angiotensin phospholipases produce second messengers that modify the function of a cell. In this f intracellular signaling review, the enzymatic reactions, products, and effectors of three phospholipases, f phospholipids phospholipase C, phospholipase D, and phospholipase A2, are discussed. Although f signal transduction much data have been obtained concerning the role of phospholipases C and D in regulating adrenal steroid hormone production, there are still many gaps in our knowledge. Furthermore, little is known about the involvement of phospholipase A2, Endocrinology perhaps, in part, because this enzyme comprises a large family of related enzymes of that are differentially regulated and with different functions. This review presents the evidence supporting the role of each of these phospholipases in steroidogenesis in the Journal Journal of Endocrinology adrenal cortex. (2016) 229, R1–R13 Introduction associated GTP-binding protein exchanges a bound GDP for a GTP. The G protein with GTP bound can then Phospholipids serve a structural function in the cell in that activate the enzyme, phospholipase C (PLC), that cleaves they form the lipid bilayer that maintains cell integrity.
    [Show full text]
  • Supplement 1 Microarray Studies
    EASE Categories Significantly Enriched in vs MG vs vs MGC4-2 Pt1-C vs C4-2 Pt1-C UP-Regulated Genes MG System Gene Category EASE Global MGRWV Pt1-N RWV Pt1-N Score FDR GO Molecular Extracellular matrix cellular construction 0.0008 0 110 genes up- Function Interpro EGF-like domain 0.0009 0 regulated GO Molecular Oxidoreductase activity\ acting on single dono 0.0015 0 Function GO Molecular Calcium ion binding 0.0018 0 Function Interpro Laminin-G domain 0.0025 0 GO Biological Process Cell Adhesion 0.0045 0 Interpro Collagen Triple helix repeat 0.0047 0 KEGG pathway Complement and coagulation cascades 0.0053 0 KEGG pathway Immune System – Homo sapiens 0.0053 0 Interpro Fibrillar collagen C-terminal domain 0.0062 0 Interpro Calcium-binding EGF-like domain 0.0077 0 GO Molecular Cell adhesion molecule activity 0.0105 0 Function EASE Categories Significantly Enriched in Down-Regulated Genes System Gene Category EASE Global Score FDR GO Biological Process Copper ion homeostasis 2.5E-09 0 Interpro Metallothionein 6.1E-08 0 Interpro Vertebrate metallothionein, Family 1 6.1E-08 0 GO Biological Process Transition metal ion homeostasis 8.5E-08 0 GO Biological Process Heavy metal sensitivity/resistance 1.9E-07 0 GO Biological Process Di-, tri-valent inorganic cation homeostasis 6.3E-07 0 GO Biological Process Metal ion homeostasis 6.3E-07 0 GO Biological Process Cation homeostasis 2.1E-06 0 GO Biological Process Cell ion homeostasis 2.1E-06 0 GO Biological Process Ion homeostasis 2.1E-06 0 GO Molecular Helicase activity 2.3E-06 0 Function GO Biological
    [Show full text]
  • Binding of Recombinant Human Cytokeratin 19 to Laminin
    CELL STRUCTURE AND FUNCTION 25: 171–175 (2000) © 2000 by Japan Society for Cell Biology Binding of Recombinant Human Cytokeratin 19 to Laminin: A Possible Role in Interaction between Intermediate Filament Derived from Epithelial Cells and Extracellular Matrixes Naomi Dobashi1, Jiro Fujita1,*, Masayuki Murota2, Yuji Ohtsuki3, Shuji Bandoh1, Yutaka Ueda1, Kazutaka Dohmoto1, Satoko Hojo1, Mikio Nishioka2, Toshihiko Ishida, and Jiro Takahara1 1First Department of Internal Medicine, Kagawa Medical University, Kagawa 2Third Department of Internal Medicine, Kagawa Medical University, Kagawa 3Department of Pathology, Kochi Medical School, Kochi, Japan ABSTRACT. Cytokeratin 8 (CK8) and cytokeratin 19 (CK19) is a specific cytoskeletal component of simple epi- thelia, including bronchial epithelial cells. We hypothesized that CK8 or CK19 released from epithelial cells may bind to and cause damage to extracellular matrixes through binding of anti-CK8 or anti-CK19 autoantibodies. In the present study, bindings of recombinant human CK8 and CK19 to laminin (both derived from mouse sarcoma cells and human), collagen, gelatin, and fibronectin were evaluated by a modified enzyme-linked immunosorbent assay (ELISA). In addition, binding of CK19 to laminin was also confirmed by inhibition assay. As a result, CK19 strongly bound to mouse laminin as well as human laminin. Pretreatment with laminin significantly reduced the binding of CK19 to laminin. However, binding of recombinant CK19 to laminin was not demonstrated by Western immunoblot, suggesting that SDS treatment of laminin diminished the binding. These results suggest that released CK19 from epithelial cells may have played a role in the damage of basement membrane by accumulation of an immune complex composed by CK19 and anti-CK19 autoantibody.
    [Show full text]
  • Congenital Muscular Dystrophy Due to Laminin Α2 (Merosin) Deficiency (MDC1A) in an Ethnic Malay Girl 1MK Thong, 3Sofiah Ali,4 YE Park, 5DS Kim, 6KJ Goh, 2KT Wong
    Neurology Asia 2017; 22(2) : 155 – 159 Congenital muscular dystrophy due to laminin α2 (merosin) deficiency (MDC1A) in an ethnic Malay girl 1MK Thong, 3Sofiah Ali, 4YE Park, 5DS Kim, 6KJ Goh, 2KT Wong 1Departments of Paediatrics, 2Pathology and 6Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 3Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia; 4Department of Neurology and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea; 5Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea Abstract We report the first known ethnic Malay patient with laminin alpha-2 (merosin) deficiency (MDC1A), a subtype of congenital muscular dystrophy (CMD)as a result of novel LAMA2 gene mutations. The 21-month-old female presented with hypotonia at birth and gross motor delay of her distal lower limbs. Physical examination showed generalised hypotonia, hyporeflexia and myopathic facies but good cognitive functions. Serum creatine kinase was elevated and white matter changes were detected in the brain MRI. Muscle biopsy showed dystrophic changes with complete laminin α2 deficiency by immunohistochemistry. Mutation analysis of LAMA2 showed compound heterozygote at exon 21, c.2888delG(p.Gly963Alafs*111) and exon 34, c.4886dupC(p.Pro1629Profs*40) leading to premature stop codon for each of the frameshift mutations. Patient review at seven years of age showed satisfactory cognitive functions despite having contractures and weakness. Genetic testing of LAMA2 related muscular dystrophy facilitated the earlier diagnosis of MDC1A and genetic counselling for this family. Keywords: laminin alpha-2 deficiency; merosin deficiency. LAMA2, Malaysia, congenital muscular dystrophy, MDC1A INTRODUCTION mutations in the laminin alpha-2 (LAMA2)gene.
    [Show full text]
  • Blood Vitronectin Is a Major Activator of LIF and IL-6 in the Brain Through Integrin–FAK and Upar Signaling Matthew P
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs202580. doi:10.1242/jcs.202580 RESEARCH ARTICLE Blood vitronectin is a major activator of LIF and IL-6 in the brain through integrin–FAK and uPAR signaling Matthew P. Keasey1, Cuihong Jia1, Lylyan F. Pimentel1,2, Richard R. Sante1, Chiharu Lovins1 and Theo Hagg1,* ABSTRACT Microglia and astrocytes express the VTN receptors αvβ3 and α β We defined how blood-derived vitronectin (VTN) rapidly and potently v 5 integrin (Herrera-Molina et al., 2012; Kang et al., 2008; activates leukemia inhibitory factor (LIF) and pro-inflammatory Milner, 2009; Welser-Alves et al., 2011). Microglia and astrocytes, interleukin 6 (IL-6) in vitro and after vascular injury in the brain. as well as endothelial cells, are major producers of pro- α in vitro Treatment with VTN (but not fibrinogen, fibronectin, laminin-111 or inflammatory cytokines, such as IL-6 and TNF , and collagen-I) substantially increased LIF and IL-6 within 4 h in after traumatic or ischemic injury to the brain (Banner et al., 1997; C6-astroglioma cells, while VTN−/− mouse plasma was less effective Erta et al., 2012; Lau and Yu, 2001) or upon self-induction by IL-6 than that from wild-type mice. LIF and IL-6 were induced by (Van Wagoner and Benveniste, 1999). IL-6 is a major regulator of a intracerebral injection of recombinant human (rh)VTN in mice, but variety of inflammatory disorders and a target for therapies (Hunter induction seen upon intracerebral hemorrhage was less in VTN−/− and Jones, 2015).
    [Show full text]
  • Supplemental Information For
    Supplemental Information for: Gene Expression Profiling of Pediatric Acute Myelogenous Leukemia Mary E. Ross, Rami Mahfouz, Mihaela Onciu, Hsi-Che Liu, Xiaodong Zhou, Guangchun Song, Sheila A. Shurtleff, Stanley Pounds, Cheng Cheng, Jing Ma, Raul C. Ribeiro, Jeffrey E. Rubnitz, Kevin Girtman, W. Kent Williams, Susana C. Raimondi, Der-Cherng Liang, Lee-Yung Shih, Ching-Hon Pui & James R. Downing Table of Contents Section I. Patient Datasets Table S1. Diagnostic AML characteristics Table S2. Cytogenetics Summary Table S3. Adult diagnostic AML characteristics Table S4. Additional T-ALL characteristics Section II. Methods Table S5. Summary of filtered probe sets Table S6. MLL-PTD primers Additional Statistical Methods Section III. Genetic Subtype Discriminating Genes Figure S1. Unsupervised Heirarchical clustering Figure S2. Heirarchical clustering with class discriminating genes Table S7. Top 100 probe sets selected by SAM for t(8;21)[AML1-ETO] Table S8. Top 100 probe sets selected by SAM for t(15;17) [PML-RARα] Table S9. Top 63 probe sets selected by SAM for inv(16) [CBFβ-MYH11] Table S10. Top 100 probe sets selected by SAM for MLL chimeric fusion genes Table S11. Top 100 probe sets selected by SAM for FAB-M7 Table S12. Top 100 probe sets selected by SAM for CBF leukemias (whole dataset) Section IV. MLL in combined ALL and AML dataset Table S13. Top 100 probe sets selected by SAM for MLL chimeric fusions irrespective of blast lineage (whole dataset) Table S14. Class discriminating genes for cases with an MLL chimeric fusion gene that show uniform high expression, irrespective of blast lineage Section V.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Laser Microdissection-Based Microproteomics of the Hippocampus of a Rat Epilepsy Model Reveals Regional Diferences in Protein Abundances Amanda M
    www.nature.com/scientificreports OPEN Laser microdissection-based microproteomics of the hippocampus of a rat epilepsy model reveals regional diferences in protein abundances Amanda M. do Canto 1,9, André S. Vieira 2,9, Alexandre H.B. Matos1,9, Benilton S. Carvalho3,9, Barbara Henning 1,9, Braxton A. Norwood4,5, Sebastian Bauer5,6, Felix Rosenow5,6, Rovilson Gilioli7, Fernando Cendes 8,9 & Iscia Lopes-Cendes 1,9* Mesial temporal lobe epilepsy (MTLE) is a chronic neurological disorder afecting almost 40% of adult patients with epilepsy. Hippocampal sclerosis (HS) is a common histopathological abnormality found in patients with MTLE. HS is characterised by extensive neuronal loss in diferent hippocampus sub- regions. In this study, we used laser microdissection-based microproteomics to determine the protein abundances in diferent regions and layers of the hippocampus dentate gyrus (DG) in an electric stimulation rodent model which displays classical HS damage similar to that found in patients with MTLE. Our results indicate that there are diferences in the proteomic profles of diferent layers (granule cell and molecular), as well as diferent regions, of the DG (ventral and dorsal). We have identifed new signalling pathways and proteins present in specifc layers and regions of the DG, such as PARK7, RACK1, and connexin 31/gap junction. We also found two major signalling pathways that are common to all layers and regions: infammation and energy metabolism. Finally, our results highlight the utility of high-throughput microproteomics and spatial-limited isolation of tissues in the study of complex disorders to fully appreciate the large biological heterogeneity present in diferent cell populations within the central nervous system.
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]