Blood Vitronectin Is a Major Activator of LIF and IL-6 in the Brain Through Integrin–FAK and Upar Signaling Matthew P

Total Page:16

File Type:pdf, Size:1020Kb

Blood Vitronectin Is a Major Activator of LIF and IL-6 in the Brain Through Integrin–FAK and Upar Signaling Matthew P © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs202580. doi:10.1242/jcs.202580 RESEARCH ARTICLE Blood vitronectin is a major activator of LIF and IL-6 in the brain through integrin–FAK and uPAR signaling Matthew P. Keasey1, Cuihong Jia1, Lylyan F. Pimentel1,2, Richard R. Sante1, Chiharu Lovins1 and Theo Hagg1,* ABSTRACT Microglia and astrocytes express the VTN receptors αvβ3 and α β We defined how blood-derived vitronectin (VTN) rapidly and potently v 5 integrin (Herrera-Molina et al., 2012; Kang et al., 2008; activates leukemia inhibitory factor (LIF) and pro-inflammatory Milner, 2009; Welser-Alves et al., 2011). Microglia and astrocytes, interleukin 6 (IL-6) in vitro and after vascular injury in the brain. as well as endothelial cells, are major producers of pro- α in vitro Treatment with VTN (but not fibrinogen, fibronectin, laminin-111 or inflammatory cytokines, such as IL-6 and TNF , and collagen-I) substantially increased LIF and IL-6 within 4 h in after traumatic or ischemic injury to the brain (Banner et al., 1997; C6-astroglioma cells, while VTN−/− mouse plasma was less effective Erta et al., 2012; Lau and Yu, 2001) or upon self-induction by IL-6 than that from wild-type mice. LIF and IL-6 were induced by (Van Wagoner and Benveniste, 1999). IL-6 is a major regulator of a intracerebral injection of recombinant human (rh)VTN in mice, but variety of inflammatory disorders and a target for therapies (Hunter induction seen upon intracerebral hemorrhage was less in VTN−/− and Jones, 2015). Its levels are almost non-existent in the normal mice than in wild-type littermates. In vitro, VTN effects were inhibited by brain but increase rapidly and greatly after acute injuries, such as RGD, αvβ3andαvβ5 integrin-blocking peptides and antibodies. VTN stroke (Kang et al., 2013; Suzuki et al., 2009; Van Wagoner activated focal adhesion kinase (FAK; also known as PTK2), whereas and Benveniste, 1999). The initial trigger(s) for IL-6 induction pharmacological- or siRNA-mediated inhibition of FAK, but not PYK2, in the brain remains largely unresolved (Suzuki et al., 2009), – reduced the expression of LIF and IL-6 in C6 and endothelial cells and but might include leakage of blood proteins upon blood brain after traumatic cell injury. Dominant-negative FAK (Y397F) reduced the barrier disruption, which occurs rapidly after stroke (Krueger et al., amount of injury-induced LIF and IL-6. Pharmacological inhibition or 2015). knockdown of uPAR (also known as PLAUR), which binds VTN, also LIF is a GP130 (also known as IL6ST) receptor-activating reduced cytokine expression, possibly through a common target of cytokine, and as such related to the IL-6 family of cytokines uPAR and integrins. We propose that VTN leakage into tissues (Zigmond, 2012). LIF is well known for playing a role during in vitro in promotes inflammation. Integrin–FAK signaling is therefore a novel IL-6 development and for promoting stem cell self-renewal and vivo and LIF regulation mechanism relevant to the inflammation and stem (Bauer and Patterson, 2006; Cartwright et al., 2005). LIF is also cell fields. expressed by astrocytes (Banner et al., 1997), microglia (Nakanishi et al., 2007) and endothelial cells (Mi et al., 2001). It can also be pro- KEY WORDS: FAK, IL-6, Integrin, LIF, Vitronectin, uPAR inflammatory (Kerr and Patterson, 2004; Pan et al., 2008; Suzuki et al., 2009), facilitating neutrophil activation (Borish et al., 1986) INTRODUCTION and macrophage infiltration, as demonstrated by conditioned Vitronectin (VTN) is mainly produced in the liver by hepatocytes medium experiments from LIF−/− and IL-6−/− Schwann cell and endothelial cells (Seiffert et al., 1991, 1995) and is found at high preparations from denervated mouse sciatic nerves (Tofaris et al., concentrations in blood serum (Hayman et al., 1983). VTN−/− mice 2002). LIF is expressed at very low levels throughout the body, but display no overt phenotype (Zheng et al., 1995) but exhibit delayed increases following brain injury (Banner et al., 1997) and stroke angiogenesis and poor wound healing (Jang et al., 2000), and (Kang et al., 2013). Its expression in injured peripheral nerves is defective vascular repair, causing persistent leakiness after injury decreased again after repair (Dowsing et al., 2001), perhaps (Li et al., 2012). Thus, leaked VTN may induce tissue repair coincident with re-establishment of vascular integrity. The responses. VTN has been detected in tissues in inflammatory mechanisms regulating LIF expression are not well understood, rheumatoid arthritis (Tomasini-Johansson et al., 1998) and lung, but may include stimulation by IL-1β, possibly through mRNA liver and kidney fibrosis (Jang et al., 2000). Both VTN and stabilization (Carlson et al., 1996). fibronectin (another enriched plasma protein) leak into the brain VTN has an RGD motif (Suzuki et al., 1985) with which it binds after stroke (del Zoppo et al., 2012) and can activate microglia to the VTN receptors αvβ3 and αvβ5 integrin (Plow et al., 2000). It in vitro (Milner and Campbell, 2003; Welser-Alves et al., 2011). also interacts with several other proteins (Leavesley et al., 2013). Besides its cell adhesive properties, VTN activates integrin intracellular signaling molecules (Giancotti and Ruoslahti, 1999), 1Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee including FAK (also known as PTK2), one of the major integrin State University, Johnson City, TN 37614, USA. 2Keizo Asami Laboratory (LIKA), transducers. Phosphorylation of Y397 is critical to FAK activation Universidade Federal de Pernambuco, Recife, PE, Brasil. (Liu et al., 2003) and induces a number of signaling cascades *Author for correspondence ([email protected]) (Keasey et al., 2013). Phosphorylation of FAK at Y397 is critical for TNFα-stimulated expression of IL-6 (Schlaepfer et al., 2007), M.P.K., 0000-0002-1236-3840; C.J., 0000-0002-9693-0012; L.F.P., 0000-0002- 1467-7624; R.R.S., 0000-0002-9517-0752 suggesting that it might be a signaling node for cytokine regulation. VTN is unique among extracellular matrix (ECM) molecules Received 10 February 2017; Accepted 6 December 2017 because it also binds to urokinase-type plasminogen activator (uPA) Journal of Cell Science 1 RESEARCH ARTICLE Journal of Cell Science (2018) 131, jcs202580. doi:10.1242/jcs.202580 receptor (uPAR; also known as PLAUR) (Madsen et al., 2007), a serum withdrawal. We followed up this broad approach by testing membrane-bound glycoprotein that serves as the receptor for uPA. specific ECM proteins. C6 cells were seeded onto plastic culture Here, we determined whether blood-derived proteins such as plates and maintained for 24 h and serum-deprived for a further 24 h. VTN regulate LIF and IL-6 expression through integrin–FAK and/ VTN, fibronectin, fibrinogen, laminin-111 (the isoform comprising or uPAR signaling, by using cultured astroglioma and endothelial α1, β1 and γ1 chains) or collagen-I were then added directly to the cell, and adult mouse models. culture medium. Remarkably, after 4 h, only VTN produced a significant ∼8-fold increase in LIF (Fig. 1D) and ∼4-fold increase in RESULTS IL-6 mRNA expression (Fig. 1E). VTN treatment for 24 h showed VTN uniquely increases LIF and IL-6 expression in vitro no discernable differences relative to vehicle controls (data not We had previously shown that some ECM molecules, including shown, n=2), suggesting that LIF and IL-6 are rapidly induced but VTN, inhibit CNTF through integrin signaling (Keasey et al., 2013). then return to baseline levels. This could be due to VTN endocytosis To determine whether the related cytokines LIF and IL-6 are and subsequent degradation (Memmo and McKeown-Longo, regulated by such blood proteins we first used serum, which has very 1998). VTN effects were dose dependent (Fig. 1F,G) and resulted high levels of ECM proteins such as VTN, fibronectin (FN1) and in increased LIF and IL-6 protein release from cells as confirmed fibrinogen (Hayman et al., 1985). We cultured C6 astroglioma cells with a dot blot assay of conditioned medium (Fig. 1H,I). In addition, for 24 h in 10% fetal bovine serum (FBS), then changed the medium C6 cells were grown in a medium containing 1% (v/v) plasma from to low 1% (v/v) or regular 10% serum medium for an additional VTN−/− or VTN+/+ littermate mice, but without fetal bovine serum. 24 h. In 1% serum, LIF and IL-6 mRNA levels were only ∼33 and After 4 h, LIF and IL-6 mRNA increases with VTN−/− plasma were 45% (Fig. 1A,B), respectively, of that found when cells were in 10% only ∼30% and 50%, respectively, of that seen with VTN+/+ plasma serum. CNTF was upregulated in 1% serum (Fig. 1C), consistent (Fig. 1J,K). This suggests that native mouse VTN can increase LIF with our previous study (Keasey et al., 2013), and suggesting that the and IL-6 expression, and that an additional plasma molecule(s) also decreases in LIF and IL-6 were not a general cellular response to has such effects. Fig. 1. Among ECM proteins, VTN uniquely activates LIF and IL-6 expression in C6 astroglioma cells. Serum contains a variety and various abundances of integrin-binding ECM proteins. We plated C6 cells for 24 h in 10% serum, then replaced the medium with a low serum formulation (1% v/v; LS) for 24 h, which reduced LIF (A) and IL-6 (B) mRNA expression, as measured by RT-qPCR, relative to that seen in control 10% serum (Ctrl). (C) In the same experiment as in A and B, CNTF mRNA was increased, likely due to inhibitory activity of serum ECMs, such as VTN, on CNTF expression which is negatively regulated by integrin–FAK signaling.
Recommended publications
  • Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix
    Global analysis reveals the complexity of the human glomerular extracellular matrix Rachel Lennon,1,2 Adam Byron,1,* Jonathan D. Humphries,1 Michael J. Randles,1,2 Alex Carisey,1 Stephanie Murphy,1,2 David Knight,3 Paul E. Brenchley,2 Roy Zent,4,5 and Martin J. Humphries.1 1Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK; 2Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; 3Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester, UK; 4Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; and 5Veterans Affairs Hospital, Nashville, TN, USA. *Present address: Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK. Running title: Proteome of the glomerular matrix Word count: Abstract: 208, main text 2765 Corresponding author: Dr Rachel Lennon, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK. Phone: 0044 (0) 161 2755498. Fax: 0044 (0) 161 2755082. Email: [email protected] Abstract The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. Here, we employed mass spectrometry–based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalogue includes all previously identified glomerular components, plus many new and abundant components.
    [Show full text]
  • Bruch's Membrane Abnormalities in PRDM5-Related Brittle Cornea
    Porter et al. Orphanet Journal of Rare Diseases (2015) 10:145 DOI 10.1186/s13023-015-0360-4 RESEARCH Open Access Bruch’s membrane abnormalities in PRDM5-related brittle cornea syndrome Louise F. Porter1,2,3, Roberto Gallego-Pinazo4, Catherine L. Keeling5, Martyna Kamieniorz5, Nicoletta Zoppi6, Marina Colombi6, Cecilia Giunta7, Richard Bonshek2,8, Forbes D. Manson1 and Graeme C. Black1,9* Abstract Background: Brittle cornea syndrome (BCS) is a rare, generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Recessive mutations in transcription factors ZNF469 and PRDM5 cause BCS. Both transcription factors are suggested to act on a common pathway regulating extracellular matrix genes, particularly fibrillar collagens. We identified bilateral myopic choroidal neovascularization as the presenting feature of BCS in a 26-year-old-woman carrying a novel PRDM5 mutation (p.Glu134*). We performed immunohistochemistry of anterior and posterior segment ocular tissues, as expression of PRDM5 in the eye has not been described, or the effects of PRDM5-associated disease on the retina, particularly the extracellular matrix composition of Bruch’smembrane. Methods: Immunohistochemistry using antibodies against PRDM5, collagens type I, III, and IV was performed on the eyes of two unaffected controls and two patients (both with Δ9-14 PRDM5). Expression of collagens, integrins, tenascin and fibronectin in skin fibroblasts of a BCS patient with a novel p.Glu134* PRDM5 mutation was assessed using immunofluorescence. Results: PRDM5 is expressed in the corneal epithelium and retina. We observe reduced expression of major components of Bruch’s membrane in the eyes of two BCS patients with a PRDM5 Δ9-14 mutation.
    [Show full text]
  • Collagen and Elastin Fibres
    J Clin Pathol: first published as 10.1136/jcp.s3-12.1.49 on 1 January 1978. Downloaded from J. clin. Path., 31, Suppl. (Roy. Coll. Path.), 12, 49-58 Collagen and elastin fibres A. J. BAILEY From the Agricultural Research Council, Meat Research Institute, Langford, Bristol Although an understanding of the intracellular native collagen was generated from type I pro- biosynthesis of both collagen and elastin is of collagen. Whether this means that the two pro- considerable importance it is the subsequent extra- collagens are converted by different enzyme systems cellular changes involving fibrogenesis and cross- and the type III enzyme was deficient in these linking that ensure that these proteins ultimately fibroblast cultures, or that the processing of pro become the major supporting tissues of the body. type III is extremely slow, is not known. The latter This paper summarises the formation and stability proposal is consistent with the higher proportion of collagen and elastin fibres. of soluble pro type III extractable from tissue (Lenaers and Lapiere, 1975; Timpl et al., 1975). Collagen Basement membrane collagens, on the other hand, do not form fibres and this property may be The non-helical regions at the ends of the triple due to the retention of the non-helical extension helix of procollagen probably provide a number of peptides (Kefalides, 1973). In-vivo biosynthetic different intracellular functions-that is, initiating studies showing the absence of any extension peptide rapid formation of the triple helix; inhibiting intra- removal support this (Minor et al., 1976), but other cellular fibrillogenesis; and facilitating transmem- workers have reported that there is some cleavage brane movement.
    [Show full text]
  • PTK2B (Human) Recombinant Protein
    PTK2B (Human) Recombinant PKB, PTK, PYK2, RAFTK Protein Gene Summary: This gene encodes a cytoplasmic protein tyrosine kinase which is involved in Catalog Number: P5800 calcium-induced regulation of ion channels and Regulation Status: For research use only (RUO) activation of the map kinase signaling pathway. The encoded protein may represent an important signaling Product Description: Human PTK2B (NP_775267.1, 1 intermediate between neuropeptide-activated receptors a.a. - 967 a.a.) full-length recombinant protein with GST or neurotransmitters that increase calcium flux and the tag expressed in Baculovirus infected Sf21 cells. downstream signals that regulate neuronal activity. The encoded protein undergoes rapid tyrosine Host: Insect phosphorylation and activation in response to increases in the intracellular calcium concentration, nicotinic Theoretical MW (kDa): 138 acetylcholine receptor activation, membrane depolarization, or protein kinase C activation. This Applications: Func, SDS-PAGE protein has been shown to bind CRK-associated (See our web site product page for detailed applications substrate, nephrocystin, GTPase regulator associated information) with FAK, and the SH2 domain of GRB2. The encoded protein is a member of the FAK subfamily of protein Protocols: See our web site at tyrosine kinases but lacks significant sequence similarity http://www.abnova.com/support/protocols.asp or product to kinases from other subfamilies. Four transcript page for detailed protocols variants encoding two different isoforms have been Form: Liquid found for this gene. [provided by RefSeq] Preparation Method: Baculovirus infected insect cell (Sf21) expression system Purification: Glutathione sepharose chromatography Purity: 74 % by SDS-PAGE/CBB staining Activity: The activity was measured by off-chip mobility shift assay.
    [Show full text]
  • Supplementary Table S1. Control Capsules (CC) and Study Capsules (CR) Composition
    Supplementary Table S1. Control Capsules (CC) and Study Capsules (CR) composition CC Capsules Composition mg Bioactive compound Sunflower oil 1.100 Gelatin 318,019 Glycerin 118,750 Clorophill E-140 1,923 CAPSULE TOTAL WEIGHT 1.538,692 CR Capsules Composition mg Bioactive compound Shark liver oil 20% 750 150 mg alkylglycerols alkylglycerols (Gustav Heess) Rosemary Antioxidant 11,25 mg Diterpene Phenols extract, 25 % Diterpene 45 Phenols, Type Nº 027.020 (Rosmarinus officinalis L.) Glyceril-monoestearate 30 Sunflower oil 263 Soy lecithin VEROLEC 56 12 Gelatin 318,019 Glycerin 118,750 Clorophill E-140 1,923 CAPSULE TOTAL WEIGHT 1.538,692 Supplementary Table S2. Table of the selected genes and pathways analyzed in the study Pathway Gen Gene name Inflammation, IL1B Interleukin 1, Beta Immunomodulation TNF (TNFA) Tumor Necrosis Factor MAPK1 Mitogen-Activated Protein Kinase 1 PTK2B Protein Tyrosine Kinase 2 Beta STAT3 Signal Transducer Activator Of Transcription 3 JAK1 Janus Kinase 1 JAK3 Janus Kinase 3 NFKB Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells 1 NLRP3 NLR Family, Pyrin Domain Containing 3 CCL2 (MCP-1) Chemokine (C-C Motif) Ligand 2 CXCR1 Chemokine (C-X-C Motif) Receptor 1 CSF2 Colony Stimulating Factor 2 (Granulocyte-Macrophage) CCL5(RANTES) Chemokine (C-C Motif) Ligand 5 CCR5 Chemokine (C-C Motif) Receptor 5 (Gene/Pseudogene) PLCG1 Phospholipase C, Gamma 1 PRKCD Protein Kinase C, Delta ADIPOQ Adiponectin, C1Q And Collagen Domain Containing BMP2 Bone Morphogenetic Protein 2 LIF Leukemia Inhibitory Factor TGFB2
    [Show full text]
  • Evaluation of Elastin/Collagen Content in Human Dermis In-Vivo by Multiphoton Tomography—Variation with Depth and Correlation with Aging
    Cosmetics 2014, 1, 211-221; doi:10.3390/cosmetics1030211 OPEN ACCESS cosmetics ISSN 2079-9284 www.mdpi.com/journal/cosmetics Article Evaluation of Elastin/Collagen Content in Human Dermis in-Vivo by Multiphoton Tomography—Variation with Depth and Correlation with Aging Jean-Christophe Pittet 1,*, Olga Freis 2,†, Marie-Danielle Vazquez-Duchêne 2,†, Gilles Périé 2,† and Gilles Pauly 2,† 1 Orion Concept, 100 Rue de Suède, 37100 Tours, France 2 BASF Beauty Care Solutions France SAS, 3 Rue de Seichamps, CS 71040 Pulnoy, 54272 Essey-lès-Nancy Cedex, France; E-Mails: [email protected] (O.F.); [email protected] (M.-D.V.-D.); [email protected] (G.Pé.); [email protected] (G.Pa.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-247-052-316; Fax: +33-610-786-695. Received: 14 March 2014; in revised form: 31 July 2014 / Accepted: 1 August 2014 / Published: 20 August 2014 Abstract: The aim of this study was to evaluate the influence of the depth of the dermis on the measured collagen and elastin levels and to establish the correlation between the amount of these two extracellular matrix (ECM) components and age. Multiphoton Microscopy (MPM) that measures the autofluorescence (AF) and second harmonic generation (SHG) was used to quantify the levels of elastin and collagen and to determine the SAAID (SHG-to-AF Aging Index of Dermis) at two different skin depths. A 50 MHz ultrasound scanner was used for the calculation of the Sub Epidermal Non Echogenic Band (SENEB).
    [Show full text]
  • Supplement 1 Microarray Studies
    EASE Categories Significantly Enriched in vs MG vs vs MGC4-2 Pt1-C vs C4-2 Pt1-C UP-Regulated Genes MG System Gene Category EASE Global MGRWV Pt1-N RWV Pt1-N Score FDR GO Molecular Extracellular matrix cellular construction 0.0008 0 110 genes up- Function Interpro EGF-like domain 0.0009 0 regulated GO Molecular Oxidoreductase activity\ acting on single dono 0.0015 0 Function GO Molecular Calcium ion binding 0.0018 0 Function Interpro Laminin-G domain 0.0025 0 GO Biological Process Cell Adhesion 0.0045 0 Interpro Collagen Triple helix repeat 0.0047 0 KEGG pathway Complement and coagulation cascades 0.0053 0 KEGG pathway Immune System – Homo sapiens 0.0053 0 Interpro Fibrillar collagen C-terminal domain 0.0062 0 Interpro Calcium-binding EGF-like domain 0.0077 0 GO Molecular Cell adhesion molecule activity 0.0105 0 Function EASE Categories Significantly Enriched in Down-Regulated Genes System Gene Category EASE Global Score FDR GO Biological Process Copper ion homeostasis 2.5E-09 0 Interpro Metallothionein 6.1E-08 0 Interpro Vertebrate metallothionein, Family 1 6.1E-08 0 GO Biological Process Transition metal ion homeostasis 8.5E-08 0 GO Biological Process Heavy metal sensitivity/resistance 1.9E-07 0 GO Biological Process Di-, tri-valent inorganic cation homeostasis 6.3E-07 0 GO Biological Process Metal ion homeostasis 6.3E-07 0 GO Biological Process Cation homeostasis 2.1E-06 0 GO Biological Process Cell ion homeostasis 2.1E-06 0 GO Biological Process Ion homeostasis 2.1E-06 0 GO Molecular Helicase activity 2.3E-06 0 Function GO Biological
    [Show full text]
  • Integrin Adhesion Molecules in the Human Endometrium. Correlation with the Normal and Abnormal Menstrual Cycle
    Integrin adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle. B A Lessey, … , S M Albelda, C A Buck J Clin Invest. 1992;90(1):188-195. https://doi.org/10.1172/JCI115835. Research Article Integrins are a class of cell adhesion molecules that participate in cell-cell and cell-substratum interactions and are present on essentially all human cells. The distribution of nine different alpha and beta integrin subunits in human endometrial tissue at different stages of the menstrual cycle was determined using immunoperoxidase staining. Glandular epithelial cells expressed primarily alpha 2, alpha 3, and alpha 6 (collagen/laminin receptors), while stromal cells expressed predominantly alpha 5 (fibronectin receptor). The presence of alpha 1 on glandular epithelial cells was cycle specific, found only during the secretory phase. Expression of both subunits of the vitronectin receptor, alpha v beta 3, also underwent cycle specific changes on endometrial epithelial cells. Immunostaining for alpha v increased throughout the menstrual cycle, while the beta 3 subunit appeared abruptly on cycle day 20 on luminal as well as glandular epithelial cells. Discordant luteal phase biopsies (greater than or equal to 3 d "out of phase") from infertility patients exhibited delayed epithelial beta 3 immunostaining. These results demonstrate similarities, as well as specific differences, between endometrium and other epithelial tissues. Certain integrin moieties appear to be regulated within the cycling endometrium and disruption of integrin expression may be associated with decreased uterine receptivity and infertility. Find the latest version: https://jci.me/115835/pdf Integrin Adhesion Molecules in the Human Endometrium Correlation with the Normal and Abnormal Menstrual Cycle Bruce A.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Binding of Recombinant Human Cytokeratin 19 to Laminin
    CELL STRUCTURE AND FUNCTION 25: 171–175 (2000) © 2000 by Japan Society for Cell Biology Binding of Recombinant Human Cytokeratin 19 to Laminin: A Possible Role in Interaction between Intermediate Filament Derived from Epithelial Cells and Extracellular Matrixes Naomi Dobashi1, Jiro Fujita1,*, Masayuki Murota2, Yuji Ohtsuki3, Shuji Bandoh1, Yutaka Ueda1, Kazutaka Dohmoto1, Satoko Hojo1, Mikio Nishioka2, Toshihiko Ishida, and Jiro Takahara1 1First Department of Internal Medicine, Kagawa Medical University, Kagawa 2Third Department of Internal Medicine, Kagawa Medical University, Kagawa 3Department of Pathology, Kochi Medical School, Kochi, Japan ABSTRACT. Cytokeratin 8 (CK8) and cytokeratin 19 (CK19) is a specific cytoskeletal component of simple epi- thelia, including bronchial epithelial cells. We hypothesized that CK8 or CK19 released from epithelial cells may bind to and cause damage to extracellular matrixes through binding of anti-CK8 or anti-CK19 autoantibodies. In the present study, bindings of recombinant human CK8 and CK19 to laminin (both derived from mouse sarcoma cells and human), collagen, gelatin, and fibronectin were evaluated by a modified enzyme-linked immunosorbent assay (ELISA). In addition, binding of CK19 to laminin was also confirmed by inhibition assay. As a result, CK19 strongly bound to mouse laminin as well as human laminin. Pretreatment with laminin significantly reduced the binding of CK19 to laminin. However, binding of recombinant CK19 to laminin was not demonstrated by Western immunoblot, suggesting that SDS treatment of laminin diminished the binding. These results suggest that released CK19 from epithelial cells may have played a role in the damage of basement membrane by accumulation of an immune complex composed by CK19 and anti-CK19 autoantibody.
    [Show full text]
  • Supplementary Materials
    Supplementary Suppl. Figure 1: MAPK signalling pathway of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC-5. Suppl. Figure 2: Cell cycle pathway of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC- 5. Suppl. Figure 3: Cancer pathways of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC-5. Suppl. Figure 4: Phosphorylation level of A: ARAF, B: EPHA1, C: EPHA2, D: EPHA7 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 5: Phosphorylation Level of A: KIT, B: PTPN11, C: PIK3R1, D: PTPN6 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 6: Phosphorylation Level of A: KDR, B: EFS, C: AKT1, D: PTK2B/FAK2 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 7: Scoreplots and volcanoplots of PTK upstream kinase analysis: A: Scoreplot of PTK- Upstream kinase analysis for NCI-H2052 cells. B: Volcanoplot of PTK-Upstream kinase analysis for NCI-H2052 cells. C: Scoreplot of PTK-Upstream kinase analysis for NCI-H2452 cells. D: Volcanoplot of PTK-Upstream kinase analysis for NCI-H2452 cells. E: Scoreplot of PTK-Upstream kinase analysis for MSTO-211H cells. F: Volcanoplot of PTK-Upstream kinase analysis for MSTO- 211H cells. G: Scoreplot of PTK-Upstream kinase analysis for MRC-5cells. H: Volcanoplot of PTK- Upstream kinase analysis for MRC-5 cells. Suppl. Figure 8: Scoreplots and volcanoplots of STK upstream kinase analysis: A: Scoreplot of STK- Upstream kinase analysis for NCI-H2052 cells.
    [Show full text]
  • Congenital Muscular Dystrophy Due to Laminin Α2 (Merosin) Deficiency (MDC1A) in an Ethnic Malay Girl 1MK Thong, 3Sofiah Ali,4 YE Park, 5DS Kim, 6KJ Goh, 2KT Wong
    Neurology Asia 2017; 22(2) : 155 – 159 Congenital muscular dystrophy due to laminin α2 (merosin) deficiency (MDC1A) in an ethnic Malay girl 1MK Thong, 3Sofiah Ali, 4YE Park, 5DS Kim, 6KJ Goh, 2KT Wong 1Departments of Paediatrics, 2Pathology and 6Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 3Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia; 4Department of Neurology and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea; 5Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea Abstract We report the first known ethnic Malay patient with laminin alpha-2 (merosin) deficiency (MDC1A), a subtype of congenital muscular dystrophy (CMD)as a result of novel LAMA2 gene mutations. The 21-month-old female presented with hypotonia at birth and gross motor delay of her distal lower limbs. Physical examination showed generalised hypotonia, hyporeflexia and myopathic facies but good cognitive functions. Serum creatine kinase was elevated and white matter changes were detected in the brain MRI. Muscle biopsy showed dystrophic changes with complete laminin α2 deficiency by immunohistochemistry. Mutation analysis of LAMA2 showed compound heterozygote at exon 21, c.2888delG(p.Gly963Alafs*111) and exon 34, c.4886dupC(p.Pro1629Profs*40) leading to premature stop codon for each of the frameshift mutations. Patient review at seven years of age showed satisfactory cognitive functions despite having contractures and weakness. Genetic testing of LAMA2 related muscular dystrophy facilitated the earlier diagnosis of MDC1A and genetic counselling for this family. Keywords: laminin alpha-2 deficiency; merosin deficiency. LAMA2, Malaysia, congenital muscular dystrophy, MDC1A INTRODUCTION mutations in the laminin alpha-2 (LAMA2)gene.
    [Show full text]