Paraquat Neurotoxicity Is Mediated by the Dopamine Transporter and Organic Cation Transporter-3

Total Page:16

File Type:pdf, Size:1020Kb

Paraquat Neurotoxicity Is Mediated by the Dopamine Transporter and Organic Cation Transporter-3 Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3 Phillip M. Rappolda,1, Mei Cuia,b,1, Adrianne S. Chessera, Jacqueline Tibbetta, Jonathan C. Grimaa, Lihua Duanc, Namita Senc, Jonathan A. Javitchc, and Kim Tieua,2 aDepartment of Neurology in the Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642; cCenter for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University, New York, NY 10032; and bDepartment of Neurology, Huashan Hospital, Fudan University, Shanghai 200433, China Edited by Solomon H. Snyder, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved November 8, 2011 (received for review September 14, 2011) The herbicide paraquat (PQ) has increasingly been reported in addition, PQ2+ induces α-synuclein up-regulation and aggregation epidemiological studies to enhance the risk of developing Parkin- (10), a neuropathological feature detected in PD patients. In a son’s disease (PD). Furthermore, case-control studies report that recent case-control study (2), PQ2+ was reported to increase the individuals with genetic variants in the dopamine transporter risk of PD in subjects with certain genetic variants in the dopamine (DAT, SLC6A) have a higher PD risk when exposed to PQ. However, transporter (DAT). Together, these studies support the neurotoxic it remains a topic of debate whether PQ can enter dopamine (DA) role of PQ2+ in the nigrostriatal system and highlight the need neurons through DAT. We report here a mechanism by which PQ is to understand the mechanism by which PQ2+ induces toxicity. transported by DAT: In its native divalent cation state, PQ2+ is not However, to date, the very fundamental questions of whether and, a substrate for DAT; however, when converted to the monovalent if so, how PQ2+ enters DA neurons remain unanswered (11). cation PQ+ by either a reducing agent or NADPH oxidase on micro- In the present study, we describe a mechanism by which PQ2+ glia, it becomes a substrate for DAT and is accumulated in DA enters DA neurons. We propose that, in the brain, PQ2+ is re- neurons, where it induces oxidative stress and cytotoxicity. Im- duced to PQ+ extracellularly by enzymes such as NADPH-oxi- paired DAT function in cultured cells and mutant mice significantly dase on microglia. In contrast to its parent compound, PQ+ is + + attenuated neurotoxicity induced by PQ . In addition to DAT, PQ a DAT substrate and is therefore accumulated in DA neurons NEUROSCIENCE is also a substrate for the organic cation transporter 3 (Oct3, where it establishes a new redox cycle intracellularly, leading to Slc22a3), which is abundantly expressed in non-DA cells in the the generation of superoxide and DA reactive species and, ulti- nigrostriatal regions. In mice with Oct3 deficiency, enhanced stria- mately, neurotoxicity. Blocking DAT function abolished PQ+ tal damage was detected after PQ treatment. This increased sen- neurotoxicity in both cells and living mice. In addition to DAT, sitivity likely results from reduced buffering capacity by non-DA PQ+ is also a substrate for the organic cation transporter-3 + cells, leading to more PQ being available for uptake by DA neu- (Oct3), a bidirectional transporter that is highly expressed in rons. This study provides a mechanism by which DAT and Oct3 astrocytes and GABAergic neurons in the nigrostriatal regions 2+ + modulate nigrostriatal damage induced by PQ /PQ redox cycling. (12, 13). Together, these two transporters function in a con- certed manner to mediate nigrostriatal damage. Collectively, our neurodegeneration | extraneuronal monoamine transporter | astrocytes | data point to an interplay between DA and non-DA cells me- in vivo microdialysis diated, respectively, by DAT and Oct3, which modulate the function and viability of the nigrostriatal pathway. arkinson’s disease (PD) is characterized primarily by the loss Pof dopamine (DA) neurons in the substantia nigra pars Results compacta (1). Although in past decades discoveries of genetic PQ2+ Induces Striatal Neurotoxicity and DA Overflow in Mice with mutations linked to PD have significantly impacted our current Oct3 Deficiency. We recently reported that Oct3 can modulate understanding of the pathogenesis of this devastating disorder, it toxicity in the dopaminergic system through its bidirectional is likely that the environment plays a critical role in the etiology transport capability of various toxic cations (12). In the present study, we asked whether this mechanism was also relevant to PQ2+. of sporadic PD. Human epidemiological studies indicate that −/− +/+ exposure to herbicides, pesticides, and heavy metals increase the To this end, we injected Oct3-null (Oct3 )miceandtheirOct3 2+ risk of PD. One such environmental toxicant is paraquat (PQ2+, wild-type littermates intraperitoneally (i.p) with PQ . Consis- 2+ N,N′-dimethyl-4–4′-bipiridinium) (2, 3). This molecule exists tent with the neurotoxic features of PQ on the nigrostriatal ∼ natively as a divalent cation, but can undergo redox cycling with system (7, 14), we detected a loss of nigral DA neurons ( 22%) A fi fi cellular diaphorases such as NADPH oxidase and nitric oxide (Fig. 1 ). Quanti cation of total Nissl-positive neurons con rmed synthase (4) (NOS) to yield the monovalent cation PQ+. From that this reduction was due to cell loss, and not to down-regula- this redox cycle, superoxide is generated, leading to oxidative tion of the phenotypic marker tyrosine hydroxylase (TH) (saline control group: 15,438 ± 532; PQ2+ treated group: 12,364 ± 522, stress-related cytotoxicity. (For clarity and brevity, the abbrevi- n ± ations PQ2+ and PQ+ will be used to signify the respective cat- = 5 mice/group; data represent mean SEM). Although ions, whereas PQ represents a general term when the valency is ambiguous.) On the basis of its structural similarity to 1-methyl-4- + Author contributions: P.M.R., M.C., and K.T. designed research; P.M.R., M.C., A.S.C., J.T., phenylpyridinium (MPP ), an active metabolite of the parkinso- and J.C.G. performed research; L.D., N.S., J.A.J., and K.T. contributed new reagents/ana- nian agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lytic tools; P.M.R., M.C., A.S.C., and K.T. analyzed data; and P.M.R., M.C., A.S.C., J.A.J., and (5), PQ2+ has been predicted to be a potential environmental K.T. wrote the paper. parkinsonian toxicant (6), and with subsequent recent epidemio- The authors declare no conflict of interest. logical studies (2, 3), there has been increasing interest in this This article is a PNAS Direct Submission. herbicide as a potential pathogenic agent in PD. 1P.M.R. and M.C. contributed equally to this study. 2+ When PQ is injected into mice, it induces a loss of nigral DA 2To whom correspondence should be addressed. E-mail: [email protected]. neurons, but the striatum is spared (7, 8), most likely due to This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. compensatory striatal sprouting in the remaining neurons (9). In 1073/pnas.1115141108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1115141108 PNAS Early Edition | 1of6 Downloaded by guest on September 27, 2021 transport of the DAT substrate MPP+. Preincubation of cells with PQ2+ for up to 1 h did not affect the uptake of MPP+ mediated by DAT (Fig. 1E). Additionally, we found no difference in the −/− +/+ kinetics of PQ2+ reaching the striatum in Oct3 and Oct3 mice using in vivo microdialysis and HPLC to quantify PQ levels in mice injected with PQ2+ (Fig. S1). Thus, although the micro- dialysis data suggest that, in the absence of Oct3 function, PQ somehow leads to striatal DA release and subsequent neurotox- icity, the mechanism for these effects is unclear, given that PQ2+ does not appear to interact functionally with DAT on the basis of its inability to inhibit MPP+ transport by DAT (Fig. 1E). PQ2+ Is a Poor Substrate for Both Oct3 and DAT, Unless Converted to PQ+. To further investigate directly whether PQ2+ is a substrate for Oct3 and DAT, we assessed uptake of PQ2+ in stable EM4 cells (modified HEK293) expressing Oct3, DAT, or an empty vector control (12). Despite its similar structure to MPP+,which is an excellent substrate for these transporters, we found that PQ2+ was not taken up into cells through these transporters, as shown in the dose–response studies (Fig. 2 A–C). This is consistent with Fig. 1. PQ2+ injection increases striatal neurotoxicity and DA overflow in the inability of PQ2+ to interfere with MPP+ uptake (Fig. 1E)and −/− mice with Oct3 deficiency. (A–C: neurotoxicity study) Oct3 mice and a previous study reporting that PQ2+ was not transported by DAT +/+ – 2+ Oct3 littermates (10 12 wk old) were injected with PQ (10 mg/kg, (11). We hypothesized that the two positive charges on PQ2+ may i.p., every second day for a total of 10 injections) or saline. Seven days interfere with its ability to be transported by Oct3 and DAT, as after the last injection, mice were processed for stereological cell counting (A), striatal tyrosine hydroxylase immunoreactivity (B, optical both transporters favor monovalent cations as substrates. To test density), or HPLC measurement of DA content (C). n = 5 animals per this hypothesis, we performed transport studies in the presence of group for A and B and n =5–9 per group for C. *P < 0.05, analyzed by sodium dithionite (SDT). This reducing agent was used to donate 2+ + two-way ANOVA followed by the Newman–Keuls post hoc test. (D: an electron and hence convert PQ to PQ as previously described − − in vivo microdialysis study) Oct3 / and Oct3+/+ littermates (10–12 wk (17). After PQ2+ wasconvertedtoPQ+, the intracellular content of old) were stereotactically implanted with microdialysis probes into the PQ was dramatically higher in stable cells expressing Oct3 (Fig.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Disease-Induced Modulation of Drug Transporters at the Blood–Brain Barrier Level
    International Journal of Molecular Sciences Review Disease-Induced Modulation of Drug Transporters at the Blood–Brain Barrier Level Sweilem B. Al Rihani 1 , Lucy I. Darakjian 1, Malavika Deodhar 1 , Pamela Dow 1 , Jacques Turgeon 1,2 and Veronique Michaud 1,2,* 1 Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; [email protected] (S.B.A.R.); [email protected] (L.I.D.); [email protected] (M.D.); [email protected] (P.D.); [email protected] (J.T.) 2 Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada * Correspondence: [email protected]; Tel.: +1-856-938-8697 Abstract: The blood–brain barrier (BBB) is a highly selective and restrictive semipermeable network of cells and blood vessel constituents. All components of the neurovascular unit give to the BBB its crucial and protective function, i.e., to regulate homeostasis in the central nervous system (CNS) by removing substances from the endothelial compartment and supplying the brain with nutrients and other endogenous compounds. Many transporters have been identified that play a role in maintaining BBB integrity and homeostasis. As such, the restrictive nature of the BBB provides an obstacle for drug delivery to the CNS. Nevertheless, according to their physicochemical or pharmacological properties, drugs may reach the CNS by passive diffusion or be subjected to putative influx and/or efflux through BBB membrane transporters, allowing or limiting their distribution to the CNS. Drug transporters functionally expressed on various compartments of the BBB involve numerous proteins from either the ATP-binding cassette (ABC) or the solute carrier (SLC) superfamilies.
    [Show full text]
  • Roles for the Uptake 2 Transporter OCT3 in Regulation Of
    Marquette University e-Publications@Marquette Biomedical Sciences Faculty Research and Publications Biomedical Sciences, Department of 2-2019 Roles for the Uptake2 Transporter OCT3 in Regulation of Dopaminergic Neurotransmission and Behavior Paul J. Gasser Marquette University, [email protected] Follow this and additional works at: https://epublications.marquette.edu/biomedsci_fac Part of the Neurosciences Commons Recommended Citation Gasser, Paul J., "Roles for the Uptake2 Transporter OCT3 in Regulation of Dopaminergic Neurotransmission and Behavior" (2019). Biomedical Sciences Faculty Research and Publications. 191. https://epublications.marquette.edu/biomedsci_fac/191 Marquette University e-Publications@Marquette Biomedical Sciences Faculty Research and Publications/College of Health Sciences This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation below. Neurochemistry International, Vol. 123, (February 2019): 46-49. DOI. This article is © Elsevier and permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. Roles for the Uptake2 Transporter OCT3 in Regulation of Dopaminergic Neurotransmission and Behavior Paul J. Gasser Department of Biomedical Sciences, Marquette University, Milwaukee, WI Abstract Transporter-mediated uptake determines the
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • SLC22A3 Is Associated with Lipoprotein (A) Concentration And
    Clinical Biochemistry 66 (2019) 44–48 Contents lists available at ScienceDirect Clinical Biochemistry journal homepage: www.elsevier.com/locate/clinbiochem SLC22A3 is associated with lipoprotein (a) concentration and cardiovascular disease in familial hypercholesterolemia T ⁎ Martine Paquettea, Sophie Bernarda,b, Alexis Baassa,c,d, a Lipids, Nutrition and Cardiovascular Prevention Clinic, Montreal Clinical Research Institute, Québec, Canada b Department of Medicine, Division of Endocrinology, Université de Montreal, Québec, Canada c Department of Medicine, Division of Experimental Medicine, McGill University, Québec, Canada d Department of Medicine, Division of Medical Biochemistry, McGill University, Québec, Canada ARTICLE INFO ABSTRACT Keywords: Background and aims: Several clinical and genetic factors have been shown to modulate the cardiovascular risk Familial hypercholesterolemia in subjects affected by familial hypercholesterolemia (FH). Genome wide association studies (GWAS) in the Cardiovascular disease general population have identified several single nucleotide polymorphisms (SNPs) significantly associated with SLC22A3 the risk of cardiovascular disease (CVD). This include the rs2048327 variant in the SLC22A3 gene. However, the Lipoprotein (a) effect of this SNP in FH subjects is unknown. The objectives of this study are to investigate the association Risk stratification between rs2048327 and the prevalence of CVD as well as with the concentration of lipoprotein (a) (Lp (a)), in a rs2048327 cohort of genetically-confirmed heterozygous FH patients. Methods: An enzyme-linked immunoassay kit was used to assess the Lp (a) concentration, whereas an exome chip genotyping method was used to impute the rs2048327 genotype. Results: The cohort comprised 287 non-carriers (TT), 305 heterozygous carriers (TC) and 76 homozygous car- riers of the rs2048327 variant. In a model corrected for traditional cardiovascular risk factors, rs2048327 was significantly associated with Lp (a) level (median value of 12, 16 and 29 mg/dL in TT, TC and CC carriers, respectively, p < .0001).
    [Show full text]
  • Pet-1 Controls Tetrahydrobiopterin Pathway and Slc22a3 Transporter Genes in Serotonin Neurons Steven C Wyler, Lauren J Donovan, Mia Yeager, and Evan Deneris ACS Chem
    Subscriber access provided by CASE WESTERN RESERVE UNIV Article Pet-1 controls tetrahydrobiopterin pathway and Slc22a3 transporter genes in serotonin neurons Steven C Wyler, Lauren J Donovan, Mia Yeager, and Evan Deneris ACS Chem. Neurosci., Just Accepted Manuscript • Publication Date (Web): 02 Feb 2015 Downloaded from http://pubs.acs.org on February 5, 2015 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts. ACS Chemical Neuroscience is published by the American Chemical Society.
    [Show full text]
  • Genetic and Epigenetic Regulation of the Organic Cation Transporter 3, SLC22A3
    The Pharmacogenomics Journal (2013) 13, 110–120 & 2013 Macmillan Publishers Limited. All rights reserved 1470-269X/13 www.nature.com/tpj ORIGINAL ARTICLE Genetic and epigenetic regulation of the organic cation transporter 3, SLC22A3 L Chen1, C Hong2, EC Chen1, Human organic cation transporter 3 (OCT3 and SLC22A3) mediates the 1 1 1 uptake of many important endogenous amines and basic drugs in a variety of SW Yee ,LXu, EU Almof , tissues. OCT3 is identified as one of the important risk loci for prostate cancer, 1 1 3 C Wen , K Fujii , SJ Johns , and is markedly underexpressed in aggressive prostate cancers. The goal D Stryke3, TE Ferrin3, J Simko4, of this study was to identify genetic and epigenetic factors in the promoter X Chen1, JF Costello2 and region that influence the expression level of OCT3. Haplotypes that 1 contained the common variants, g.À81G4delGA (rs60515630) (minor KM Giacomini allele frequency 11.5% in African American) and g.À2G4A (rs555754) 1Department of Bioengineering and Therapeutic (minor allele frequency430% in all ethnic groups) showed significant Sciences, University of California San Francisco, increases in luciferase reporter activities and exhibited stronger transcription San Francisco, CA, USA; 2Department of factor-binding affinity than the haplotypes that contained the major alleles. Neurological Surgery, University of California San Consistent with the reporter assays, OCT3 messenger RNA expression levels Francisco, San Francisco, CA, USA; 3Department of Pharmaceutical Chemistry, University of were significantly higher in Asian (Po0.001) and Caucasian (Po0.05) liver California San Francisco, San Francisco, CA, USA samples from individuals who were homozygous for g.À2A/A in comparison and 4Department of Pathology and Urology, with those homozygous for the g.À2G/G allele.
    [Show full text]
  • Bioivt Transporter Catalog DG V3
    Transporter Assay Catalog Single Transporter Models Single Transporter Models Subcellular Transporter Relevance Gene Transporter Assay Species2 Cell Model3 Probe Substrate Inhibition 1 Localization in Type Type Assay Model Positive Control ASBT Bile acid uptake SLC10A2 Uptake IA H Apical MDCK-II Taurocholate NaCDC asc-1 Amino acid transport SLC7A10 Uptake IA H Basolateral MDCK-II Glycine Serine ASCT2 Amino acid transport SLC1A5 Uptake IA H Apical MDCK-II Glutamine Alanine ATB0+ Amino acid transport SLC6A14 Uptake IA H Apical MDCK-II Leucine N-Ethylmaleimide BAT1, CSNU3 Amino acid transport SLC7A9 Uptake IA H Apical MDCK-II Proline BCRP FDA & EMA DDI guidances; intestinal and BBB efflux, ABCG2 Efflux BD H Apical Caco-2 clone3 Genistein Chrysin biliary secretion, renal tubular secretion and drug resistance VA H, R N/A Vesicle CCK-8 Bromosulfophthalein BD H Apical MDCK-II Prazosin KO143 BSEP EMA DDI guidance; biliary secretion of bile salts, drug ABCB11 Efflux VA H, R, D N/A Vesicle Taurocholate Rifampicin induced liver injury CAT1 Amino acid transport SLC7A1 Uptake IA H Basolateral MDCK-II Arginine Lysine CAT2B Amino acid transport SLC7A2 Uptake IA H Basolateral MDCK-II Arginine CAT3 Amino acid transport SLC7A3 Uptake IA H Basolateral MDCK-II Arginine Lysine CHT Choline transport SLC5A7 Uptake IA H Basolateral MDCK-II Choline CNT1 Nucleoside uptake SLC28A1 Uptake IA H, R Apical MDCK-II Uridine Adenosine CNT2 Nucleoside uptake SLC28A2 Uptake IA H, R Apical MDCK-II Uridine Adenosine CNT3 Nucleoside uptake SLC28A3 Uptake IA H, R Apical MDCK-II
    [Show full text]
  • Gene Expression Profiling of Transporters in the Solute Carrier and ATP-Binding Cassette Superfamilies in Human Eye Substructures
    NIH Public Access Author Manuscript Mol Pharm. Author manuscript; available in PMC 2014 May 23. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Mol Pharm. 2013 February 4; 10(2): 650–663. doi:10.1021/mp300429e. Gene Expression Profiling of Transporters in the Solute Carrier and ATP-Binding Cassette Superfamilies in Human Eye Substructures Amber Dahlin1,2,^, Ethan Geier1,^, Sophie L. Stocker1, Cheryl D. Cropp1, Elena Grigorenko3, Michele Bloomer4, Julie Siegenthaler5, Lu Xu1, Anthony S. Basile6, Diane D-S. Tang-Liu6, and Kathy Giacomini1,* 1Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA USA 3Life Technologies, Woburn, MA USA 4Department of Ophthalmology, University of California San Francisco, San Francisco, CA USA 5Department of Neurology, University of California San Francisco, San Francisco, CA USA 6Allergan, Inc. Irvine, CA USA Abstract The barrier epithelia of the cornea and retina control drug and nutrient access to various compartments of the human eye. While ocular transporters are likely to play a critical role in homeostasis and drug delivery, little is known about their expression, localization and function. In this study, the mRNA expression levels of 445 transporters, metabolic enzymes, transcription factors and nuclear receptors were profiled in five regions of the human eye: cornea, iris, ciliary body, choroid and retina. Through RNA expression profiling and immunohistochemistry, several transporters were identified as putative targets for drug transport in ocular tissues. Our analysis identified SLC22A7 (OAT2), a carrier for the anti-viral drug, acyclovir, in the corneal epithelium, in addition to ABCG2 (BCRP), an important xenobiotic efflux pump, in retinal nerve fibers and the retinal pigment epithelium.
    [Show full text]
  • RNA Editing of SLC22A3 Drives Early Tumor Invasion and Metastasis In
    RNA editing of SLC22A3 drives early tumor invasion PNAS PLUS and metastasis in familial esophageal cancer Li Fua,b,1,2, Yan-Ru Qinc,1, Xiao-Yan Mingd,1, Xian-Bo Zuoe,f,1, Yu-Wen Diaoa,b,1, Li-Yi Zhangd, Jiaoyu Aic, Bei-Lei Liua,b, Tu-Xiong Huanga,b, Ting-Ting Caoa,b, Bin-Bin Tana,b, Di Xianga,b, Chui-Mian Zenga,b, Jing Gongg,h,i, Qiangfeng Zhangg,h,i, Sui-Sui Dongd, Juan Chend, Haibo Liuj, Jian-Lin Wuk, Robert Z. Qil, Dan Xiem, Li-Dong Wangn, and Xin-Yuan Guand,m,2 aDepartment of Pharmacology, Shenzhen University School of Medicine, Shenzhen, China 518060; bCancer Research Centre, Health Science Center, Shenzhen University, Shenzhen, China 518060; cDepartment of Clinical Oncology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China 450000; dDepartment of Clinical Oncology, University of Hong Kong, Hong Kong, China; eDepartment of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China 230000; fState Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China 230000; gMOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China; hCenter for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; iCenter for Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; jKey Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China 510150; kState Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China; lDepartment of Biochemistry, Hong Kong University of Sciences and Technology, Hong Kong, China; mState Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China 510275; and nHenan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China 450000 Edited by Dennis A.
    [Show full text]
  • Identification of Placental Nutrient Transporters Associated With
    Huang et al. BMC Genomics (2018) 19:173 https://doi.org/10.1186/s12864-018-4518-z RESEARCHARTICLE Open Access Identification of placental nutrient transporters associated with intrauterine growth restriction and pre-eclampsia Xiao Huang1,2, Pascale Anderle3,4, Lu Hostettler2, Marc U. Baumann1,5, Daniel V. Surbek1,5, Edgar C. Ontsouka1,2 and Christiane Albrecht1,2* Abstract Background: Gestational disorders such as intrauterine growth restriction (IUGR) and pre-eclampsia (PE) are main causes of poor perinatal outcomes worldwide. Both diseases are related with impaired materno-fetal nutrient transfer, but the crucial transport mechanisms underlying IUGR and PE are not fully elucidated. In this study, we aimed to identify membrane transporters highly associated with transplacental nutrient deficiencies in IUGR/PE. Results: In silico analyses on the identification of differentially expressed nutrient transporters were conducted using seven eligible microarray datasets (from Gene Expression Omnibus), encompassing control and IUGR/PE placental samples. Thereby 46 out of 434 genes were identified as potentially interesting targets. They are involved in the fetal provision with amino acids, carbohydrates, lipids, vitamins and microelements. Targets of interest were clustered into a substrate-specific interaction network by using Search Tool for the Retrieval of Interacting Genes. The subsequent wet-lab validation was performed using quantitative RT-PCR on placentas from clinically well- characterized IUGR/PE patients (IUGR, n =8;PE,n =5;PE+IUGR,n = 10) and controls (term, n = 13; preterm, n = 7), followed by 2D-hierarchical heatmap generation. Statistical evaluation using Kruskal-Wallis tests was then applied to detect significantly different expression patterns, while scatter plot analysis indicated which transporters were predominantly influenced by IUGR or PE, or equally affected by both diseases.
    [Show full text]
  • RNA-Seq Reveals Conservation of Function Among the Yolk Sacs Of
    RNA-seq reveals conservation of function among the PNAS PLUS yolk sacs of human, mouse, and chicken Tereza Cindrova-Daviesa, Eric Jauniauxb, Michael G. Elliota,c, Sungsam Gongd,e, Graham J. Burtona,1, and D. Stephen Charnock-Jonesa,d,e,1,2 aCentre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom; bElizabeth Garret Anderson Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, WC1E 6BT, United Kingdom; cSt. John’s College, University of Cambridge, Cambridge, CB2 1TP, United Kingdom; dDepartment of Obstetrics and Gynaecology, University of Cambridge, Cambridge, CB2 0SW, United Kingdom; and eNational Institute for Health Research, Cambridge Comprehensive Biomedical Research Centre, Cambridge, CB2 0QQ, United Kingdom Edited by R. Michael Roberts, University of Missouri-Columbia, Columbia, MO, and approved May 5, 2017 (received for review February 14, 2017) The yolk sac is phylogenetically the oldest of the extraembryonic yolk sac plays a critical role during organogenesis (3–5, 8–10), membranes. The human embryo retains a yolk sac, which goes there are limited data to support this claim. Obtaining experi- through primary and secondary phases of development, but its mental data for the human is impossible for ethical reasons, and importance is controversial. Although it is known to synthesize thus we adopted an alternative strategy. Here, we report RNA proteins, its transport functions are widely considered vestigial. sequencing (RNA-seq) data derived from human and murine yolk Here, we report RNA-sequencing (RNA-seq) data for the human sacs and compare them with published data from the yolk sac of and murine yolk sacs and compare those data with data for the the chicken.
    [Show full text]