Studying function analysis in 3D tumor microtissue models

Jens M. Kelm, CSO and Co-founder InSphero AG March 2014

Image provided by ELRIG 2014, Telford PerkinElmer

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 1 "Target validation is one of the most pressing problems in pharmaceutical R&D. Many industry experts believe that without additional well-validated targets, pharmaceutical companies are unlikely to be able to maintain current levels of profitability."

From the executive summary of Post-Genomic Target Validation: Next Generation Approaches and Tools for Optimizing Target Selection.

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 2 Target discovery and validation is a tricky business

Prinz et al. Nature Reviews drug discovery 2011 www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 3 However, there are still some targets to be discovered

Whole genome

Druggable genome Drug Targets Disease modifying ~3’000 600-1’500 ~3’000

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 4 Why using a 3D model for target discovery/validation

• 3D environment reflects more closely the in vivo situation

• Differential gene expression in 3D models

• Long term effects can be monitored

• Co-culture systems with selective knock down combinations can be evaluated

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 5 Increasing complexity of 3D models

Drug – Cell response Drug – Tissue response

Drug – human response

Physiological drug response Drug – Organ response

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 6 Advancing cell-based assays Better in vitro Biology for better compound de-risking

Resembling native-like cell functionality to improve predictive power of cell-based assays.

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 7 A vast variety of cell types impact tumor progression

Thoma et al. 2014, ADDR

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 8 The tumor microenvironment

Thoma et al. 2014, ADDR

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 9 Environment determined cell phenotype

Cell-cell ECM contacts

Shape Tension

Behavior

Differentiation Cellular signalling Morphology Apoptosis Drug metabolism Response to stimuli Viability Gene expression Proliferation

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 10 Fibrosarcoma 3D vs. 2D: 1000 Genes were differentially expressed

CRH CCL20 ARV1 LTBP2 L3MBTL2 SLC40A1 PRDM16 WWOX PADI2 LOC160313 BDH1 ALCAM FLJ32363 THC2455353 ENST00000372066 LOH3CR2A KBTBD4 CHODL LMNB1 SLC22A3 SETBP1 GGTLA1 PLK2 CLEC3B LRRC17 ARRDC4 STAT4 ZMAT4 PER1 LOC124220 MFAP5 ENST00000381889 KIAA1324L CSPG2 SLC2A12 ZBTB26 GABRA1 CTDSP1 KY SH3TC2 ZNF659 LOC399818 PVRL4 LMOD1 MICALCL ENST00000267857 BARX1 CHRM2 ALOX15B SLC16A6 XYLB PEG3 FMO3 PLXNA4A NPR3 KYNU SETBP1 ZNF541 SHROOM3 CHDH LGALS2 MTHFD2L GPC3 BAPX1 AQP1 SOLH WISP2 PALM2 ENST00000382496 PSCDBP DMKN FLJ23577 SPINT2 ZNF396 SERPINB9 CLIC3 LAYN KLF17 ENST00000351050 MTHFD2L GALP FABP3 ENST00000374465 PLEKHA6 CTGF CHID1 KIF6 APLN SBEM SPINT1 ZNF365 OXTR SERPINB7 FBLN5 EXTL1 LDHD WSB1 MARS2 PDGFRA CHN1 KIF26B ZFP36L2 GLT8D2 GENX-3414 MYLK BIRC5 ANXA10 FLJ25076 SEMA6D GIMAP7 PTN ARHGAP29 MSRB3 LPPR4 CCBP2 KLF4 FBLN2 ABCC2 KIF26A MGC23985 ZFP28 ARHGAP29 ENST00000297812 ETNK2 SEMA6D THC2410279 MT1F PSAT1 CXCL3 KLF4 ANKRD38 OVGP1 GAL CFHR1 EPB49 KIF20A SCUBE3 WFDC8 ZNF192 ARHGAP29 PLCE1 CXCL12 SEPP1 MPPED2 FBLN1 DCAMKL1 KM-HN-1 ANLN SCUBE2 PLEKHN1 CFH EPB41L4B KLRA1 MAF ZSCAN2 ARHGAP29 PLA2G4A CXCL12 SLIC1 PRR16 GLT25D2 DKFZP434K028 SHOX MAF DEPDC6 EBI2 CCRL1 KIF5A KRT33B ANGPTL5 WWC1 OSAP ARHGAP26 GPR56 PDE9A SHOX SFRP4 MN1 DENND2A EPGN KRTAP1-5 MAF PDE5A MYL4 CCL28 KIAA1706 ANGPT1 WNK4 OLFML2A ARHGAP20 FNDC1 SH3MD4 SFRP1 VGLL3 EREG CCL26 MPP7 GLDC THC2283106 PDE5A CFD KIAA1576 KRTAP1-1 SHANK2 VGCNL1 DKFZP586H2123 EDN1 CCL2 AMOTL2 SSPO VAV3 PGBD3 MAGI1 GPR15 PDE4B JPH3 MYBL1 C5AR1 KIAA1189 SHANK2 THC2266401 THC2341407 C9orf47 FIGF SCIN KCND2 FLRT3 PDE2A IQCD AR OCRL MCAM DENND2D STAC UACA VIT THC2355280 BC040293 EDG1 CENPM KIAA0367 STMN2 FGFR2 PDE2A ITGA8 ALS2CR19 SH2D4A MMP7 MYH7B CRABP2 GALNTL1 VDR PHKG1 THC2441058 GPR126 ESM1 KRT7 RUNX1T1 THC2249196 PIGW ITGA7 SAA1 VIL2 MMP13 CSF1R EFEMP1 CDCA7 AOC3 UGCG NCF2 THC2290974 GDPD5 PPAP2B KRT16 SPINK5L3 RSPO3 CDC42EP3 CDON ITGA6 UBE2A UBE2C MMP12 FGF9 DNER ENPP2 ACCN2 THC2405019 PTHLH CABLES1 KRT19 SPINK6 RGNEF SLC8A1 STARD5 ITGA4 USP36 TNFAIP6 MMP1 LOC653579 MYLIP AUTS2 SPINK4 THC2279505 PNMA2 CD86 ALPK2 RDH5 TNFRSF11B PHGDH GPR124 ENPP1 KARCA1 IER3 TPM1 MGP CATSPER3 PALMD COL24A1 CD36 AX721193 ENST00000254846 GK KCNRG TNFRSF10D ENTPD3 KATNAL2 HAPLN1 A2M SEMA7A TPM1 NTF3 MATN2 CEACAM3 PCAF COL11A1 CD36 KCNJ8 THC2284074 FGF18 ENC1 RMND5A OSBPL10 CITED2 KALRN HCFC1R1 SEMA5A TRIM64 GPR1 DLL1 GJE1 TRIB2 SLC4A1 THC2381954 MAN1C1 THC2317149 E2F7 CITED2 AL050204 SPP2 RGS16 TRIM63 SPBC25 OGFRL1 MYPN JAM2 TMEM16B BC040628 MASP1 DMD ALPL Similar to LOC166173 ENST00000374279 OLFML3 CTSH RFPL3S SCARA3 RIMS1 TREM1 FGF12 ABCA13 IL24 TMEM136 BC042064 ME3 DUSP6 CTNNAL1 AKR1C1 SCARA3 NMU GK THC2364375 OLFML1 C16orf74 ROR1 TRPC4 TMPRSS2 DLC1 DOC1 KIAA0101 IL11 S100A7 BC031013 C6orf134 FRY OSR1 BCAN ENST00000375486 ROR1 TAGLN TRPM6 SLC2A5 THC2442727 COL11A1 DSCR1L1 CPM IL1B RBMS3 BC018597 MFSD2 FGF1 NR3C2 BMPY TGFBR3 DKFZP564J102 CPE AKR1C1 RBMS3 RRAD TAGLN3 PDE1C SAT1 THC2364604 NR2F2 COL7A1 IFIT2 ENST00000308537 MEF2B HOXA13 KCNJ2 TLE2 ABCC9 CPA4 RNF43 RASD1 GFPT2 THC2282719 NEK10 DHRS3 IFIT1 AKR1B10 TTRAP NXPH3 ENST00000381498 MAB21L2 DAAM2 CPA2 HCG18 RGMB RASEF TRAPPC6A FGF1 UNQ6975 COL5A1 ENST00000313624 SHROOM2 CAP2 ITGBL1 AKR1B1 TLR5 SLC1A6 LOX FZD4 DLG7 HDAC9 RECK RORA TOP2A NEXN DEFB103A CT45-5 TNIP3 SERPINB2 FGL2 DDAH1 ITGA2 HSPG2 AOX1 RECK LEF1 THC2279115 ELN RALGPS2 TLL2 PITPNC1 COL4A4 CAMKK1 RARRES1 TK1 ENST00000374334 SMOC2 DDAH1 HMCN1 LHCGR THC2281591 HNT CAMK2B ITGA11 LOC652408 AI094165 THY1 TOX NXPH3 GAD1 COL4A2 DPYD RGS4 ENST00000278934 HNT HHIP THBS2 LUM THC2278340 CACNB4 IGFBP4 REEP2 PCP4 THSD4 FHL1 DAPK1 DPCR1 ALDH7A1 SLC1A7 ENST00000252773 NPAS1 CACNA1E HECW2 THBS2 AIM1 FBN2 IGFBP3 RCSD1 PTPRB THSD4 THC2314434 COL4A1 DKK3 PPARGC1B PXMP2 THC2305303 NMB CDH23 HECW2 KCNK10 THBS1 LUM FST IGFBP3 RHOJ PPP1R3C COL4A1 DKK2 CDH4 THC2375853 SMOC1 THC2314177 NEUROG1 HSPB6 ADH6 RHOH TXNIP THBD CNN2 LUM DKK1 NEF3 CCBE1 CDH4 IGFBP2 PRSS35 TXNIP THC2340803 GCNT3 THC2439806 HSPB7 RASSF2 TSPAN18 DIAPH3 CDH18 AGC1 SCN3A ACTA2 FRMD4B NFASC CCDC3 IGF2 PRSS23 TSGA10 THC2438709 HSPB3 P2RY6 TIAM2 THC2363646 DFNB31 CDH13 ADM2 LHFP FRMD4A NCALD CCDC11 INPP4B PRPF18 PRSS23 TES ADAMTSL4 THC2440554 DDX10 CADPS HPR TBC1D22B FLJ35934 THC2337721 NRXN3 TAF5 LIN7A COPZ2 ADM PCDHB15 PRSS12 ENST00000375855 ABCA6 C1QTNF7 INHBB H1F0 MGAM SLIT3 GCNT1 NEDD9 PRG1 SYTL2 ABLIM1 BU537617 ATP5J C1QTNF3 PTGS2 THC2378571 SP5 DPF3 IGKC HFKH4 ADRA2A SNTB1 SLIT3 NTN4 PRSS7 STS LSAMP THC2275252 F2RL2 BCAS1 PSG2 ENST00000372493 HSPA6 NTN1 CRLF1 HSD11B1 CCDC13 SAMD3 SNTB1 ADRA1B PTGIS SLIT2 ABI3BP BRCA2 PSG4 FLJ34870 ADAMTS5 F2R CYP27B1 GNGT1 ST6GALNAC5 THC2429183 NAPG BDNF HAS1 PTGDS STXBP3 FBXO25 AK5 SLIT2 LDB2 NOV CLPB CYB5A GNG4 PCSK1N PSG9 SOX17 PSORS1C2 ADAMTS2 BDKRB1 surfactant associated F SYNPO2L GLI1 CRIM1 ADAMTSL1 PCSK1 LMO7 MRVI1 AF052152 BMP2 GNG3 PSG1 SPHK1 SYNGR1 LOC728215 THC2251316 SSTR1 ADAMTS1 HSPC159 CST6 PPBPL2 SYNE2 LMCD1 MEGF6 BF803942 BST1 GNB5 ADAMTSL1 PSG8 SNED1 LOC123688 PPP1R14A FBXW2 CDKN3 THC2411387 MUC16 BMPER HGD PRELP SYNE2 LINCR GINS2 U79293 GDF15 PSG6 SUSD2 THC2400121 CNNM4 ADAMTS14 PRRG4 LOC399947 ATF6 MOP-1 BHMT AF086187 SPANXD LIG4 SLC8A1 CLDN14 GAS6 PSG3 SRXN1 ENST00000311208 CCNI BZRAP1 ACVRL1 OKL38 SPANXA1 FADS1 MKX H19 LOC399947 CDC42EP3 CLDN11 GADD45B PRDM1 HLA-DRB1 LTC4S CUTL1 BCL7A PSG11 SORT1 SULF2 GSG1 MAP2K6 ASNS DIAPH3 ZCCHC12 ENST00000327469 LIF ENST00000328043 ABCA4 BCL2 GREM2 PBEF1 KCNS1 SLC7A11 STMN2 THC2270231 THC2379364 MITF ARNT2 ADRA2C ARC LPAAT-THETA PBEF1 SLC7A14 LOC388503 KCTD16 AVLL5809 STMN1 HTR2B GATA6 LRRC2 LIMS2

Kelm et al. 2010 J Biotechnol. www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 11 Automation-compatible 3D Microtissue culture in hanging drops

Seeding After 1 hour After 2-4 days Tumor tissue

Medium/air interface Cells Medium

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 12 From single to multi-cell type tumor microtissues

Cell line-derived colon cancer microtissue

HCT116 HCT116:Fibroblasts HCT116:Fibroblasts:EC

EGFR Vimentin CD31

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 13 GravityTRAP: Tissue Receiver and Assay Plate

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 14 Long term effects: tumor reoccurrence

1.1 Gem+Doc-100+10 Gem-100 Doc-10

1 0 5 10 15 20 Time [d] 0.9

0.8

0.7 Relatie Diameter to CTR (um/um)) CTR to Diameter Relatie 0.6

0.5 In collaboration with Physiomics www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 15 Endpoints for phenotypic

target validation AutomationCompatibility Qualitative and Gross morphology quantitative

Multiplate reader Quantitative (requires reporter)

Qualitative,

High content quantitative and spatial information

Qualitative and spatial

Histology Information information

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 16 Reporter systems TRANSFECTION OF MICROTISSUES

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 17 Transduction of microtissues effects only outer cell rim

Monolayer Microtissue

0.5

0.4 Microtissue

U/cell) 0.3 m

0.2 Monolayer

SAMY ( SAMY 0.1

0.0 Neonatal Rat Embryonic Rat Cardiomyocytes Cardiomyocytes www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 18 Transduction of cells in monolayer cultures

1. Viral-vector mediated gene transfer does not interfere with 3D microtissue formation

2. Modification occurs in 2D or cell suspension prior to microtissue formation (1-3 days prior 3D)

3. Adenovirus (transient), retrovirus (stable, proliferating cells) or lentivirus (stable, all cells)

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 19 Adeno-virus mediated gene nock down of Pim-2

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 20 Inducible gene expression in 3D spheroids

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 21 Phenotypic target validation in 3D microtissues Work flow

Cancer cells Stromal cells with reporter

Optional: knock down in Transfect cancer cells stromal cells with siRNA library

Microtissue production

Growth profiling In depth over time analysis of hits

Thoma et al. JBS 2013 www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 22 Microtissue model: Colon cancer co- culture DLD-1:NIH3T3

DLD1-EGFP:NIH3T3-RFP

5000 5000 RFP EGFP 4000 4000 3000 3000 2000 2000 1000

0 1000 4 6 8 10 12 -1000 0 4 6 8 10 12 Time [d] Time [d] NIH3T3-RFP microtissues

DLD1-EGFP microtissues

DLD1-EGFP:NIH3T3-RFP

Thoma et al. JBS 2013 www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 23

EGFP knockdown

4096 sictrl

2048

r=1 merge 1024 ctrl

512 sictrl

256

siEGFP

merge 128

siEGFP 4 5 6 7 8 9 10

r=0.47 Time [d]

Thoma et al. JBS 2013 www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 24 Kif11 knock down more pronounced in 3D

Day 10 co-culture TMTs siKif11 sictrl DLD1 EGFP:NIH3T3 Monolayer co-culture Microtissue co-culture

5000 16000 4500 Fluorescence Fluorescence

14000 4000

3500

12000

10000 3000 sictrl

RFU 2500 RFU 8000 2000 6000 1500 4000 1000 2000 500 0 0 4 6 8 10

2 3 4 5 6 7 Time [d]

Culture Format Growth reduction siKif11 2D mono 160 %

2D co 90 %

3D co 430 % Thoma et al. JBS 2013

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 25 3D knock down assay: z-factor

1 0.5 0 -0.5 0 2 4 6 8 -1 -1.5 -2 -2.5 -3 -3.5 Monolayer -4 Microtissue -4.5 Thoma et al. JBS 2013 www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 26 Target validation IMPACT OF MIRNA-21 KNOCK DOWN FOR RADIATION SENSITIVITY

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 27 Acknowledgements

Dr. Kevin Kopish Dr. Christian Thirion Dr. Claudio Thoma Dr. Dan Lazar Dr. Michael Salomon Prof. Dr. Wilhelm Krek Dr. Terry Riss Joanna Stevenson

Christian Oberdanner Karin Böttcher Mike Atkinson Michael Fejtl Stefan Letzsch Natasa Anastasov Jacob Tesdorpf

www.insphero.com | ELRIG 2014, Telford | Gene Function Analysis 28