Multiple Co-Evolution of Web Loss and Sticky Hairs in Spiders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Checklist of the Non -Acarine Arachnids
Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity. -
Spider Field Guide North America
Spider Field Guide North America Worldly and oldish Mitch cauterising commensally and suberizes his trovers amok and puissantly. Kirby is tricuspidate and overplays hourly while horror-struck French slummings and motorised. Unpraising Juanita backcomb avoidably. Clean up arm in garages, Bugwood. Nice photos of a decent size that make the bugs and spiders very visible. The posterior eye row is either straight or slightly recurved, Bugwood. Presence of skeleton signals that request is progressively loaded. Other, based on the features you use or your age. Is currently providing a north america and organic matter how you are opportunistic ambush predators of. Cellar spiders in north america re looking at them. Spider is found in the family Dysderidae or the Dysderid spiders. Look like spiders commonly seen wandering, spider a north america except occasionally been shared among north. As a field guides and there are cryptically colored to a video of america, in this platform clean orderly web type indicate species. Also note when fine hairs on the legs, details, or under bark. National Audubon Society Field Guides Audubon. The Funnel web weavers. The range of the brown recluse spider does not extend into Canada. Bites or stings from a variety of arthropods can result in an itching wound. For write more advanced view of spiders currently covered by Spider ID you create also. These animals with their posterior to north america, field guide selection for? These from some explain the biggest spiders in eastern North America; not including their legs, and other buildings. Audubon Insects and Spiders receives the Parent Tested Parent Approved Award. -
Spider Biology Unit
Spider Biology Unit RET I 2000 and RET II 2002 Sally Horak Cortland Junior Senior High School Grade 7 Science Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Spider Biology Unit Overview Grade level- 7th grade life science- heterogeneous classes Theme- The theme of this unit is to understand the connection between form and function in living things and to investigate what humans can learn from other living things. Schedule- projected time for this unit is 3 weeks Outline- *Activity- Unique spider facts *PowerPoint presentation giving a general overview of the biology of spiders with specific examples of interest *Lab- Spider observations *Cross-discipline activity #1- Spider short story *Activity- Web Spiders and Wandering spiders *Project- create a 3-D model of a spider that is anatomically correct *Project- research a specific spider and create a mini-book of information. *Activity- Spider defense pantomime *PowerPoint presentation on Spider Silk *Lab- Fiber Strength and Elasticity *Lab- Polymer Lab *Project- Spider silk challenge Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Correlation to the NYS Intermediate Level Science Standards (Core Curriculum, Grades 5-8): General Skills- #1. Follow safety procedures in the classroom and laboratory. #2. Safely and accurately use the following measurement tools- Metric ruler, triple beam balance #3. Use appropriate units for measured or calculated values #4. Recognize and analyze patterns and trends #5. Classify objects according to an established scheme and a student-generated scheme. -
Annotated Checklist of the Spiders of Turkey
_____________Mun. Ent. Zool. Vol. 12, No. 2, June 2017__________ 433 ANNOTATED CHECKLIST OF THE SPIDERS OF TURKEY Hakan Demir* and Osman Seyyar* * Niğde University, Faculty of Science and Arts, Department of Biology, TR–51100 Niğde, TURKEY. E-mails: [email protected]; [email protected] [Demir, H. & Seyyar, O. 2017. Annotated checklist of the spiders of Turkey. Munis Entomology & Zoology, 12 (2): 433-469] ABSTRACT: The list provides an annotated checklist of all the spiders from Turkey. A total of 1117 spider species and two subspecies belonging to 52 families have been reported. The list is dominated by members of the families Gnaphosidae (145 species), Salticidae (143 species) and Linyphiidae (128 species) respectively. KEY WORDS: Araneae, Checklist, Turkey, Fauna To date, Turkish researches have been published three checklist of spiders in the country. The first checklist was compiled by Karol (1967) and contains 302 spider species. The second checklist was prepared by Bayram (2002). He revised Karol’s (1967) checklist and reported 520 species from Turkey. Latest checklist of Turkish spiders was published by Topçu et al. (2005) and contains 613 spider records. A lot of work have been done in the last decade about Turkish spiders. So, the checklist of Turkish spiders need to be updated. We updated all checklist and prepare a new checklist using all published the available literatures. This list contains 1117 species of spider species and subspecies belonging to 52 families from Turkey (Table 1). This checklist is compile from literature dealing with the Turkish spider fauna. The aim of this study is to determine an update list of spider in Turkey. -
E:\WEB Work\Spiders Backup\Indian Journal Of
© Indian Society of Arachnology ISSN 2278 - 1587 A NEW SPECIES OF THE SPIDER GENUS HYGROPODA (ARANEAE: PISAURIDAE) FROM INDIA Ganesh Vankhede; Seema Keswani and Anuradha Rajoria Arachnology Laboratory, Department of Zoology, SGB Amravati University, Amravati-444602 [email protected] ABSTRACT A new species of the genus Hygropoda belonging to the family Pisauridae is being reported for the first time from Mahendri forest, Maharashtra, India. Both male and female of Hygropoda are illustrated from specimens collected from riparian ecosystem of Mahendri. The species described in this paper is new to Indian fauna. Keywords: Pisauridae, Hygropoda, new record, Mahendri (India), Taxonomy INTRODUCTION In the winter of 2012, a team of Indian Society of Arachnology discovered an interesting female spider from family Pisauridae which was sitting on a longitudinally folded leaf. Males were seen overhanging with their flexible tarsi. Mature spiders of both sexes were collected. Hygropoda is a wide spread genus, including 27 species, from Africa through south-east Asia, New Guinea to China (Platnick, 2013). Three species of the genus are known from India up to the present (Keswani et al., 2012). H. chandrakantii (Reddy & Patel, 1993); H.gracilis (Thorell, 1891) and H. sikkimus (Tikader, 1970). Initially they were identified as Tinus chandrakantii and Tinus sikkimus, recently they are transferred to Hygropoda (Jäger, 2011). MATERIALS AND METHODS Spiders both males and females were collected by hand during September, 2012 from Mahendri Reserve Forest Maharashtra, India during night at about 11pm. Photographs of live specimens were taken with Fugi camera. The material was preserved in 70% alcohol with all legs and pedipalp spread properly by following a method as described earlier (Vankhede, 2012). -
A Checklist of the Spiders of Tanzania
Journal of East African Natural History 109(1): 1–41 (2020) A CHECKLIST OF THE SPIDERS OF TANZANIA A. Russell-Smith 1, Bailiffs Cottage, Doddington, Sittingbourne Kent ME9 0JU, UK [email protected] ABSTRACT A checklist of all published spider species from Tanzania is provided. For each species, the localities from which it was recorded are noted and a gazetteer of the geographic coordinates of all but a small minority of these localities is included. The results are discussed in terms of family species richness, the completeness of our knowledge of the spider fauna of this country and the likely biases in family composition. Keywords: Araneae, East Africa, faunistics, biodiversity INTRODUCTION Students of spiders are very fortunate in having a complete online catalogue that is continuously updated—the World Spider Catalog (http://www.wsc.nmbe.ch/). The catalogue also provides full text of virtually all the relevant systematic literature, allowing ready access to taxonomic accounts for all species. However, researchers interested in the spiders of a particular country face two problems in using the catalogue: 1. For species that have a widespread distribution, the catalogue often lists only the region (e.g. “East Africa”) or even the continent (“Africa”) from which it is recorded 2. The catalogue itself provides no information on the actual locations from which a species is recorded. There is thus a need for more detailed country checklists, particularly those outside the Palaearctic and Nearctic regions where most arachnologists have traditionally been based. In addition to providing an updated list of species from the country concerned, such catalogues can provide details of the actual locations from which each species has been recorded, together with geographical coordinates when these are available. -
Tarsal Scopula Significance in Ischnocolinae Phylogenetics (Araneae, Mygalomorphae, Theraphosidae)
2005. The Journal of Arachnology 33:456±467 TARSAL SCOPULA SIGNIFICANCE IN ISCHNOCOLINAE PHYLOGENETICS (ARANEAE, MYGALOMORPHAE, THERAPHOSIDAE) Jose Paulo Leite Guadanucci: Museu de Zoologia da Universidade de SaÄo Paulo, Instituto de BiocieÃncias da Universidade de SaÄo Paulo, Av. NazareÂ, 481, Ipiranga, CEP: 04263±000 SaÄo Paulo, SPÐBrazil. E-mail: [email protected] ABSTRACT. Tarsal scopula condition and carapace length were studied for eighteen Ischnocolinae species. For cladistic analysis a matrix of 20 terminals and 30 characters of representatives of Ischnocol- inae, Theraphosinae, Aviculariinae, Harpactirinae and Trichopelmatinae were analyzed using Nona 2.0 computer software. The matrix was analyzed in four different ways: 1. each tarsal scopula (legs I±IV) coded as separate characters; 2. one character with six ordered states; 3. one character with six independent states; 4. without tarsal scopula character. The ®rst two matrices result in one tree with the same indices (L 5 72; CI 5 0.54; RI 5 0.74) and topology: Part of Ischnocolinae is monophyletic (H. rondoni(S. longibulbi(I. algericus1Catumiri))) and the other representatives (Oligoxystre and Genus 1) form a distinct monophyletic group with Theraphosinae, Harpactirinae and Aviculariinae. There are no homoplasies in tarsal scopula evolution in the second cladogram. The other two cladograms show less resolution for the Ischnocolinae than the two ®rst cladorams. The tarsal scopula condition appears to have no relation to spider size (t 520.80433; P 5 0.438247) and should be used in phylogenetic analysis of Ischnocolinae because it provides information on the character variability within the subfamily. Keywords: Phylogeny, South America, cladistics The condition of the tarsal scopula has had subfamily based on a plesiomorphic character an important role in the systematics of the Is- state (divided tarsal scopula), the situation of chnocolinae Simon 1892. -
A Checklist of the Spiders (Arachnida, Araneae) of the Polokwane Nature Reserve, Limpopo Province, South Africa
Original Research A CHECKLIST OF THE SPIDERS (ARACHNIDA, ARANEAE) OF THE POLOKWANE NATURE RESERVE, LIMPOPO PROVINCE, SOUTH AFRICA SUSAN M. DIPPENAAR 1Department of Biodiversity School of Molecular & Life Sciences University of Limpopo South Africa ANSIE S. DIPPENAAR-SCHoEMAN ARC-Plant Protection Research Institute South Africa MoKGADI A. MoDIBA1 THEMBILE T. KHozA1 Correspondence to: Susan M. Dippenaar e-mail: [email protected] Postal Address: Private Bag X1106, Sovenga 0727, Republic of South Africa ABSTRACT As part of the South African National Survey of Arachnida (SANSA), spiders were collected from all the field layers in the Polokwane Nature Reserve (Limpopo Province, South Africa) over a period of a year (2005–2006) using four collecting methods. Six habitat types were sampled: Acacia tortillis open savanna; A. rehmanniana woodland, false grassland, riverine and sweet thorn thicket, granite outcrop; and Aloe marlothii thicket. A total of 13 821 spiders were collected (using sweep netting, tree beating, active searching and pitfall trapping) represented by 39 families, 156 determined genera and 275 species. The most diverse families are the Thomisidae (42 spp.), Araneidae (39 spp.) and Salticidae (29 spp.). A total of 84 spp. (30.5%) were web builders and 191 spp. (69.5%) wanderers. In the Polokwane Nature Reserve, 13.75% of South African species are presently protected. Keywords: Arachnida, Araneae, diversity, habitats, conservation In the early 1990s, South Africa was recognised, in terrestrial and KwaZulu-Natal, Mpumalanga and the Eastern Cape. terms, as a biologically very rich country and even identified Savanna is characterised by a grassy ground layer and a distinct as the world’s ‘hottest hotspot’ (Myers 1990). -
Studies of Michigan Lycosidae
Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-1976 Studies of Michigan Lycosidae Robert John Wolff Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Zoology Commons Recommended Citation Wolff, Robert John, "Studies of Michigan Lycosidae" (1976). Master's Theses. 2298. https://scholarworks.wmich.edu/masters_theses/2298 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. STUDIES OF MICHIGAN LYCOSIDAE by Robert John Wolff A Thesis Submitted to the Faculty of the Graduate College in partial fulfillment of the Degree of Master of Arts Western Michigan University Kalamazoo, Michigan December 1976 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS Thanks go to my committee, Doctors Joseph G. Engemann, Clarence J. Goodnight and William B. Harrison III for their guidance and advice. Special thanks go to Dr. Allen R. Brady, Hope College, for loan of specimens and technical help, and Norm Elliott for assistance in many ways. Drs. Roland Fischer, Michigan State University and Andrew Penniman, Ohio State University added to this study hy the loan of specimens. The Kalamazoo Nature Center and Michigan Audubon Society graciously allowed collecting on their land. A grant from the Graduate College at Western Michigan Uni versity, which helped to defray travel costs, is greatly appreciated. For all of the above help I am grateful, but I would not have succeeded quite as well without the encouragement of my wife Marcia. -
Phylogenetic Systematics and Evolution of the Spider Infraorder Mygalomorphae Using Genomic
bioRxiv preprint doi: https://doi.org/10.1101/531756; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic 2 scale data 3 Vera Opatova1, Chris A. Hamilton2, Marshal Hedin3, Laura Montes de Oca4, Jiří Král5, 4 Jason E. Bond1 5 6 1Department of Entomology and Nematology, University of California, Davis, CA 95616, USA 7 2Department of Entomology, Plant Pathology & Nematology, University of Idaho, Moscow, ID 8 83844, USA 9 3Department of Biology, San Diego State University, San Diego, CA, 92182–4614, USA 10 4Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas 11 Clemente Estable, Montevideo, Uruguay. 12 5Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Prague, 13 128 44, Czech Republic 14 15 16 Corresponding authors: 17 Vera Opatova, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616 18 Telephone: +1 530-754-5805, E-mail: [email protected] 19 20 Jason E. Bond, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616 21 Telephone: +1 530-754-5805, E-mail: [email protected] 22 23 Running Head: PHYLOGENY OF MYGALOMORPH SPIDERS 24 bioRxiv preprint doi: https://doi.org/10.1101/531756; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
RESEARCH ARTICLE Silk Secretion from Tarantula Feet Revisited: Alleged Spigots Are Probably Chemoreceptors
1084 The Journal of Experimental Biology 215, 1084-1089 © 2012. Published by The Company of Biologists Ltd doi:10.1242/jeb.066811 RESEARCH ARTICLE Silk secretion from tarantula feet revisited: alleged spigots are probably chemoreceptors Rainer F. Foelix1,*, Bastian Rast1 and Anne M. Peattie2 1Neue Kantonsschule Aarau, Biology Department, CH-5000 Aarau, Switzerland and 2University of Cambridge, Zoology Department, Cambridge CB2 3EJ, UK *Author for correspondence ([email protected]) Accepted 4 December 2011 SUMMARY Controversial views have been expressed about whether tarantula feet can secrete fine silk threads that could prevent them from falling off smooth vertical surfaces. Two studies have claimed that ʻribbed hairsʼ on the tarsi of tarantulas produce silk. We examined these ribbed hairs in several tarantula species using light and scanning electron microscopy, and compared them with the silk-producing spigots on the abdominal spinnerets. We found that, morphologically, these ribbed hairs correspond very closely to known chemosensitive hairs in spiders; they have a distinct socket, a bent hair shaft with fine cuticular ridges, an eccentric double lumen within the hair shaft, and a blunt tip with a subterminal pore. Spigots on the spinnerets have a large bulbous base instead of a socket, a long shaft with a scaly surface and a central terminal pore. We never observed any silk threads coming out of these ribbed hairs under the electron microscope. By contrast, silk threads exiting the spigots on the spinnerets were common. Interestingly, ribbed hairs also occur on the spinnerets, often side by side with the silk-producing spigots. Our conclusion is that the ribbed hairs are chemoreceptors, not spigots. -
A List of Spider Species Found in the Addo Elephant National Park, Eastern Cape Province, South Africa
KOEDOE - African Protected Area Conservation and Science ISSN: (Online) 2071-0771, (Print) 0075-6458 Page 1 of 13 Checklist A list of spider species found in the Addo Elephant National Park, Eastern Cape province, South Africa Authors: The knowledge of spiders in the Eastern Cape province lags behind that of most other South Anna S. Dippenaar- African provinces. The Eastern Cape province is renowned for its conservation areas, as the Schoeman1,2 Linda Wiese3 largest part of the Albany Centre of Endemism falls within this province. This article provides Stefan H. Foord4 a checklist for the spider fauna of the Addo Elephant National Park, one of the most prominent Charles R. Haddad5 conservation areas of the Eastern Cape, to detail the species found in the park and determine their conservation status and level of endemicity based on their known distribution. Various Affiliations: 1Biosystematics: Arachnology, collecting methods were used to sample spiders between 1974 and 2016. Forty-seven families ARC – Plant Health and that include 184 genera and 276 species were recorded. Thomisidae (39 spp.), Araneidae Protection, Queenswood, (39 spp.), Salticidae (35 spp.) and Theridiidae (25 spp.) were the most species-rich families, South Africa while 14 families were only represented by a single species. 2Department of Zoology Conservation implications: A total of 12.7% of the South African spider fauna and 32.9% of the and Entomology, University Eastern Cape fauna are protected in the park; 26.4% are South African endemics, and of these, of Pretoria, Pretoria, South Africa 3.6% are Eastern Cape endemics. Approximately, 4% of the species are possibly new to science, and 240 species are recorded from the park for the first time.