An Introduction to Common of Sri Lanka
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Checklist of the Non -Acarine Arachnids
Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity. -
Spider Field Guide North America
Spider Field Guide North America Worldly and oldish Mitch cauterising commensally and suberizes his trovers amok and puissantly. Kirby is tricuspidate and overplays hourly while horror-struck French slummings and motorised. Unpraising Juanita backcomb avoidably. Clean up arm in garages, Bugwood. Nice photos of a decent size that make the bugs and spiders very visible. The posterior eye row is either straight or slightly recurved, Bugwood. Presence of skeleton signals that request is progressively loaded. Other, based on the features you use or your age. Is currently providing a north america and organic matter how you are opportunistic ambush predators of. Cellar spiders in north america re looking at them. Spider is found in the family Dysderidae or the Dysderid spiders. Look like spiders commonly seen wandering, spider a north america except occasionally been shared among north. As a field guides and there are cryptically colored to a video of america, in this platform clean orderly web type indicate species. Also note when fine hairs on the legs, details, or under bark. National Audubon Society Field Guides Audubon. The Funnel web weavers. The range of the brown recluse spider does not extend into Canada. Bites or stings from a variety of arthropods can result in an itching wound. For write more advanced view of spiders currently covered by Spider ID you create also. These animals with their posterior to north america, field guide selection for? These from some explain the biggest spiders in eastern North America; not including their legs, and other buildings. Audubon Insects and Spiders receives the Parent Tested Parent Approved Award. -
Amblypygids : Model Organisms for the Study of Arthropod Navigation
PERSPECTIVE published: 08 March 2016 doi: 10.3389/fnbeh.2016.00047 Amblypygids: Model Organisms for the Study of Arthropod Navigation Mechanisms in Complex Environments? Daniel D. Wiegmann 1,2*, Eileen A. Hebets 3, Wulfila Gronenberg 4, Jacob M. Graving 1 and Verner P. Bingman 2,5 1 Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA, 2 J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA, 3 School of Biological Sciences, University of Nebraska, Lincoln, NE, USA, 4 Department of Neuroscience, University of Arizona, Tucson, AZ, USA, 5 Department of Psychology, Bowling Green State University, Bowling Green, OH, USA Navigation is an ideal behavioral model for the study of sensory system integration and the neural substrates associated with complex behavior. For this broader purpose, however, it may be profitable to develop new model systems that are both tractable and sufficiently complex to ensure that information derived from a single sensory modality and path integration are inadequate to locate a goal. Here, we discuss some recent discoveries related to navigation by Edited by: amblypygids, nocturnal arachnids that inhabit the tropics and sub-tropics. Nocturnal Marie Dacke, Lund University, Sweden displacement experiments under the cover of a tropical rainforest reveal that these Reviewed by: animals possess navigational abilities that are reminiscent, albeit on a smaller Uwe Homberg, spatial scale, of true-navigating vertebrates. Specialized legs, called antenniform Philipps-Universität Marburg, Germany legs, which possess hundreds of olfactory and tactile sensory hairs, and vision Keram Pfeiffer, appear to be involved. These animals also have enormous mushroom bodies, Philipps-Universität Marburg, Germany higher-order brain regions that, in insects, integrate contextual cues and may *Correspondence: be involved in spatial memory. -
First Records and Three New Species of the Family Symphytognathidae
ZooKeys 1012: 21–53 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1012.57047 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research First records and three new species of the family Symphytognathidae (Arachnida, Araneae) from Thailand, and the circumscription of the genus Crassignatha Wunderlich, 1995 Francisco Andres Rivera-Quiroz1,2, Booppa Petcharad3, Jeremy A. Miller1 1 Department of Terrestrial Zoology, Understanding Evolution group, Naturalis Biodiversity Center, Darwin- weg 2, 2333CR Leiden, the Netherlands 2 Institute for Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, the Netherlands 3 Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, 12121 Thailand Corresponding author: Francisco Andres Rivera-Quiroz ([email protected]) Academic editor: D. Dimitrov | Received 29 July 2020 | Accepted 30 September 2020 | Published 26 January 2021 http://zoobank.org/4B5ACAB0-5322-4893-BC53-B4A48F8DC20C Citation: Rivera-Quiroz FA, Petcharad B, Miller JA (2021) First records and three new species of the family Symphytognathidae (Arachnida, Araneae) from Thailand, and the circumscription of the genus Crassignatha Wunderlich, 1995. ZooKeys 1012: 21–53. https://doi.org/10.3897/zookeys.1012.57047 Abstract The family Symphytognathidae is reported from Thailand for the first time. Three new species: Anapistula choojaiae sp. nov., Crassignatha seeliam sp. nov., and Crassignatha seedam sp. nov. are described and illustrated. Distribution is expanded and additional morphological data are reported for Patu shiluensis Lin & Li, 2009. Specimens were collected in Thailand between July and August 2018. The newly described species were found in the north mountainous region of Chiang Mai, and Patu shiluensis was collected in the coastal region of Phuket. -
Role of the Different Eyes in the Visual Odometry in the Wolf Spider Lycosa Tarantula (Araneae, Lycosidae) Joaquin Ortega-Escobar* and Miguel A
© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 259-265 doi:10.1242/jeb.145763 RESEARCH ARTICLE Role of the different eyes in the visual odometry in the wolf spider Lycosa tarantula (Araneae, Lycosidae) Joaquin Ortega-Escobar* and Miguel A. Ruiz ABSTRACT et al., 2000). When the grating was placed in the ventral visual field, The wolf spider Lycosa tarantula returns home by means of path Ronacher and Wehner (1995) found a very small effect of optic flow integration. Previous studies demonstrated: (i) that the angular on the distance walked when the visual patterns they used (e.g. component of the outbound run is measured using a polarized-light gratings of black-and-white stripes) were moved in the direction of compass associated with the anterior median eyes; (ii) changes in insect walking or in the opposite direction. However, when the direction of the substratum are detected by the anterior lateral eyes pattern was stationary and the ventral halves of the eyes were (ALEs); and (iii) in relation to the linear component of the outbound covered, the mean traveled distance was not statistically different run, an increase of optic flow, in either the lateral or ventral fields of from the distance walked by ants without eye covers (Ronacher and view, caused spiders to search for the burrow at a point nearer to the Wehner, 1995). Wittlinger and Wolf (2013) investigated the goal. However, the role of the secondary eyes [ALEs, posterior lateral possible interactions of the two mechanisms by which deserts eyes (PLEs) and posterior median eyes (PMEs)] in the perception of ants estimate distance: stride integration and ventral optic flow. -
Approach Strategy by Which Male Mediterranean Tarantulas Adjust to the Cannibalistic Behaviour of Females
Ethology 110, 717—724 (2004) Ó 2004 Blackwell Verlag, Berlin ISSN 0179–1613 Approach Strategy by which Male Mediterranean Tarantulas Adjust to the Cannibalistic Behaviour of Females Jordi Moya-Laran˜ o*, Jordi Pascual & David H. Wise* *Department of Entomology, University of Kentucky, Lexington, KY, USA; Era del Tint 2, 08552, Taradell, Barcelona, Spain Abstract In sexually cannibalistic species, selection is thought to have favoured the evolution of male approaching behaviour that reduces the probability that the female will kill the male. However, investigations of behaviours that could reduce the probability of sexual cannibalism are few. We examine the hypothesis that male wolf spiders, Lycosa tarantula (L.) (Araneae, Lycosidae), decides to approach females in periods when they are less dangerous. Males of this species approach females for mating during the daytime only. While attending females, males stay farther from the female’s burrow at night than during the daytime. In field experiments, we offered a grasshopper (typical prey) or a male L. tarantula to females at night and during the day, and our findings show that the diel changes in the male’s approaching behaviour matches diurnal changes in the female’s tendency to attack both the grasshopper and the male spider. These findings support our hypothesis that a diel change in female responsiveness to prey has been a selection pressure influencing the evolution of male approach behaviour in a sexually cannibalistic species. Correspondence: Jordi Moya-Laran˜ o, Estacio´ n Experimental de Zonas A´ ridas, General Segura, 1, Almerı´ a, 04001-Almerı´ a, Spain. E-mail: jordi@ eeza.csic.es Introduction Differences in strategies by which males and females maximize fitness can result in sexual conflict (Andersson 1994; Chapman et al. -
Tarantulas and Social Spiders
Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences. -
Spider Biology Unit
Spider Biology Unit RET I 2000 and RET II 2002 Sally Horak Cortland Junior Senior High School Grade 7 Science Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Spider Biology Unit Overview Grade level- 7th grade life science- heterogeneous classes Theme- The theme of this unit is to understand the connection between form and function in living things and to investigate what humans can learn from other living things. Schedule- projected time for this unit is 3 weeks Outline- *Activity- Unique spider facts *PowerPoint presentation giving a general overview of the biology of spiders with specific examples of interest *Lab- Spider observations *Cross-discipline activity #1- Spider short story *Activity- Web Spiders and Wandering spiders *Project- create a 3-D model of a spider that is anatomically correct *Project- research a specific spider and create a mini-book of information. *Activity- Spider defense pantomime *PowerPoint presentation on Spider Silk *Lab- Fiber Strength and Elasticity *Lab- Polymer Lab *Project- Spider silk challenge Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Correlation to the NYS Intermediate Level Science Standards (Core Curriculum, Grades 5-8): General Skills- #1. Follow safety procedures in the classroom and laboratory. #2. Safely and accurately use the following measurement tools- Metric ruler, triple beam balance #3. Use appropriate units for measured or calculated values #4. Recognize and analyze patterns and trends #5. Classify objects according to an established scheme and a student-generated scheme. -
Arachnids) Physical Identification Spiders (Order Araneae
SPIDERS (Arachnids) Physical Identification Spiders (order Araneae) are air-breathing arthropods that have eight legs and chelicerae with fangs that inject venom. They are the largest order of arachnids and rank seventh in total species diversity among all other orders of organisms. Spiders are found worldwide on every continent except for Antarctica, and have become established in nearly every habitat with the exceptions of air and sea colonization. As of November 2015, at least 45,700 spider species, and 113 families have been recorded by taxonomists. However, there has been dissension within the scientific community as to how all these families should be classified, as evidenced by the over 20 different classifications that have been proposed since 1900. Anatomically, spiders differ from other arthropods in that the usual body segments are fused into two tagmata, the cephalothorax and abdomen, and joined by a small, cylindrical pedicel. Unlike insects, spiders do not have antennae. In all except the most primitive group, the Mesothelae, spiders have the most centralized nervous systems of all arthropods, as all their ganglia are fused into one mass in the cephalothorax. Unlike most arthropods, spiders have no extensor muscles in their limbs and instead extend them by hydraulic pressure. Their abdomens bear appendages that have been modified into spinnerets that extrude silk from up to six types of glands. Spider webs vary widely in size, shape and the amount of sticky thread used. It now appears that the spiral orb web may be one of the earliest forms, and spiders that produce tangled cobwebs are more abundant and diverse than orb-web spiders. -
Phylogeny of Entelegyne Spiders: Affinities of the Family Penestomidae
Molecular Phylogenetics and Evolution 55 (2010) 786–804 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of entelegyne spiders: Affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae) Jeremy A. Miller a,b,*, Anthea Carmichael a, Martín J. Ramírez c, Joseph C. Spagna d, Charles R. Haddad e, Milan Rˇezácˇ f, Jes Johannesen g, Jirˇí Král h, Xin-Ping Wang i, Charles E. Griswold a a Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA b Department of Terrestrial Zoology, Nationaal Natuurhistorisch Museum Naturalis, Postbus 9517 2300 RA Leiden, The Netherlands c Museo Argentino de Ciencias Naturales – CONICET, Av. Angel Gallardo 470, C1405DJR Buenos Aires, Argentina d William Paterson University of New Jersey, 300 Pompton Rd., Wayne, NJ 07470, USA e Department of Zoology & Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa f Crop Research Institute, Drnovská 507, CZ-161 06, Prague 6-Ruzyneˇ, Czech Republic g Institut für Zoologie, Abt V Ökologie, Universität Mainz, Saarstraße 21, D-55099, Mainz, Germany h Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic i College of Life Sciences, Hebei University, Baoding 071002, China article info abstract Article history: Penestomine spiders were first described from females only and placed in the family Eresidae. Discovery Received 20 April 2009 of the male decades later brought surprises, especially in the morphology of the male pedipalp, which Revised 17 February 2010 features (among other things) a retrolateral tibial apophysis (RTA). -
Lycosa Hispanica): ECOLOGÍA Y EVOLUCIÓN DE ESTRATEGIAS CONDUCTUALES
EL CANIBALISMO SEXUAL EN LA TARÁNTULA IBÉRICA (Lycosa hispanica): ECOLOGÍA Y EVOLUCIÓN DE ESTRATEGIAS CONDUCTUALES TESIS DOCTORAL Rubén Rabaneda Bueno EL CANIBALISMO SEXUAL EN LA TARÁNTULA IBÉRICA (Lycosa hispanica): ECOLOGÍA Y EVOLUCIÓN DE ESTRATEGIAS CONDUCTUALES TESIS DOCTORAL Rubén Rabaneda Bueno Madrid, 2014 Departamento de Ecología Funcional y Evolutiva Estación Experimental de Zonas Áridas CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS 1 Rubén Rabaneda Bueno Estación Experimental de Zonas Áridas Consejo Superior de Investigaciones Científicas Carretera de Sacramento, s/n, Cañada de San Urbano E‐04120, Almería, Spain [email protected] Este trabajo ha sido financiado por una beca pre-doctoral I3P-BPD2004-CSIC (I3P, ref:) y el proyecto del Ministerio de Ciencia y Educación (MEC)/FEDER (CGL2004- 03153) Las fotografías que aparecen a lo largo de esta tesis fueron tomadas por Eva de Mas EL CANIBALISMO SEXUAL EN LA TARÁNTULA IBÉRICA (Lycosa hispanica): ECOLOGÍA Y EVOLUCIÓN DE ESTRATEGIAS CONDUCTUALES Memoria presentada por Rubén Rabaneda Bueno para optar al Grado de Doctor por la Universidad Autónoma de Madrid El Doctorando Rubén Rabaneda Bueno Madrid, septiembre de 2014 3 El Dr. Jordi Moya Laraño, Científico Titular de la Estación Experimental de Zonas Áridas‐CSIC y la Dra. Carmen Fernández Montraveta, Profesora Titular de la Universidad Autónoma de Madrid CERTIFICAN Que los trabajos de investigación realizados en la Memoria de Tesis Doctoral: “El canibalismo sexual en la tarántula ibérica (Lycosa hispanica): Ecología y evolución de estrategias conductuales”, son aptos para ser presentados por el Ldo. Rubén Rabaneda Bueno ante el Tribunal que en su día se designe, para aspirar al Grado de Doctor en Ciencias Biológicas por la Universidad Autónoma de Madrid. -
Supplementary Materials 1
SUPPLEMENTARY MATERIALS 1 ----------------------------------------------------------------------------------------------------------------------- Record breaking achievements by spiders and the scientists who study them Stefano Mammola, Peter Michalik, Eileen Hebets & Marco Isaia ----------------------------------------------------------------------------------------------------------------------- This file contains comments about the official biological records held by spiders as listed in the Guinness World Records database (www.guinnessworldrecords.com). For each record, we report the record holder according to the Guinness World Records database, as of October 4th, 2017. We hereby list: - Official biological records confirmed by scientific literature, which we have included in the Spider World Records. - Official biological records that we consider incorrect, i.e. needing an update in the Guinness World Records. Marked with one asterisk (*). - Official biological records that we consider incomplete, e.g., for which we found new information or added specifications (see main text for details). Marked with two asterisks (**). - Official biological records that we have not reported due to low pertinence to our work or to the impossibility to confirm them using scientific literature. Marked with three asterisks (***). Full bibliographic information for the references cited herein can be found in the reference section of the main text. 1 - Rarest spider ** Record holder (GWR, 2017): Adelocosa anops, a cave-dwelling spider inhabiting a few caves in the Hawaiian island of Kauai, covering an area of 10.5 km 2. Censuses for this species has never documented more than 30 individuals. Comment: if we consider only the range occupied by the spider, there are other species which can compete for the record (see "Rarest spiders" in the main text). For instance, Nothophantes horridus is recorded exclusively from two abandoned limestone quarries near Plymouth (UK), covering overall a surface of ca.