E:\WEB Work\Spiders Backup\Indian Journal Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spider Field Guide North America
Spider Field Guide North America Worldly and oldish Mitch cauterising commensally and suberizes his trovers amok and puissantly. Kirby is tricuspidate and overplays hourly while horror-struck French slummings and motorised. Unpraising Juanita backcomb avoidably. Clean up arm in garages, Bugwood. Nice photos of a decent size that make the bugs and spiders very visible. The posterior eye row is either straight or slightly recurved, Bugwood. Presence of skeleton signals that request is progressively loaded. Other, based on the features you use or your age. Is currently providing a north america and organic matter how you are opportunistic ambush predators of. Cellar spiders in north america re looking at them. Spider is found in the family Dysderidae or the Dysderid spiders. Look like spiders commonly seen wandering, spider a north america except occasionally been shared among north. As a field guides and there are cryptically colored to a video of america, in this platform clean orderly web type indicate species. Also note when fine hairs on the legs, details, or under bark. National Audubon Society Field Guides Audubon. The Funnel web weavers. The range of the brown recluse spider does not extend into Canada. Bites or stings from a variety of arthropods can result in an itching wound. For write more advanced view of spiders currently covered by Spider ID you create also. These animals with their posterior to north america, field guide selection for? These from some explain the biggest spiders in eastern North America; not including their legs, and other buildings. Audubon Insects and Spiders receives the Parent Tested Parent Approved Award. -
Spider Biology Unit
Spider Biology Unit RET I 2000 and RET II 2002 Sally Horak Cortland Junior Senior High School Grade 7 Science Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Spider Biology Unit Overview Grade level- 7th grade life science- heterogeneous classes Theme- The theme of this unit is to understand the connection between form and function in living things and to investigate what humans can learn from other living things. Schedule- projected time for this unit is 3 weeks Outline- *Activity- Unique spider facts *PowerPoint presentation giving a general overview of the biology of spiders with specific examples of interest *Lab- Spider observations *Cross-discipline activity #1- Spider short story *Activity- Web Spiders and Wandering spiders *Project- create a 3-D model of a spider that is anatomically correct *Project- research a specific spider and create a mini-book of information. *Activity- Spider defense pantomime *PowerPoint presentation on Spider Silk *Lab- Fiber Strength and Elasticity *Lab- Polymer Lab *Project- Spider silk challenge Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Correlation to the NYS Intermediate Level Science Standards (Core Curriculum, Grades 5-8): General Skills- #1. Follow safety procedures in the classroom and laboratory. #2. Safely and accurately use the following measurement tools- Metric ruler, triple beam balance #3. Use appropriate units for measured or calculated values #4. Recognize and analyze patterns and trends #5. Classify objects according to an established scheme and a student-generated scheme. -
Tarsal Scopula Significance in Ischnocolinae Phylogenetics (Araneae, Mygalomorphae, Theraphosidae)
2005. The Journal of Arachnology 33:456±467 TARSAL SCOPULA SIGNIFICANCE IN ISCHNOCOLINAE PHYLOGENETICS (ARANEAE, MYGALOMORPHAE, THERAPHOSIDAE) Jose Paulo Leite Guadanucci: Museu de Zoologia da Universidade de SaÄo Paulo, Instituto de BiocieÃncias da Universidade de SaÄo Paulo, Av. NazareÂ, 481, Ipiranga, CEP: 04263±000 SaÄo Paulo, SPÐBrazil. E-mail: [email protected] ABSTRACT. Tarsal scopula condition and carapace length were studied for eighteen Ischnocolinae species. For cladistic analysis a matrix of 20 terminals and 30 characters of representatives of Ischnocol- inae, Theraphosinae, Aviculariinae, Harpactirinae and Trichopelmatinae were analyzed using Nona 2.0 computer software. The matrix was analyzed in four different ways: 1. each tarsal scopula (legs I±IV) coded as separate characters; 2. one character with six ordered states; 3. one character with six independent states; 4. without tarsal scopula character. The ®rst two matrices result in one tree with the same indices (L 5 72; CI 5 0.54; RI 5 0.74) and topology: Part of Ischnocolinae is monophyletic (H. rondoni(S. longibulbi(I. algericus1Catumiri))) and the other representatives (Oligoxystre and Genus 1) form a distinct monophyletic group with Theraphosinae, Harpactirinae and Aviculariinae. There are no homoplasies in tarsal scopula evolution in the second cladogram. The other two cladograms show less resolution for the Ischnocolinae than the two ®rst cladorams. The tarsal scopula condition appears to have no relation to spider size (t 520.80433; P 5 0.438247) and should be used in phylogenetic analysis of Ischnocolinae because it provides information on the character variability within the subfamily. Keywords: Phylogeny, South America, cladistics The condition of the tarsal scopula has had subfamily based on a plesiomorphic character an important role in the systematics of the Is- state (divided tarsal scopula), the situation of chnocolinae Simon 1892. -
Multiple Co-Evolution of Web Loss and Sticky Hairs in Spiders
The Great Silk Alternative: Multiple Co-Evolution of Web Loss and Sticky Hairs in Spiders Jonas O. Wolff1*, Wolfgang Nentwig2, Stanislav N. Gorb1 1 Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Kiel, Germany, 2 Institute of Ecology and Evolution, University of Bern, Baltzerstrasse, Bern, Switzerland Abstract Spiders are the most important terrestrial predators among arthropods. Their ecological success is reflected by a high biodiversity and the conquest of nearly every terrestrial habitat. Spiders are closely associated with silk, a material, often seen to be responsible for their great ecological success and gaining high attention in life sciences. However, it is often overlooked that more than half of all Recent spider species have abandoned web building or never developed such an adaptation. These species must have found other, more economic solutions for prey capture and retention, compensating the higher energy costs of increased locomotion activity. Here we show that hairy adhesive pads (scopulae) are closely associated with the convergent evolution of a vagrant life style, resulting in highly diversified lineages of at least, equal importance as the derived web building taxa. Previous studies often highlighted the idea that scopulae have the primary function of assisting locomotion, neglecting the fact that only the distal most pads (claw tufts) are suitable for those purposes. The former observations, that scopulae are used in prey capture, are largely overlooked. Our results suggest the scopulae evolved as a substitute for silk in controlling prey and that the claw tufts are, in most cases, a secondary development. Evolutionary trends towards specialized claw tufts and their composition from a low number of enlarged setae to a dense array of slender ones, as well as the secondary loss of those pads are discussed further. -
Phylogenetic Systematics and Evolution of the Spider Infraorder Mygalomorphae Using Genomic
bioRxiv preprint doi: https://doi.org/10.1101/531756; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic 2 scale data 3 Vera Opatova1, Chris A. Hamilton2, Marshal Hedin3, Laura Montes de Oca4, Jiří Král5, 4 Jason E. Bond1 5 6 1Department of Entomology and Nematology, University of California, Davis, CA 95616, USA 7 2Department of Entomology, Plant Pathology & Nematology, University of Idaho, Moscow, ID 8 83844, USA 9 3Department of Biology, San Diego State University, San Diego, CA, 92182–4614, USA 10 4Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas 11 Clemente Estable, Montevideo, Uruguay. 12 5Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Prague, 13 128 44, Czech Republic 14 15 16 Corresponding authors: 17 Vera Opatova, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616 18 Telephone: +1 530-754-5805, E-mail: [email protected] 19 20 Jason E. Bond, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616 21 Telephone: +1 530-754-5805, E-mail: [email protected] 22 23 Running Head: PHYLOGENY OF MYGALOMORPH SPIDERS 24 bioRxiv preprint doi: https://doi.org/10.1101/531756; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
RESEARCH ARTICLE Silk Secretion from Tarantula Feet Revisited: Alleged Spigots Are Probably Chemoreceptors
1084 The Journal of Experimental Biology 215, 1084-1089 © 2012. Published by The Company of Biologists Ltd doi:10.1242/jeb.066811 RESEARCH ARTICLE Silk secretion from tarantula feet revisited: alleged spigots are probably chemoreceptors Rainer F. Foelix1,*, Bastian Rast1 and Anne M. Peattie2 1Neue Kantonsschule Aarau, Biology Department, CH-5000 Aarau, Switzerland and 2University of Cambridge, Zoology Department, Cambridge CB2 3EJ, UK *Author for correspondence ([email protected]) Accepted 4 December 2011 SUMMARY Controversial views have been expressed about whether tarantula feet can secrete fine silk threads that could prevent them from falling off smooth vertical surfaces. Two studies have claimed that ʻribbed hairsʼ on the tarsi of tarantulas produce silk. We examined these ribbed hairs in several tarantula species using light and scanning electron microscopy, and compared them with the silk-producing spigots on the abdominal spinnerets. We found that, morphologically, these ribbed hairs correspond very closely to known chemosensitive hairs in spiders; they have a distinct socket, a bent hair shaft with fine cuticular ridges, an eccentric double lumen within the hair shaft, and a blunt tip with a subterminal pore. Spigots on the spinnerets have a large bulbous base instead of a socket, a long shaft with a scaly surface and a central terminal pore. We never observed any silk threads coming out of these ribbed hairs under the electron microscope. By contrast, silk threads exiting the spigots on the spinnerets were common. Interestingly, ribbed hairs also occur on the spinnerets, often side by side with the silk-producing spigots. Our conclusion is that the ribbed hairs are chemoreceptors, not spigots. -
An Introduction to Common of Sri Lanka
www.dilmahconservation.org An introduction to common of Sri Lanka SpidersAuthored by Ranil P. Nanayakkara 1 Declaration of Our Core Commitment to Sustainability Dilmah owes its success to the quality of Ceylon Tea. Our business was founded therefore on an enduring connection to the land and the communities in which we operate. We have pioneered a comprehensive commitment to minimising our impact on the planet, fostering respect for the environment and ensuring its protection by encouraging a harmonious coexistence of man and nature. We believe that conservation is ultimately about people and the future of the human race, that efforts in conservation have associated human well-being and poverty reduction outcomes. These core values allow us to meet and exceed our customers’ expectations of sustainability. Our Commitment We reinforce our commitment to the principle of making business a matter of human service and to the core values of Dilmah, which are embodied in the Six Pillars of Dilmah. We will strive to conduct our activities in accordance with the highest standards of corporate best practice and in compliance with all applicable local and international regulatory requirements and conventions. We recognise that conservation of the environment is an extension of our founding commitment to human service. We will assess and monitor the quality and environmental impact of its operations, services and products whilst striving to include its supply chain partners and customers, where relevant and to the extent possible. We are committed to transparency and open communication about our environmental and social practices. We promote the same transparency and open communication from our partners and customers. -
Multiple Co-Evolution of Web Loss and Sticky Hairs in Spiders
The Great Silk Alternative: Multiple Co-Evolution of Web Loss and Sticky Hairs in Spiders Jonas O. Wolff1*, Wolfgang Nentwig2, Stanislav N. Gorb1 1 Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Kiel, Germany, 2 Institute of Ecology and Evolution, University of Bern, Baltzerstrasse, Bern, Switzerland Abstract Spiders are the most important terrestrial predators among arthropods. Their ecological success is reflected by a high biodiversity and the conquest of nearly every terrestrial habitat. Spiders are closely associated with silk, a material, often seen to be responsible for their great ecological success and gaining high attention in life sciences. However, it is often overlooked that more than half of all Recent spider species have abandoned web building or never developed such an adaptation. These species must have found other, more economic solutions for prey capture and retention, compensating the higher energy costs of increased locomotion activity. Here we show that hairy adhesive pads (scopulae) are closely associated with the convergent evolution of a vagrant life style, resulting in highly diversified lineages of at least, equal importance as the derived web building taxa. Previous studies often highlighted the idea that scopulae have the primary function of assisting locomotion, neglecting the fact that only the distal most pads (claw tufts) are suitable for those purposes. The former observations, that scopulae are used in prey capture, are largely overlooked. Our results suggest the scopulae evolved as a substitute for silk in controlling prey and that the claw tufts are, in most cases, a secondary development. Evolutionary trends towards specialized claw tufts and their composition from a low number of enlarged setae to a dense array of slender ones, as well as the secondary loss of those pads are discussed further. -
A Revision of the Spider Genus Taurongia (Araneae, Stiphidioidea) from South-Eastern Australia
2005. The Journal of Arachnology 33:490±500 A REVISION OF THE SPIDER GENUS TAURONGIA (ARANEAE, STIPHIDIOIDEA) FROM SOUTH-EASTERN AUSTRALIA Michael R. Gray: Australian Museum, 6 College Street, Sydney, New South Wales 2010, Australia. E-mail: [email protected] ABSTRACT. The spider genus Taurongia Hogg 1901 and the species T. punctata (Hogg 1900) are redescribed. Taurongia punctata is shown to be a rather variable species with a widespread distribution across the eastern central Victorian highlands. Taurongia punctata is a robust spider, contrasting with a more gracile new species, T. ambigua, described from the western Victorian highlands. The placement of the latter in Taurongia is provisional and may change once other undescribed `Taurongia group' genera from eastern Australia have been examined. The Taurongia species dealt with here differ from the latter taxa in having an increased number of cylindrical spigots and a large palpal median apophysis. Keywords: Taxonomy, cribellate, new species Hogg (1900) described two `dictynid' spi- were taken through 80±100% alcohol stages, ders from central Victoria under the name Hy- 100% acetone and then air dried. lobius. This name (preoccupied in Coleoptera) Abbreviations and de®nitions.Ð``Tegular was subsequently replaced by Taurongia window'' refers to the gap between the prox- (Hogg 1901). Lehtinen (1967) characterized imal embolus and the basal part of the con- the genus, ®guring T. punctata (Hogg 1900), ductor. BL 5 body length; CL 5 carapace and placed it in his Desidae, Desinae. Forster length; CW 5 carapace width; CapW 5 caput (1970) noted that the available data were in- width; LL 5 labium length; LW 5 labium suf®cient for accurate placement of Taurongia width; SL 5 sternum length; SW 5 sternum in his concept of the Desidae. -
Guide to Common Spiders of Bakersfield, California
Guide to common spiders of Bakersfield, California Carl T. Kloock Department of Biology California State University, Bakersfield Last Update: February 25, 2020 Why this guide? Identifying spiders can be an incredibly time consuming and frustrating process, and is virtually impossible for the non-specialist. Taxonomic keys frequently rely on characteristics only visible with high power microscopes or, even more problematic, only present in adult individuals. Given that spiders spend the bulk of their lives as juveniles, this can make identification – even of the Genus – difficult. However, investigating questions regarding spider ecology, evolution and behavior requires identification. My goal with this guide is to develop an easy to use resource for identifying the local spiders to genus, and to species wherever practical, using characters present on juveniles as well as adults and easily observable with a low-power dissecting microscope or good macro-photography lens without dissection. Preference is given to traits observable to the naked eye whenever possible, but as most spiders are tiny even as adults, magnification is a necessity. My primary goal is to create a teaching resource for my future research students; I have decided to make it generally available in the hope that others may find it useful. Given the desire to focus on easily observable characters present in juveniles, identification to genus is the best practical outcome using this guide. Because of this, I strongly considered not including species designations at all, but decided that they could be helpful in narrowing down the possibilities, and explaining some of the variation if certain cautions are kept in mind. -
OF OANADA Llastern Cereal and Oilsced Beeearch Centrc Centre De Recherches De I'est Sur Lcb Csr6ales Et Cl6agineur Edifice K
I-HE INSEOTS AND ARACHNIDS OF OANADA llastern Cereal and Oilsced Beeearch Centrc Centre de recherches de I'Est sur lcb cSr6ales et cl6agineur Edifice K. W. Nsatby Building Central Expeiimental Farm / Ferme exptirimentale centrale 0ttawa, Ontario, Canada KlA 0C6 THE INSECTS AND ARACHNIDS OF OANADA PART 5 The Crab Spiders cf Canada and Alaska Araneae' Philodromidae and Thomisidae Charles D. Dondale and James H. Redner Biosystematir:s Research Institute Ottawa, Ontario Research Branch Canada Department of Agriculture Publication 1663 1918 \ o Minister of Supply and Services Canada 1978 Available by mail from Printing and Publishing Supply and Services Canada Hull, Quebec, Canada KIA 0S9 or through your bookseller. Catalogue No. A42-421 1978-5 Canada: $7.50 ISBN 0-660-10104-l Other countries: $9.00 Prices subject to change without notice. printed by Friesen Printers Altona, Man. Contract No. 08KT.01,{05-8-10009 The Insects and Arachnids of Canada Part 1. Collecting, Preparing, and Preserving Insects, Mites, and Spiders, compiled by J. E. H. Martin, Biosystematics Research Institute, Ottawa, 7977. Part2. The Bark Beetles of Canada and Alaska (Coleoptera: Scolytidae), by D. E. Bright, Jr., Biosystematics Research Institute, Ottawa, 1976. Part 3. The Aradidae of Canada (Hemiptera: Aradidae), by R. Matsuda, Biosystematics Research Institute, Ottaw a, \97 7 . Part 4. The Anthocoridae of Canada and Alaska (Heteroptera: Antho- coridae), by L. A. Kelton, Biosystematics Research Institute, Ottawa, 1978. Contents Acknowledgments .............. 7 Introduction 9 Anatomy 9 Technique 10 Classification of spider families t2 Key to families 13 Family Philodromidae ................... 25 Key to genera of Philodromidae .............. 26 Genus Ebo Keyserling 29 Key to species of Ebo 29 G enus P hilo drom us W alckenaer ........... -
{DOWNLOAD} Spider Ebook, Epub
SPIDER PDF, EPUB, EBOOK Patrick McGrath | 221 pages | 05 May 2009 | Random House USA Inc | 9780679736301 | English | New York, United States Spider PDF Book We are using cookies! Bulletin of the American Museum of Natural History. Yes, get the app! Hillyard, Paul The white prosoma of Argiope results from bristles reflecting the light, Lycosa and Josa both have areas of modified cuticle that act as light reflectors. No payouts will be awarded, there are no "winnings", as all games represented by Games LLC are free to play. Main article: Spider evolution. In a few species, such as the Hawaiian happy-face spider, Theridion grallator , several coloration schemes are present in a ratio that appears to remain constant, and this may make it more difficult for predators to recognize the species. Undo Button. Web-building spiders have poor vision, but are extremely sensitive to vibrations. Their venom, although they rarely inject much, has resulted in 13 attributed human deaths over 50 years. Start numbered game Cancel. Main article: Social spider. Today's Top Stories. Windy Soemara Getty Images. Spider Solitaire 4. Despite the relatively small central nervous system, some spiders like Portia exhibit complex behaviour, including the ability to use a trial-and-error approach. Systematic Entomology. Card Game Klondike. African Invertebrates. Appearance Options Close. When playing with 2 or 4 suits, you can simply move cards to other cards that are one point higher in value, irrespective of the colour. Most species are carnivorous, either trapping flies and other insects in their webs, or hunting them down. In Shear, W.