A Checklist of the Spiders of Tanzania
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Checklist of the Non -Acarine Arachnids
Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity. -
KWIKSTAART SCOPING Deel 5.Pdf
ANNEXURE: E Permit from Department Agriculture ANNEXURE F: Permit from Department Forestry ANNEXURE G WATER USE CERITIFICATES FOR ALLIED RIVERS FARMING ANNEXURE H SPECIALIST STUDIES ECOLOGICAL SURVEY ECOLOGICAL SURVEY OF THE FARM KWIKSTAART 431 KQ, PORTION 2, KOEDOESKOP, THABAZIMBI, LIMPOPO PROVINCE Compiled by: JONK BEGIN ENVIRONMENTAL SERVICES Email Address: [email protected] Postal Address: P.O. Box 70 Koedoeskop 0361 Fax: (014) 785-0611 EXECUTIVE SUMMARY The timing of the survey was during the rainy seasons of March & April. The study site was extensively browsed and grazed by game over the past few years, making it slightly difficult to determine the species composition and vegetation structure normally present on this proposed development area. The site is situated in Limpopo on the Farm Kwikstaart 431 KQ portion 2, Koedoeskop District. The area is a flat undulating plane. The altitude of the site is between 915-960 m above sea level. The mean annual rainfall measured at Koedoeskop Weather Station is 675mm. The rainy season is predominantly from October to April with driest months being June to August. The mean annual temperature measured at Koedoeskop Weather Station is 21◦ with extreme maximum and minimum temperature of -8.5◦ and 45◦ respectively. This year however, was an exceptionally good rainy season with the Crocodile River flooding its banks in low places. According to Mucina and Rutherford (2006) the study site occurs in the Dwaalboom Thornveld with intrusion of Sandy Bushveld. Acacia tortilis, A nilotica and A karroo dominate the Thornveld whereas Acacia nigrescens, A erubescens and Combretum species occurs on the sandy soils. -
Circadian Rhythms of the Spider Pholcus Phalangeoides in Activity Monitors and Web Boxes
East Tennessee State University Digital Commons @ East Tennessee State University Undergraduate Honors Theses Student Works 5-2019 Circadian Rhythms of the Spider Pholcus phalangeoides in Activity Monitors and Web Boxes Steven Dirmeyer Follow this and additional works at: https://dc.etsu.edu/honors Part of the Animal Experimentation and Research Commons, Behavior and Ethology Commons, and the Biology Commons Recommended Citation Dirmeyer, Steven, "Circadian Rhythms of the Spider Pholcus phalangeoides in Activity Monitors and Web Boxes" (2019). Undergraduate Honors Theses. Paper 640. https://dc.etsu.edu/honors/640 This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Circadian Rhythms of the Spider Pholcus phalangeoides in Activity Monitors and Web Boxes Thesis submitted in partial fulfillment of Honors By Steven Dirmeyer The Honors College University Honors Scholars Program East Tennessee State University April (26), 2019 --------------------------------------------- Dr. Thomas C. Jones, Faculty Mentor --------------------------------------------- Dr. Darrell J. Moore, Faculty Reader SPIDER CIRCADIAN RHYTHMS IN ACTIVITY MONITORS AND WEB BOXES 1 Abstract: Circadian rhythms are endogenous molecular clocks that correspond to the 24-hour day and are regulated by light stimulus, allowing organisms to entrain to the dawn-dusk cycle. These clocks may allow organisms to anticipate daily events, influencing their behavior. In arthropods, including spiders, circadian rhythmicity is tested using activity monitors, which house individuals in tubes. However, this does not reflect the natural habitat of many spiders. -
Spiders in Africa - Hisham K
ANIMAL RESOURCES AND DIVERSITY IN AFRICA - Spiders In Africa - Hisham K. El-Hennawy SPIDERS IN AFRICA Hisham K. El-Hennawy Arachnid Collection of Egypt, Cairo, Egypt Keywords: Spiders, Africa, habitats, behavior, predation, mating habits, spiders enemies, venomous spiders, biological control, language, folklore, spider studies. Contents 1. Introduction 1.1. Africa, the continent of the largest web spinning spider known 1.2. Africa, the continent of the largest orb-web ever known 2. Spiders in African languages and folklore 2.1. The names for “spider” in Africa 2.2. Spiders in African folklore 2.3. Scientific names of spider taxa derived from African languages 3. How many spider species are recorded from Africa? 3.1. Spider families represented in Africa by 75-100% of world species 3.2. Spider families represented in Africa by more than 400 species 4. Where do spiders live in Africa? 4.1. Agricultural lands 4.2. Deserts 4.3. Mountainous areas 4.4. Wetlands 4.5. Water spiders 4.6. Spider dispersal 4.7. Living with others – Commensalism 5. The behavior of spiders 5.1. Spiders are predatory animals 5.2. Mating habits of spiders 6. Enemies of spiders 6.1. The first case of the species Pseudopompilus humboldti: 6.2. The second case of the species Paracyphononyx ruficrus: 7. Development of spider studies in Africa 8. Venomous spiders of Africa 9. BeneficialUNESCO role of spiders in Africa – EOLSS 10. Conclusion AcknowledgmentsSAMPLE CHAPTERS Glossary Bibliography Biographical Sketch Summary There are 7935 species, 1116 genera, and 79 families of spiders recorded from Africa. This means that more than 72% of the known spider families of the world are represented in the continent, while only 19% of the described spider species are ©Encyclopedia of Life Support Systems (EOLSS) ANIMAL RESOURCES AND DIVERSITY IN AFRICA - Spiders In Africa - Hisham K. -
SANSA News 16 Final.PUB
Newsletter • Newsletter • Newsletter • Newsletter • Newsletter JAN-MAY 2012 SANSA - Newsletter South African National No 16 Survey of Arachnida This publication is available from: Ansie Dippenaar-Schoeman [email protected] or at www.arc.agric.za/home.asp?pid=3732 This is the newsletter of the South African National Survey Editors: of Arachnida (SANSA). SANSA is an umbrella project Ansie Dippenaar-Schoeman & Charles Haddad dedicated to unifying and strengthening biodiversity re- search on Arachnida in South Africa, and to make an in- Editorial committee: ventory of our arachnofauna. It runs on a national basis in Petro Marais collaboration with other researchers and institutions with Elsa van Niekerk an interest in the fauna of South Africa. Robin Lyle CONGRATULATIONS To Charles Haddad for obtaining his PhD from the Univer- sity of the Free State. The title of his study was “Advances in the systematics and ecology of the African Corinnidae spiders (Arachnida: Araneae), with emphasis on the Casti- aneirinae”. This is a very comprehensive study and deals with two aspects of the Castianeirinae, namely their ecol- ogy as well as their systematics, and it is a very important contribution towards our knowledge of this family of spi- ders, especially in the Afrotropical Region. An illustrated key to all the genera is provided as well as a phylogenetic analysis of the relationships of the Afrotropical Castianeiri- nae. Charles revised the eight genera of the subfamily Castianeirinae known from the Afrotropical Region and described two genera as new to science. He studied 62 species, of which 37 are new species and 20 redescribed for the first time. -
Beitr. Araneol., 7 (2012: 272–331)
BEITR. ARANEOL., 7 (2012: 272–331) A REVIEW ON THE SPIDER GENUS ARGIOPE AUDOUIN 1826 WITH SPECIAL emphasis ON BROKEN EMBOLI IN FEMALE EPIGYNES (ARANEAE: ARANEI- DAE: ARGIOPINAE). PETER JÄGER, Arachnology, Senckenberg Research Institute, Senckenberganla- ge 25, 60325 Frankfurt am Main, Germany; [email protected] „While a published monograph may appear to provide definite solutions, and readers infer that the author is certain of his findings, more likely the work only identifies and illuminates tantalizing problems. Especially to those with no experience with taxonomic problems, a published monograph has an unfortunate aura of authority.“ Herbert Levi (1983: 256) Abstract: Argiope species are revised with special emphasis on broken male emboli in female epigynes. Broken emboli proved suitable for matching conspecifics and rec- ognising cryptic species in species swarms with similar females. Material of 47 species from 63 countries was included in this study: 92 males, 834 females and 316 broken emboli were examined. Broken emboli are documented for 32 species, those of 27 spe- cies are illustrated for the first time, those of 8 species have been known and illustrated before. 19 species are illustrated by means of in situ emboli, 9 of them are not recorded as broken emboli. In total, emboli of 41 species are illustrated. The male of A. luzona could be confirmed by means of broken emboli stuck in the epigyne. One new species is described: Argiope hinderlichi spec. nov. (female; Laos, Lak Sao, Nong Khiao). The male of Argiope jinghongensis Yin, Peng & Wang 1994 is redescribed and the female is described for the first time.Argiope doleschalli Thorell 1873 and Argi- ope bivittigera Strand 1911 are removed from the synonymy of A. -
Download Download
Behavioral Ecology Symposium ’96: Cushing 165 MYRMECOMORPHY AND MYRMECOPHILY IN SPIDERS: A REVIEW PAULA E. CUSHING The College of Wooster Biology Department 931 College Street Wooster, Ohio 44691 ABSTRACT Myrmecomorphs are arthropods that have evolved a morphological resemblance to ants. Myrmecophiles are arthropods that live in or near ant nests and are considered true symbionts. The literature and natural history information about spider myrme- comorphs and myrmecophiles are reviewed. Myrmecomorphy in spiders is generally considered a type of Batesian mimicry in which spiders are gaining protection from predators through their resemblance to aggressive or unpalatable ants. Selection pressure from spider predators and eggsac parasites may trigger greater integration into ant colonies among myrmecophilic spiders. Key Words: Araneae, symbiont, ant-mimicry, ant-associates RESUMEN Los mirmecomorfos son artrópodos que han evolucionado desarrollando una seme- janza morfológica a las hormigas. Los Myrmecófilos son artrópodos que viven dentro o cerca de nidos de hormigas y se consideran verdaderos simbiontes. Ha sido evaluado la literatura e información de historia natural acerca de las arañas mirmecomorfas y mirmecófilas . El myrmecomorfismo en las arañas es generalmente considerado un tipo de mimetismo Batesiano en el cual las arañas están protegiéndose de sus depre- dadores a través de su semejanza con hormigas agresivas o no apetecibles. La presión de selección de los depredadores de arañas y de parásitos de su saco ovopositor pueden inducir una mayor integración de las arañas mirmecófílas hacia las colonias de hor- migas. Myrmecomorphs and myrmecophiles are arthropods that have evolved some level of association with ants. Myrmecomorphs were originally referred to as myrmecoids by Donisthorpe (1927) and are defined as arthropods that mimic ants morphologically and/or behaviorally. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region. -
WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07C 39/00 (2006.01) C07D 303/32 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07C 49/242 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US20 16/048092 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 22 August 2016 (22.08.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/208,662 22 August 2015 (22.08.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: NEOZYME INTERNATIONAL, INC. -
Myrmarachnine Jumping Spiders of the New Subtribe Levieina from Papua
A peer-reviewed open-access journal ZooKeys 842: 85–112 (2019) New myrmarachnine jumping spiders 85 doi: 10.3897/zookeys.842.32970 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Myrmarachnine jumping spiders of the new subtribe Levieina from Papua New Guinea (Araneae, Salticidae, Myrmarachnini) Wayne P. Maddison1, Tamás Szűts2 1 Departments of Zoology and Botany and Beaty Biodiversity Museum, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada 2 Department of Ecology, University of Veterinary Medicine Budapest, Budapest, H1077, Rottenbiller u. 50, Hungary Corresponding author: Wayne P. Maddison (wayne.maddison@ ubc.ca) Academic editor: Jeremy Miller | Received 10 January 2019 | Accepted 12 March 2019 | Published 7 May 2019 http://zoobank.org/D911C055-FF4B-4900-877B-123951761AC1 Citation: Maddison WP, Szűts T (2019) Myrmarachnine jumping spiders of the new subtribe Levieina from Papua New Guinea (Araneae, Salticidae, Myrmarachnini). ZooKeys 842: 85–112. https://doi.org/10.3897/zookeys.842.32970 Abstract A previously unreported radiation of myrmarachnine jumping spiders from New Guinea is described, which, although having few known species, is remarkably diverse in body forms. This clade is the new subtribe Levieina, represented by seven new species in three new genera. Within Leviea gen. n. are three new species, L. herberti sp. n., L. lornae sp. n., and L. francesae sp. n., all of which are unusual among the myrmarachnines in appearing as typical salticids, not antlike. Papuamyr gen. n. superficially resembles Ligonipes Karsch, 1878 or Rhombonotus L. Koch, 1879 as a compact antlike spider, but lacks their laterally- compressed palp and bears an ectal spur on the paturon of the chelicera. -
Spider Ecology in Southwestern Zimbabwe, with Emphasis on the Impact of Holistic Planned Grazing Practices Sicelo Sebata Thesis
Spider ecology in southwestern Zimbabwe, with emphasis on the impact of holistic planned grazing practices Sicelo Sebata Thesis submitted in satisfaction of the requirements for the degree Philosophiae Doctor in the Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State January 2020 Supervisors Prof. Charles R. Haddad (PhD): Associate Professor: Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa. Prof. Stefan H. Foord (PhD): Professor: Department of Zoology, School of Mathematics and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa. Dr. Moira J FitzPatrick (PhD): Regional Director: Natural History Museums of Zimbabwe, cnr Park Road and Leopold Takawira Avenue, Centenary Park Suburbs, Bulawayo, Zimbabwe. i STUDENT DECLARATION I, the undersigned, hereby assert that the work included in this thesis is my own original work and that I have not beforehand in its totality or in part submitted it at any university for a degree. I also relinquish copyright of the thesis in favour of the University of the Free State. S. Sebata 31 January 2020 ii SUPERVISOR DECLARATION iii DEDICATION I would like to dedicate this thesis to all the spiders that lost their lives in the name of Science. iv ABSTRACT The current information on Zimbabwean spiders is fairly poor and is mostly restricted to taxonomic descriptions, while their ecology remains largely unknown. While taxonomic studies are very important, as many species are becoming extinct before they are described, a focus on the ecology of spiders is also essential, as it helps with addressing vital questions such as the effect of anthropogenic activities on spider fauna. -
Relative Efficiency of Pitfall Trapping Vs. Nocturnal Hand Collecting In
diversity Article Relative Efficiency of Pitfall Trapping vs. Nocturnal Hand Collecting in Assessing Soil-Dwelling Spider Diversity along A Structural Gradient of Neotropical Habitats 1, , 2,3, 4 5 Kaïna Privet * y , Vincent Vedel y, Claire Fortunel ,Jérôme Orivel , Quentin Martinez 6, Axel Cerdan 5,7, Christopher Baraloto 8 and Julien Pétillon 1 1 CNRS, Ecobio (Ecosystèmes, biodiversité, évolution), Université de Rennes, UMR 6553, F-35000 Rennes, France; [email protected] 2 Laboratoire d’Entomologie Entobios, Rainstrasse 1, 77694 Kehl, Germany; [email protected] 3 UMR EcoFoG (Agroparistech, CIRAD, CNRS, INRA, Université des Antilles), Campus Agronomique, Université de Guyane, BP 316, 97379 Kourou CEDEX, France 4 AMAP (botAnique et Modélisation de l’Architecture des Plantes et des végétations), CIRAD, CNRS, INRAE, IRD, TA A51/PS2, Boulevard de la Lironde, Université de Montpellier, 34398 Montpellier CEDEX 5, France; [email protected] 5 CNRS, UMR EcoFoG (Agroparistech, CIRAD, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, 97379 Kourou CEDEX, France; [email protected] (J.O.); [email protected] (A.C.) 6 Institut des Sciences de l’Evolution (ISEM, UMR 5554), Université de Montpellier, Place E. Bataillon - CC064, 34095 Montpellier CEDEX 5, France; [email protected] 7 Laboratoire EDB (CNRS, IRD, Université de Toulouse), bâtiment 4R1, 118, route de Narbonne, 31062 Toulouse CEDEX 9, France 8 International Center for Tropical Botany, Department of Biological Sciences, Florida International University 11200 S.W. 8th Street, Miami, FL 33199, USA; cbaraloto@fiu.edu * Correspondence: [email protected] or [email protected] These authors contributed equally to the work.