Needles and Haystacks: the Search for Ultra in the 1930'S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology?
Portland State University PDXScholar Young Historians Conference Young Historians Conference 2016 Apr 28th, 9:00 AM - 10:15 AM To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology? Hayley A. LeBlanc Sunset High School Follow this and additional works at: https://pdxscholar.library.pdx.edu/younghistorians Part of the European History Commons, and the History of Science, Technology, and Medicine Commons Let us know how access to this document benefits ou.y LeBlanc, Hayley A., "To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology?" (2016). Young Historians Conference. 1. https://pdxscholar.library.pdx.edu/younghistorians/2016/oralpres/1 This Event is brought to you for free and open access. It has been accepted for inclusion in Young Historians Conference by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. To what extent did British advancements in cryptanalysis during World War 2 influence the development of computer technology? Hayley LeBlanc 1936 words 1 Table of Contents Section A: Plan of Investigation…………………………………………………………………..3 Section B: Summary of Evidence………………………………………………………………....4 Section C: Evaluation of Sources…………………………………………………………………6 Section D: Analysis………………………………………………………………………………..7 Section E: Conclusion……………………………………………………………………………10 Section F: List of Sources………………………………………………………………………..11 Appendix A: Explanation of the Enigma Machine……………………………………….……...13 Appendix B: Glossary of Cryptology Terms.…………………………………………………....16 2 Section A: Plan of Investigation This investigation will focus on the advancements made in the field of computing by British codebreakers working on German ciphers during World War 2 (19391945). -
Breaking the Enigma Cipher
Marian Rejewski An Application of the Theory of Permutations in Breaking the Enigma Cipher Applicaciones Mathematicae. 16, No. 4, Warsaw 1980. Received on 13.5.1977 Introduction. Cryptology, i.e., the science on ciphers, has applied since the very beginning some mathematical methods, mainly the elements of probability theory and statistics. Mechanical and electromechanical ciphering devices, introduced to practice in the twenties of our century, broadened considerably the field of applications of mathematics in cryptology. This is particularly true for the theory of permutations, known since over a hundred years(1), called formerly the theory of substitutions. Its application by Polish cryptologists enabled, in turn of years 1932–33, to break the German Enigma cipher, which subsequently exerted a considerable influence on the course of the 1939–1945 war operation upon the European and African as well as the Far East war theatres (see [1]–[4]). The present paper is intended to show, necessarily in great brevity and simplification, some aspects of the Enigma cipher breaking, those in particular which used the theory of permutations. This paper, being not a systematic outline of the process of breaking the Enigma cipher, presents however its important part. It should be mentioned that the present paper is the first publication on the mathematical background of the Enigma cipher breaking. There exist, however, several reports related to this topic by the same author: one – written in 1942 – can be found in the General Wladyslaw Sikorski Historical Institute in London, and the other – written in 1967 – is deposited in the Military Historical Institute in Warsaw. -
Georgetown University in Partial Fulfillment of the Requirements for the Degree of Master of Arts in Security Studies
THE BATTLE FOR INTELLIGENCE: HOW A NEW UNDERSTANDING OF INTELLIGENCE ILLUMINATES VICTORY AND DEFEAT IN WORLD WAR II A Thesis submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Master of Arts in Security Studies By Edward J. Piotrowicz III, B.A. Washington, DC April 15, 2011 Copyright 2011 by Edward J. Piotrowicz III All Rights Reserved ii THE BATTLE FOR INTELLIGENCE: HOW A NEW UNDERSTANDING OF INTELLIGENCE ILLUMINATES VICTORY AND DEFEAT IN WORLD WAR II Edward J. Piotrowicz III, B.A. Thesis Advisor: Jennifer E. Sims, PhD. ABSTRACT Does intelligence make a difference in war? Two World War II battles provide testing grounds for answering this question. Allied intelligence predicted enemy attacks at both Midway and Crete with uncanny accuracy, but the first battle ended in an Allied victory, while the second finished with crushing defeat. A new theory of intelligence called “Decision Advantage,”a illuminates how the success of intelligence helped facilitate victory at Midway and how its dysfunction contributed to the defeat at Crete. This view stands in contrast to that of some military and intelligence scholars who argue that intelligence has little impact on battle. This paper uses the battles of Midway and Crete to test the power of Sims‟s theory of intelligence. By the theory‟s standards, intelligence in the case of victory outperformed intelligence in the case of defeat, suggesting these cases uphold the explanatory power of the theory. Further research, however, could enhance the theory‟s prescriptive power. -
How I Learned to Stop Worrying and Love the Bombe: Machine Research and Development and Bletchley Park
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CURVE/open How I learned to stop worrying and love the Bombe: Machine Research and Development and Bletchley Park Smith, C Author post-print (accepted) deposited by Coventry University’s Repository Original citation & hyperlink: Smith, C 2014, 'How I learned to stop worrying and love the Bombe: Machine Research and Development and Bletchley Park' History of Science, vol 52, no. 2, pp. 200-222 https://dx.doi.org/10.1177/0073275314529861 DOI 10.1177/0073275314529861 ISSN 0073-2753 ESSN 1753-8564 Publisher: Sage Publications Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it. Mechanising the Information War – Machine Research and Development and Bletchley Park Christopher Smith Abstract The Bombe machine was a key device in the cryptanalysis of the ciphers created by the machine system widely employed by the Axis powers during the Second World War – Enigma. -
THE-POLISH-TRACE-Ebook.Pdf
8 THE POLISH TRACE COMPOSED FROM COMMONLY AVAILABLE SOURCES BY LECH POLKOWSKI FOR IJCRS2017 FOREWORD It is a desire of many participants of conferences to learn as much as possible about the history and culture of he visited country and place and organizers try to satisfy this desire by providing excursions into attractive places and sites. IJCRS2017 also tries to take participants to historic sites of Warmia and Mazury and to show elements of local culture. As an innovation, we propose a booklet showing some achievements of Polish scientists and cryptographers, no doubt many of them are known universally, but some probably not. What bounds all personages described here is that they all suffered due to world wars, th efirst and the second. These wars ruined their homes, made them refugees and exiles, destroyed their archives and libraries, they lost many colleagues, friends and students but were lucky enough to save lives and in some cases to begin the career overseas. We begin with the person of Jan Czochralski, world famous metallurgist, discoverer of the technique of producing metal monocrystals `the Czochralski methode’ and inventor of duraluminum and the `bahnalloy’ who started his career and obtained its heights in Germany, later returned to Poland, became a professor at the Warsaw Polytechnical, played an important role in cultural life of Warsaw, lived in Warsaw through the second world war and the Warsaw Uprising of August-September 1944 and after the war was accused of cooperating ith occupying German forces and though judged innocent was literally erased from the public life and any information about him obliterated. -
The Imagination Game Storia E Fantasia in the Imitation Game
The Imagination Game storia e fantasia in The Imitation Game Cap. 2: Bletchley Park e Ultra Giovanni A. Cignoni – Progetto HMR 1/28 Bletchley Park e Ultra • Un’organizzazione poderosa • Bletchley Park • I luoghi, le strutture, le procedure • I meccanismi e gli appoggi • Il personale, le (tante) donne di BP • Ultra • Cos’era, come era nascosto • L’impatto sul conflitto, episodi e numeri Giovanni A. Cignoni – Progetto HMR 2/28 A lezione dai Polacchi • 1919, Biuro Szyfrów • Militari, Kowalewski, e matematici, Mazurkiewicz, Sierpiński, Leśniewski • Nel 1938 il 75% dei messaggi tedeschi intercettati era decifrato (Rejewski, Zygalski, Różycki) • Dopo il ’39 PC Bruno, Cadix, Boxmoor • In Inghilterra • Room40 (1914), GC&CS (1919), BP (1938) • Parigi (gennaio ’39), con Francesi e Polacchi • Pyry vicino Varsavia (luglio ’39) Giovanni A. Cignoni – Progetto HMR 3/28 Un posto strategico Bletchley Park - Gayhurst - Wavendon - Stanmore - Eastcote - Adstock Cambridge Banbury Letchworth Oxford London Giovanni A. Cignoni – Progetto HMR 4/28 Bletchley Park, 1942ca Giovanni A. Cignoni – Progetto HMR 5/28 Nel film, ci somiglia... Giovanni A. Cignoni – Progetto HMR 6/28 … ma non è Giovanni A. Cignoni – Progetto HMR 7/28 Il nume tutelare • 1941.10.21: Action this day! • In un momento di successo • Dopo una visita di Churchill • Le Bombe ci sono, mancano persone • Garanzie per i tecnici BTM • Personale per la catena • Intercettazione in grande • Risorse per una pesca industriale • Un po’ come “Echelon” Giovanni A. Cignoni – Progetto HMR 8/28 Il personale • Una grande industria • Da 9000 a 10000 persone, centinaia di macchine • Piuttosto stabile, circa 12000 nomi • Escluso l’indotto, fornitori e logistica • Reclutamento • Inizialmente diretto, da persona a persona • Poi attraverso controlli e selezioni metodiche • Soprattutto nell’ambito delle leve militari • Ma con un occhio anche ai civili Giovanni A. -
Polska Myśl Techniczna W Ii Wojnie Światowej
CENTRALNA BIBLIOTEKA WOJSKOWA IM. MARSZAŁKA JÓZEFA PIŁSUDSKIEGO POLSKA MYŚL TECHNICZNA W II WOJNIE ŚWIATOWEJ W 70. ROCZNICĘ ZAKOŃCZENIA DZIAŁAŃ WOJENNYCH W EUROPIE MATERIAŁY POKONFERENCYJNE poD REDAkcJą NAUkoWą DR. JANA TARCZYńSkiEGO WARSZAWA 2015 Konferencja naukowa Polska myśl techniczna w II wojnie światowej. W 70. rocznicę zakończenia działań wojennych w Europie Komitet naukowy: inż. Krzysztof Barbarski – Prezes Instytutu Polskiego i Muzeum im. gen. Sikorskiego w Londynie dr inż. Leszek Bogdan – Dyrektor Wojskowego Instytutu Techniki Inżynieryjnej im. profesora Józefa Kosackiego mgr inż. Piotr Dudek – Prezes Stowarzyszenia Techników Polskich w Wielkiej Brytanii gen. dyw. prof. dr hab. inż. Zygmunt Mierczyk – Rektor-Komendant Wojskowej Akademii Technicznej im. Jarosława Dąbrowskiego płk mgr inż. Marek Malawski – Szef Inspektoratu Implementacji Innowacyjnych Technologii Obronnych Ministerstwa Obrony Narodowej mgr inż. Ewa Mańkiewicz-Cudny – Prezes Federacji Stowarzyszeń Naukowo-Technicznych – Naczelnej Organizacji Technicznej prof. dr hab. Bolesław Orłowski – Honorowy Członek – założyciel Polskiego Towarzystwa Historii Techniki – Instytut Historii Nauki Polskiej Akademii Nauk kmdr prof. dr hab. Tomasz Szubrycht – Rektor-Komendant Akademii Marynarki Wojennej im. Bohaterów Westerplatte dr Jan Tarczyński – Dyrektor Centralnej Biblioteki Wojskowej im. Marszałka Józefa Piłsudskiego prof. dr hab. Leszek Zasztowt – Dyrektor Instytutu Historii Nauki Polskiej Akademii Nauk dr Czesław Andrzej Żak – Dyrektor Centralnego Archiwum Wojskowego im. -
This Story Begins Sometime in the Early 1930S, When the Poles And
XYZ Prof. Włodzimierz Zawadzki Institute of Physics, Polish Academy of Sciences [email protected] Mathematicians are important, and not just in wartime. his story begins sometime in the early 1930s, developing programmable computers. Knox informed when the Poles and the French first took an Turing about the progress made by the Poles, and Tur- T interest in breaking the code generated by the ing built a sophisticated machine of his own that was Enigma encryption machines. The Enigma was a Ger- capable of cracking the increasingly complex Wehr- man-made electro-mechanical device that looked a bit macht codes. In a nod to the Polish pioneers, Turing like a typewriter with little lights, and prior to WWII too called his device “the bomb.” Despite the urgings they were available commercially. The decision to of British intelligence, Bertrand was reluctant to get crack the Enigma code proved far-sighted when the the Polish team out of Nazi-occupied France and into machines underwent a complex and classified rede- Bletchley Park. The team ended up in southern France sign for military purposes in the run-up to the war. and, at one point, in North Africa. Despite their con- Codebreaking challenges had earlier been handled tinuing insights, the Polish team’s direct contribution by linguists, but the Enigma’s rotor-encrypted codes to the breaking of the Enigma code diminished. required codebreakers with a mathematical back- When the United States joined the war, one of the ground. The Polish Cipher Bureau, an intelligence out- most difficult aspects of Enigma decryption focused fit located near Warsaw, set up a task force consisting on the communications of the German U-boat fleet, of Marian Rejewski, Henryk Zygalski and Jerzy Róży- which harassed American supply convoys crossing cki. -
Rotor Machines and Enigma 1
Contents: Rotor Machines and Enigma 1. The Introduction of Rotor Machines. 2. Arthur Scherbius and the Enigma Machine. 3. The Principles of Enigma. 4. Interwar Poland, and the Biuro Szyfrów. 5. Marian Rejewski, and Breaking Enigma. 6. Alan Turing, and the British Effort. Eduard Hebern’s Electric Code Machine (U.S. Patent 1673072) R. Banach, Computer Science, University of Manchester: Rotor Machines and Enigma 1 of 28 R. Banach, Computer Science, University of Manchester: Rotor Machines and Enigma 2 of 28 1. The Introduction of Rotor Machines. 2. Arthur Scherbius and the Enigma Machine. Doing encryption by hand is obviously error-prone. Arthur Scherbius invented his Enigma machine in 1918. Cryptographers have always invented various mechanical devices to both It was the first of a number of models, which gradually speed up the encryption process, and also help make it more reliable. improved over the next few years. For a monoalphabetic substitution cypher: U.S. Patent 01657411 was granted for Enigma in 1928. — aligning plain/cypher letter pairs on a ruler, at least stops you forgetting; — putting plain/cypher letter pairs on two concentric rings, able to rotate His big breakthrough was due to the mortification felt by with respect to each other, not only stops you forgetting, but also gives the German High Command after WWI, caused by finding you 26 different monoalphabetic substitution cyphers, by altering the out that the Allies had routinely broken German cyphers orientation of the disks. all through WWI. They decided to buy the best devices for encryption that they could. Scherbius was the right Cypher disks were invented by Leon Battista Alberti (1430’s). -
Historical Ciphers • A
ECE 646 - Lecture 6 Required Reading • W. Stallings, Cryptography and Network Security, Chapter 2, Classical Encryption Techniques Historical Ciphers • A. Menezes et al., Handbook of Applied Cryptography, Chapter 7.3 Classical ciphers and historical development Why (not) to study historical ciphers? Secret Writing AGAINST FOR Steganography Cryptography (hidden messages) (encrypted messages) Not similar to Basic components became modern ciphers a part of modern ciphers Under special circumstances modern ciphers can be Substitution Transposition Long abandoned Ciphers reduced to historical ciphers Transformations (change the order Influence on world events of letters) Codes Substitution The only ciphers you Ciphers can break! (replace words) (replace letters) Selected world events affected by cryptology Mary, Queen of Scots 1586 - trial of Mary Queen of Scots - substitution cipher • Scottish Queen, a cousin of Elisabeth I of England • Forced to flee Scotland by uprising against 1917 - Zimmermann telegram, America enters World War I her and her husband • Treated as a candidate to the throne of England by many British Catholics unhappy about 1939-1945 Battle of England, Battle of Atlantic, D-day - a reign of Elisabeth I, a Protestant ENIGMA machine cipher • Imprisoned by Elisabeth for 19 years • Involved in several plots to assassinate Elisabeth 1944 – world’s first computer, Colossus - • Put on trial for treason by a court of about German Lorenz machine cipher 40 noblemen, including Catholics, after being implicated in the Babington Plot by her own 1950s – operation Venona – breaking ciphers of soviet spies letters sent from prison to her co-conspirators stealing secrets of the U.S. atomic bomb in the encrypted form – one-time pad 1 Mary, Queen of Scots – cont. -
Ces Polonais Qui Ont Décrypté Enigma
8 HISTOIRE VIVANTE LA LIBERTÉ VENDREDI 2 DÉCEMBRE 2011 Ces Polonais qui ont décrypté Enigma GUERRE MONDIALE • Les Renseignements polonais ont apporté un soutien essentiel aux Alliés pendant le conflit mondial. Leurs réseaux étaient non seulement très efficaces, ils étaient aussi dotés de champions du déchiffrage. PASCAL FLEURY du tout envie de collaborer avec La statue de les Services spéciaux de Vichy, bronze de Ma - auxquels ils sont pourtant subor - rian Rejewski, donnés. Ils leur fournissent alors à Bydgoszcz des informations de moindre in - (Bromberg), térêt, tandis qu’ils renseignent au nord de la abondamment le Gouvernement Pologne, est de la Pologne libre à Londres et encore régulièrement fleurie en ses alliés britanniques de Bletch - souvenir de cet enfant du pays, ley Park. héros de la Seconde Guerre Grâce à sept machines mondiale. Ses faits d’armes re - Enigma reconstituées, un impor - marquables, ce brillant mathé - tant volume de dépêches alle - maticien ne les a toutefois pas mandes peut être déchiffré. Les accomplis le fusil à la main, mais messages proviennent de la Ges - en perçant le système de codage tapo, de cellules clandestines al - des fameuses machines d’en - lemandes agissant en France ou cryptage Enigma, largement uti - en Suisse, d’informateurs russes lisées par l’Allemagne nazie. Une ou encore des réseaux de l’Ab - découverte fondamentale, qui a wehr qui suivent les bateaux al - permis ensuite aux services de liés en Méditerranée et dans l’At - renseignement polonais, fran - lantique Sud. En deux ans, selon çais et britanniques de déchiffrer le spécialiste Jean Medrala, des milliers de messages secrets, l’équipe polonaise participe au et de donner ainsi un net avan - décryptage de près de 13 000 tage aux Alliés dans le conflit. -
Polish Mathematicians Finding Patterns in Enigma Messages
Fall 2006 Chris Christensen MAT/CSC 483 Machine Ciphers Polyalphabetic ciphers are good ways to destroy the usefulness of frequency analysis. Implementation can be a problem, however. The key to a polyalphabetic cipher specifies the order of the ciphers that will be used during encryption. Ideally there would be as many ciphers as there are letters in the plaintext message and the ordering of the ciphers would be random – an one-time pad. More commonly, some rotation among a small number of ciphers is prescribed. But, rotating among a small number of ciphers leads to a period, which a cryptanalyst can exploit. Rotating among a “large” number of ciphers might work, but that is hard to do by hand – there is a high probability of encryption errors. Maybe, a machine. During World War II, all the Allied and Axis countries used machine ciphers. The United States had SIGABA, Britain had TypeX, Japan had “Purple,” and Germany (and Italy) had Enigma. SIGABA http://en.wikipedia.org/wiki/SIGABA 1 A TypeX machine at Bletchley Park. 2 From the 1920s until the 1970s, cryptology was dominated by machine ciphers. What the machine ciphers typically did was provide a mechanical way to rotate among a large number of ciphers. The rotation was not random, but the large number of ciphers that were available could prevent depth from occurring within messages and (if the machines were used properly) among messages. We will examine Enigma, which was broken by Polish mathematicians in the 1930s and by the British during World War II. The Japanese Purple machine, which was used to transmit diplomatic messages, was broken by William Friedman’s cryptanalysts.