Breaking the Enigma Cipher
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology?
Portland State University PDXScholar Young Historians Conference Young Historians Conference 2016 Apr 28th, 9:00 AM - 10:15 AM To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology? Hayley A. LeBlanc Sunset High School Follow this and additional works at: https://pdxscholar.library.pdx.edu/younghistorians Part of the European History Commons, and the History of Science, Technology, and Medicine Commons Let us know how access to this document benefits ou.y LeBlanc, Hayley A., "To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology?" (2016). Young Historians Conference. 1. https://pdxscholar.library.pdx.edu/younghistorians/2016/oralpres/1 This Event is brought to you for free and open access. It has been accepted for inclusion in Young Historians Conference by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. To what extent did British advancements in cryptanalysis during World War 2 influence the development of computer technology? Hayley LeBlanc 1936 words 1 Table of Contents Section A: Plan of Investigation…………………………………………………………………..3 Section B: Summary of Evidence………………………………………………………………....4 Section C: Evaluation of Sources…………………………………………………………………6 Section D: Analysis………………………………………………………………………………..7 Section E: Conclusion……………………………………………………………………………10 Section F: List of Sources………………………………………………………………………..11 Appendix A: Explanation of the Enigma Machine……………………………………….……...13 Appendix B: Glossary of Cryptology Terms.…………………………………………………....16 2 Section A: Plan of Investigation This investigation will focus on the advancements made in the field of computing by British codebreakers working on German ciphers during World War 2 (19391945). -
Polska Myśl Techniczna W Ii Wojnie Światowej
CENTRALNA BIBLIOTEKA WOJSKOWA IM. MARSZAŁKA JÓZEFA PIŁSUDSKIEGO POLSKA MYŚL TECHNICZNA W II WOJNIE ŚWIATOWEJ W 70. ROCZNICĘ ZAKOŃCZENIA DZIAŁAŃ WOJENNYCH W EUROPIE MATERIAŁY POKONFERENCYJNE poD REDAkcJą NAUkoWą DR. JANA TARCZYńSkiEGO WARSZAWA 2015 Konferencja naukowa Polska myśl techniczna w II wojnie światowej. W 70. rocznicę zakończenia działań wojennych w Europie Komitet naukowy: inż. Krzysztof Barbarski – Prezes Instytutu Polskiego i Muzeum im. gen. Sikorskiego w Londynie dr inż. Leszek Bogdan – Dyrektor Wojskowego Instytutu Techniki Inżynieryjnej im. profesora Józefa Kosackiego mgr inż. Piotr Dudek – Prezes Stowarzyszenia Techników Polskich w Wielkiej Brytanii gen. dyw. prof. dr hab. inż. Zygmunt Mierczyk – Rektor-Komendant Wojskowej Akademii Technicznej im. Jarosława Dąbrowskiego płk mgr inż. Marek Malawski – Szef Inspektoratu Implementacji Innowacyjnych Technologii Obronnych Ministerstwa Obrony Narodowej mgr inż. Ewa Mańkiewicz-Cudny – Prezes Federacji Stowarzyszeń Naukowo-Technicznych – Naczelnej Organizacji Technicznej prof. dr hab. Bolesław Orłowski – Honorowy Członek – założyciel Polskiego Towarzystwa Historii Techniki – Instytut Historii Nauki Polskiej Akademii Nauk kmdr prof. dr hab. Tomasz Szubrycht – Rektor-Komendant Akademii Marynarki Wojennej im. Bohaterów Westerplatte dr Jan Tarczyński – Dyrektor Centralnej Biblioteki Wojskowej im. Marszałka Józefa Piłsudskiego prof. dr hab. Leszek Zasztowt – Dyrektor Instytutu Historii Nauki Polskiej Akademii Nauk dr Czesław Andrzej Żak – Dyrektor Centralnego Archiwum Wojskowego im. -
Historical Ciphers • A
ECE 646 - Lecture 6 Required Reading • W. Stallings, Cryptography and Network Security, Chapter 2, Classical Encryption Techniques Historical Ciphers • A. Menezes et al., Handbook of Applied Cryptography, Chapter 7.3 Classical ciphers and historical development Why (not) to study historical ciphers? Secret Writing AGAINST FOR Steganography Cryptography (hidden messages) (encrypted messages) Not similar to Basic components became modern ciphers a part of modern ciphers Under special circumstances modern ciphers can be Substitution Transposition Long abandoned Ciphers reduced to historical ciphers Transformations (change the order Influence on world events of letters) Codes Substitution The only ciphers you Ciphers can break! (replace words) (replace letters) Selected world events affected by cryptology Mary, Queen of Scots 1586 - trial of Mary Queen of Scots - substitution cipher • Scottish Queen, a cousin of Elisabeth I of England • Forced to flee Scotland by uprising against 1917 - Zimmermann telegram, America enters World War I her and her husband • Treated as a candidate to the throne of England by many British Catholics unhappy about 1939-1945 Battle of England, Battle of Atlantic, D-day - a reign of Elisabeth I, a Protestant ENIGMA machine cipher • Imprisoned by Elisabeth for 19 years • Involved in several plots to assassinate Elisabeth 1944 – world’s first computer, Colossus - • Put on trial for treason by a court of about German Lorenz machine cipher 40 noblemen, including Catholics, after being implicated in the Babington Plot by her own 1950s – operation Venona – breaking ciphers of soviet spies letters sent from prison to her co-conspirators stealing secrets of the U.S. atomic bomb in the encrypted form – one-time pad 1 Mary, Queen of Scots – cont. -
Polish Mathematicians Finding Patterns in Enigma Messages
Fall 2006 Chris Christensen MAT/CSC 483 Machine Ciphers Polyalphabetic ciphers are good ways to destroy the usefulness of frequency analysis. Implementation can be a problem, however. The key to a polyalphabetic cipher specifies the order of the ciphers that will be used during encryption. Ideally there would be as many ciphers as there are letters in the plaintext message and the ordering of the ciphers would be random – an one-time pad. More commonly, some rotation among a small number of ciphers is prescribed. But, rotating among a small number of ciphers leads to a period, which a cryptanalyst can exploit. Rotating among a “large” number of ciphers might work, but that is hard to do by hand – there is a high probability of encryption errors. Maybe, a machine. During World War II, all the Allied and Axis countries used machine ciphers. The United States had SIGABA, Britain had TypeX, Japan had “Purple,” and Germany (and Italy) had Enigma. SIGABA http://en.wikipedia.org/wiki/SIGABA 1 A TypeX machine at Bletchley Park. 2 From the 1920s until the 1970s, cryptology was dominated by machine ciphers. What the machine ciphers typically did was provide a mechanical way to rotate among a large number of ciphers. The rotation was not random, but the large number of ciphers that were available could prevent depth from occurring within messages and (if the machines were used properly) among messages. We will examine Enigma, which was broken by Polish mathematicians in the 1930s and by the British during World War II. The Japanese Purple machine, which was used to transmit diplomatic messages, was broken by William Friedman’s cryptanalysts. -
The Enigma History and Mathematics
The Enigma History and Mathematics by Stephanie Faint A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Mathematics m Pure Mathematics Waterloo, Ontario, Canada, 1999 @Stephanie Faint 1999 I hereby declare that I am the sole author of this thesis. I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the University of Waterloo to reproduce this thesis by pho tocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. 11 The University of Waterloo requires the signatures of all persons using or pho tocopying this thesis. Please sign below, and give address and date. ill Abstract In this thesis we look at 'the solution to the German code machine, the Enigma machine. This solution was originally found by Polish cryptologists. We look at the solution from a historical perspective, but most importantly, from a mathematical point of view. Although there are no complete records of the Polish solution, we try to reconstruct what was done, sometimes filling in blanks, and sometimes finding a more mathematical way than was originally found. We also look at whether the solution would have been possible without the help of information obtained from a German spy. IV Acknowledgements I would like to thank all of the people who helped me write this thesis, and who encouraged me to keep going with it. In particular, I would like to thank my friends and fellow grad students for their support, especially Nico Spronk and Philippe Larocque for their help with latex. -
History Today 12 June 2018: Back to Basics
Back to Basics June 12 The CCH has seen a few instances recently where published histories on the outside that deal with World War II cryptology have used WW II cryptologic terminology incorrectly or made other erroneous statements about the wartime effort. We decided it would be a good idea to lay out some terminology and basic facts for reference. If all this sounds like a primer, well, yes, it is. But we hope it is also an interesting primer. Both the United States and Great Britain had intensive cryptanalytic efforts before World War II, and both enjoyed a measure of success. Although both countries worked a variety of targets, the British concentrated on German cryptosystems, and the U.S. on Japanese systems. Each gave a covername to the systems they sought to solve, and, when successful against an adversary’s system, they applied a different covername to the results of the cryptanalysis. The Americans and British began cautious sharing in early 1941 of what the British called Signals Intelligence (SIGINT) and U.S. officials called Communications Intelligence (COMINT). Over the course of the war, just as the two nations grew closer in military operations, their cryptologic organizations greatly increased cooperation. Both countries had a covername that was applied to the information derived from exploiting a foreign cryptosystem. This had a double purpose; it would help keep the intelligence information within carefully controlled distribution system, and it would alert the reader to the fact that the intelligence had been obtained through an extremely fragile process and could only be discussed with others who held the proper clearances for that kind of intelligence. -
Agnes Meyer Driscoll Vs. the Enigma and the Bombe Colin Burke
Colin Burke 1-2001 © Agnes Meyer Driscoll vs. the Enigma and the Bombe Colin Burke ABSTRACT: Documents in Britain‘s National Archives/ Public Record Office and in the U.S. National Archive‘s Record Groups RG457 and RG38 indicate that in mid-1941 the United States Navy‘s codebreaking organization, OP-20-G ignored an opportunity to gain full knowledge of Britain‘s anti-Enigma methods and machines. Spending a year and one-half working on what it felt was a unique and much more effective method– but one that failed--OP-20-G‘s, staff, at a critical time in U.S.- British relations ,did not inform America‘s decision makers of Britain‘s willingness to share its crypto-secrets . As a result, American leaders believed that England‘s GC&CS had deliberately withheld vital information that would have allowed the development of an independent American attack on Naval Enigma. That belief lasted Colin Burke 1-2001 © throughout the war and caused friction between the two nations. Other consequences of OP-20-G‘s mid-1941 decision were to delay the adoption of the British Bombe and its allied methods and to waste perhaps six months of the vital time of the new team of cryptanalysts and engineers assigned, in early 1942, to develop an American Bombe. KEYWORDS: OP-20-G, Enigma, Driscoll, Denniston, GC&CS, Bombe, Safford, Wenger, Weeks, Currier, Engstrom, catalog, Banburismus, hot-point, cold-point, Tiltman. Introduction: A Fragile British-American Crypto-Alliance By the end of World War II Great Britain and the United States had forged uniquely close relationships--even among their intelligence agencies.1 Much had to be overcome to achieve the long-lasting 1 Robert Louis Benson, A History of U.S. -
The Enigma Cipher Machine
MTAT.07.006 Research Seminar in Cryptography The Enigma Cipher Machine Kadri Hendla University of Tartu kadri [email protected] Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla 1 Overview • Description of Enigma • Enigma in Use • Cryptanalysis of Enigma Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla 2 History of Enigma • Enigma is most known for its part in World War II. • In 1918 Arthur Scherbius applied for a patent for Enigma. • German military adopted Enigma in 1926. • There were many different versions of Enigma. Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla 3 The Enigma Machine Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla 4 Description of Enigma: Working Principle • Scrambler (3 rotors and a reflector) • Lamps • Keyboard • Plugboard Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla 5 Description of Enigma: Rotors • 1. notched ring • 2. marking dot for ”A” contact • 3. alphabet ring • 4. plate contacts • 5. wire connections • 6. pin contacts • 7. spring-loaded ring adjusting lever • 8. hub • 9. finger wheel • 10. ratchet wheel Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla 6 Description of Enigma: Reflector The reflector gave two important properties to Enigma: • Encryption was the same as decryption. • No letter could be encrypted to itself. Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla -
Needles and Haystacks: the Search for Ultra in the 1930'S
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1983-03 Needles and haystacks: the search for Ultra in the 1930's Gouaze, Linda Yolande Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/19918 DUDLEY KNOX NAV i 9 NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS NEEDLS AND HAYSTACKS: THE SEARCH FOR ULTRA IN THE 1 930 * s by Linda Yolande Gouaze' March 1983 Thesis Advisor: S . J u r i k a Approved for public release; distribution unlimited Ui^ft UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PACE (When Dmlm Znlored) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 4. TITLE (mnd Subtitle) 5. TYPE OF REPORT & PERIOD COVERED Master's Thesis; Needles and Haystacks: The Search March 1983 1930' for Ultra in the s 6. PERFORMING ORG. REPORT NUMBER 7. AUTHORS 8. CONTRACT OR GRANT NUMBERf*) Linda Yolande Gouaze 1. RERFORMINO ORGANIZATION NAME AND AOORESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Naval Postgraduate School Monterey, California 93943 II. CONTROLLING OFFICE NAME AND AOORESS 12. REPORT DATE March 1983 Naval Postgraduate School Monterey, California 93943 O. NUMBER OF PAGES 84 14. MONITORING AGENCY NAME * AOORESSf" dllterent /ram Controlling Olllce) 15. SECURITY CLASS, (ol thle report) UNCLASSIFIED IS*. DECLASSIFICATION/ DOWNGRADING SCHEDULE IS. DISTRIBUTION STATEMENT (ol thle Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (ol In* ebetrmct entered In Block 20, It different from Report) It. SURRLEMENTARY NOTES Enigma British Intelligence code-breaking World War II Polish Intelligence intelligence French Intelligence cryptology 20. -
Mathematics and War
Mathematics and War Bearbeitet von Bernhelm Booss-Bavnbek, Jens Høyrup 1. Auflage 2003. Taschenbuch. vIII, 420 S. Paperback ISBN 978 3 7643 1634 1 Format (B x L): 17 x 24,4 cm Gewicht: 1630 g Weitere Fachgebiete > Medien, Kommunikation, Politik > Militärwesen > Nationale und Internationale Sicherheits- und Verteidigungspolitik Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 83 The Brains behind the Enigma Code Breaking before the Second World War Elisabeth Rakus-Andersson* The German Enigma encoding machine and the contributions of famous cryp- tologists who broke it are still topics that fascinate both scientists and the general public. After the monarchy of Kaiser Wilhelm II fell, the Weimar republic came into being, and the idea of equipping the armed forces with machine ciphers already found realization in 1926. The German cipher machine, called Enigma, alarmed the general staffs of neighbouring countries, especially Poland and France. This work describes the efforts of cryptanalysts who solved the mystery of Enigma during the 1930s before the beginning of the war. 1 Introduction In the late 1920s, everything indicated that the small Reichswehr would be con- verted into a modern million-man army. All the German political parties that came to power voted on the same program, which had as the main assumption to take away from Poland some districts regarded by the German government as “lost territories”. -
The Patron of NCSC
The patron of NCSC According to the Decision of the Minister of National Defense of February 4, 2020, the National Cyber Security Centre was given a name after Jerzy Witold Różycki. The above decision was based on a prevalent belief that Jerzy Różycki took a prominent place in the tradition of Poland through his special contribution to the area of cryptology. That puts him among the greatest world cryptologists of the 20th century. Różycki was one of three most pivotal scientists who broke the German Enigma-machine ciphers. Side by side, Marian Rejewski and Henryk Zygalski also worked with him in the lineup. From 1932, these scientists were employees of the Polish . After the outbreak of World War II, Polish cryptologists sustained their work in France and Great Britain. Jerzy Różycki perished in the Mediterranean Sea in 1942 during his trip from Algiers to France. Jerzy Witold Różycki was born on July 24, 1909 in Olszana. In 1926 he passed his matriculation exam at Secondary School in Wyszków. Later on, he became a student of the Faculty of Mathematics and Natural Sciences of Poznań University. As a student, he demonstrated unique logical and linguistic skills, especially in German language. Zdzisław Krygowski (his promoter) was one of those those who perceived that. In 1929, the Institute of Mathematics of the University of Poznań was involved in the enterprise of the Cipher Bureau of the 2nd Division of the General Staff of the Polish Army. This initiative was aimed at searching for mathematically-skilled people with a special predisposition to do cryptological work. -
A Methodology for the Cryptanalysis of Classical Ciphers with Search
phers with Search Metaheuristics George Lasry A Methodology for the Cryptanalysis of A Methodology for the Cryptanalysis of Classical Ci Classical Ciphers with Search Metaheuristics ISBN 978-3-7376-0458-1 kassel university 9 783737 604581 George Lasry press kassel kassel university press !"# $ % !&' (&)) )*) # + ,)&) - .# +,)/ & + 0123405 / ! & ' & ' & ' 6 # 7 + ))) 8)+$ 9"#)9& )3405 7/':5;.<.5<51.4=>;.0(* 7/':5;.<.5<51.4=>:.;(.* &27++ ?)! ) 04)0:300 $",:5;<5<514=>:; "@'++ . #) +++4443.=4=>:3 '340;9 # !B9$ ) ). ) ,! “After climbing a great hill, one only finds that there are many more hills to climb.” Nelson Mandela Abstract Cryptography, the art and science of creating secret codes, and cryptanalysis, the art and science of breaking secret codes, underwent a similar and parallel course during history. Both fields evolved from manual encryption methods and manual codebreaking techniques, to cipher ma- chines and codebreaking machines in the first half of the 20th century, and finally to computer- based encryption and cryptanalysis from the second half of the 20th century. However, despite the advent of modern computing technology, some of the more challenging classical cipher systems and machines have not yet been successfully cryptanalyzed. For others, cryptanalytic methods exist, but only for special and advantageous cases, such as when large amounts of ciphertext are available. Starting from the 1990s, local search metaheuristics such as hill climbing, genetic algorithms, and simulated annealing have been employed, and in some cases, successfully, for the cryptanal- ysis of several classical ciphers. In most cases, however, results were mixed, and the application of such methods rather limited in their scope and performance. In this work, a robust framework and methodology for the cryptanalysis of classical ciphers using local search metaheuristics, mainly hill climbing and simulated annealing, is described.