The Patron of NCSC

Total Page:16

File Type:pdf, Size:1020Kb

The Patron of NCSC The patron of NCSC According to the Decision of the Minister of National Defense of February 4, 2020, the National Cyber Security Centre was given a name after Jerzy Witold Różycki. The above decision was based on a prevalent belief that Jerzy Różycki took a prominent place in the tradition of Poland through his special contribution to the area of cryptology. That puts him among the greatest world cryptologists of the 20th century. Różycki was one of three most pivotal scientists who broke the German Enigma-machine ciphers. Side by side, Marian Rejewski and Henryk Zygalski also worked with him in the lineup. From 1932, these scientists were employees of the Polish . After the outbreak of World War II, Polish cryptologists sustained their work in France and Great Britain. Jerzy Różycki perished in the Mediterranean Sea in 1942 during his trip from Algiers to France. Jerzy Witold Różycki was born on July 24, 1909 in Olszana. In 1926 he passed his matriculation exam at Secondary School in Wyszków. Later on, he became a student of the Faculty of Mathematics and Natural Sciences of Poznań University. As a student, he demonstrated unique logical and linguistic skills, especially in German language. Zdzisław Krygowski (his promoter) was one of those those who perceived that. In 1929, the Institute of Mathematics of the University of Poznań was involved in the enterprise of the Cipher Bureau of the 2nd Division of the General Staff of the Polish Army. This initiative was aimed at searching for mathematically-skilled people with a special predisposition to do cryptological work. It was primarily related to breaking ciphers and reading the content of its reports. Strona 1 Jerzy Różycki, then a third-year student, was in a group of twenty-odd students of the Institute of Mathematics, who was tasked to solve the realistic Reichswehr dispatch encrypted with the most difficult of the known ciphers of the First World War. That was the test. The task was efficaciously accomplished by three people merely: Różycki, Rejewski and Zygalski. Shockingly, they presented the accurate solution after only a few hours. A positive result of this test opened the door to their further careers. In 1932 Różycki got his first master's degree in mathematics at Poznań University. The same year he started working as a civilian in the Cipher Bureau – 's unit, together with his fellows: Rejewski and Zygalski. From that moment they were almost inseparable. Their work was secret and their duties were strictly confidential. Różycki operated under gigantic pressure. Despite that, he revealed incredible patience for tedious repetition of the same activities thousands of times. At the end of 1932, Różycki was assigned with task related to the theoretical foundations of breaking Enigma ciphers: independently and autonomously he developed a method, which was first described by the American cryptologist William Frederic Friedman in the 1920s in "Index of coincidence". The catalog of Enigma objects was developed by cryptologists the following year – they made it with their own constructed cyclometer. Despite the work overload in the context of acceleration of German arms, in 1937 Różycki got another master's degree in geography at Poznań University. In 1938, Różycki's achievements earned him the Silver Cross of Merit. He also stabilized the family situation by marriage with Maria Barbara Majka. As a result of Germany's attack on Poland, the Cipher Bureau was evacuated from Warsaw. Różycki took his wife and child to Brest. Rejewski and Zygalski traveled alone. For Różycki, a further travel meant a separation from his family, which made him feel very sorry. From Bucharest, they came to Paris and continued their cryptological work for the French General Staff, working several hours a day. In 1940 Różycki was transferred to Algiers. He returned to France after a few months. Until the second half of 1941, he continued his work on Enigma ciphers. He also managed to decipher the German telegraph system with Rejewski and Zygalski. As a result, a number of information about the activities of the German police was revealed. In the summer of 1941, Różycki was transferred to Algiers once again, where he supervised the memos sent by the Germans and Italians. At the turn of 1941 and 1942 he was ordered to return to France. On January 9, 1942, he died in a maritime disaster of a steamer sailing to Marseille in the Balearic region. He never met his wife or son again. The investigation revealed that the disaster was a consequence of bad weather conditions and a poor quality of coal used to propel the ship. Jerzy Różycki’s death was a tragic loss for Allied intelligence. Strona 2 On September 6, 2019, figurative urns with soil from places related to the deaths of Marian Rejewski, Jerzy Różycki and Henryk Zygalski were solemnly placed in the sarcophagus in the crypts of the National Pantheon in Saint Peter and Paul Church in Cracow, Poland. The decision to place a sarcophagus in the pantheon with three urns, none of which contained human remains, was an unprecedented exception. The urn of Jerzy Różycki contains a sand from the Balearic region, collected by his son accompanied by the representatives of the Polish Embassy in Madrid. Because of his tragic death as a result of catastrophe, Różycki did not have any symbolic burial place ever before. Thanks to the efforts of the Ministry of National Defense, the NCSC and the National Pantheon Foundation, a symbolic burial place was created. This paid a tribute to this outstanding figure in an appropriate way. The ceremony in Cracow was attended by the closest members of the cryptologists' families: Mr. Jan Różycki (a son of Jerzy Różycki), Mrs. Janina Sylwestrzak (a daughter of Marian Rejewski) and a niece of Henryk Zygalski – Mr. Maria Bryschak, as well as the representatives of the General Staff of the Polish Armed Forces and the National Cyber Security Centre. British writer - Sir Dermot Turing was also present at the ceremony. Sir Turing is a nephew of Alan Turing - a famous cryptologist, creator of informatics, who during the war continued the work of Polish mathematicians in Bletchley Park near London. Strona 3.
Recommended publications
  • To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology?
    Portland State University PDXScholar Young Historians Conference Young Historians Conference 2016 Apr 28th, 9:00 AM - 10:15 AM To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology? Hayley A. LeBlanc Sunset High School Follow this and additional works at: https://pdxscholar.library.pdx.edu/younghistorians Part of the European History Commons, and the History of Science, Technology, and Medicine Commons Let us know how access to this document benefits ou.y LeBlanc, Hayley A., "To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology?" (2016). Young Historians Conference. 1. https://pdxscholar.library.pdx.edu/younghistorians/2016/oralpres/1 This Event is brought to you for free and open access. It has been accepted for inclusion in Young Historians Conference by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. To what extent did British advancements in cryptanalysis during World War 2 influence the development of computer technology? Hayley LeBlanc 1936 words 1 Table of Contents Section A: Plan of Investigation…………………………………………………………………..3 Section B: Summary of Evidence………………………………………………………………....4 Section C: Evaluation of Sources…………………………………………………………………6 Section D: Analysis………………………………………………………………………………..7 Section E: Conclusion……………………………………………………………………………10 Section F: List of Sources………………………………………………………………………..11 Appendix A: Explanation of the Enigma Machine……………………………………….……...13 Appendix B: Glossary of Cryptology Terms.…………………………………………………....16 2 Section A: Plan of Investigation This investigation will focus on the advancements made in the field of computing by British codebreakers working on German ciphers during World War 2 (1939­1945).
    [Show full text]
  • Breaking the Enigma Cipher
    Marian Rejewski An Application of the Theory of Permutations in Breaking the Enigma Cipher Applicaciones Mathematicae. 16, No. 4, Warsaw 1980. Received on 13.5.1977 Introduction. Cryptology, i.e., the science on ciphers, has applied since the very beginning some mathematical methods, mainly the elements of probability theory and statistics. Mechanical and electromechanical ciphering devices, introduced to practice in the twenties of our century, broadened considerably the field of applications of mathematics in cryptology. This is particularly true for the theory of permutations, known since over a hundred years(1), called formerly the theory of substitutions. Its application by Polish cryptologists enabled, in turn of years 1932–33, to break the German Enigma cipher, which subsequently exerted a considerable influence on the course of the 1939–1945 war operation upon the European and African as well as the Far East war theatres (see [1]–[4]). The present paper is intended to show, necessarily in great brevity and simplification, some aspects of the Enigma cipher breaking, those in particular which used the theory of permutations. This paper, being not a systematic outline of the process of breaking the Enigma cipher, presents however its important part. It should be mentioned that the present paper is the first publication on the mathematical background of the Enigma cipher breaking. There exist, however, several reports related to this topic by the same author: one – written in 1942 – can be found in the General Wladyslaw Sikorski Historical Institute in London, and the other – written in 1967 – is deposited in the Military Historical Institute in Warsaw.
    [Show full text]
  • How I Learned to Stop Worrying and Love the Bombe: Machine Research and Development and Bletchley Park
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CURVE/open How I learned to stop worrying and love the Bombe: Machine Research and Development and Bletchley Park Smith, C Author post-print (accepted) deposited by Coventry University’s Repository Original citation & hyperlink: Smith, C 2014, 'How I learned to stop worrying and love the Bombe: Machine Research and Development and Bletchley Park' History of Science, vol 52, no. 2, pp. 200-222 https://dx.doi.org/10.1177/0073275314529861 DOI 10.1177/0073275314529861 ISSN 0073-2753 ESSN 1753-8564 Publisher: Sage Publications Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it. Mechanising the Information War – Machine Research and Development and Bletchley Park Christopher Smith Abstract The Bombe machine was a key device in the cryptanalysis of the ciphers created by the machine system widely employed by the Axis powers during the Second World War – Enigma.
    [Show full text]
  • THE-POLISH-TRACE-Ebook.Pdf
    8 THE POLISH TRACE COMPOSED FROM COMMONLY AVAILABLE SOURCES BY LECH POLKOWSKI FOR IJCRS2017 FOREWORD It is a desire of many participants of conferences to learn as much as possible about the history and culture of he visited country and place and organizers try to satisfy this desire by providing excursions into attractive places and sites. IJCRS2017 also tries to take participants to historic sites of Warmia and Mazury and to show elements of local culture. As an innovation, we propose a booklet showing some achievements of Polish scientists and cryptographers, no doubt many of them are known universally, but some probably not. What bounds all personages described here is that they all suffered due to world wars, th efirst and the second. These wars ruined their homes, made them refugees and exiles, destroyed their archives and libraries, they lost many colleagues, friends and students but were lucky enough to save lives and in some cases to begin the career overseas. We begin with the person of Jan Czochralski, world famous metallurgist, discoverer of the technique of producing metal monocrystals `the Czochralski methode’ and inventor of duraluminum and the `bahnalloy’ who started his career and obtained its heights in Germany, later returned to Poland, became a professor at the Warsaw Polytechnical, played an important role in cultural life of Warsaw, lived in Warsaw through the second world war and the Warsaw Uprising of August-September 1944 and after the war was accused of cooperating ith occupying German forces and though judged innocent was literally erased from the public life and any information about him obliterated.
    [Show full text]
  • Historical Ciphers Part 2
    ECE 646 - Lecture 7 Required Reading • W. Stallings, Cryptography and Network Security, Historical Ciphers Chapter 3, Classical Encryption Techniques Part 2 • A. Menezes et al., Handbook of Applied Cryptography, Chapter 7.3 Classical ciphers and historical development 1 2 14 Substitution Ciphers (2) 12 Character frequency 2. Polyalphabetic substitution cipher 10 in a long English 8 plaintext M = m1 m2 … md 6 m m … m d+1 d+2 2d 4 m2d+1 m2d+2 … m3d 2 ….. 0 a b c d e f g h i j k l m n o p q r s t u v w x y z C = f1(m1) f2(m2) … fd(md) Character frequency 14 in the corresponding f1(md+1) f2(md+2) … fd(m2d ) 12 ciphertext f1(m2d+1 ) f2( m2d+2) … fd(m3d ) 10 for a polyalphabetic ….. 8 substitution cipher d is a period of the cipher 6 1 4 × 100% » 3.8 % Key = d, f1, f2, …, fd 26 2 d 26 d Number of keys for a given period d = (26!) » (4 × 10 ) 0 a b c d e f g h i j k l m n o p q r s t u v w x y z 3 4 1 Polyalphabetic substitution ciphers Vigenère Cipher - Example Simplifications (1) Plaintext: TO BE OR NOT TO BE A. Vigenère cipher: polyalphabetic shift cipher Key: NSA Invented in 1568 Encryption: T O B E O R ci = fi mod d(mi) = mi + ki mod d mod 26 N O T T O B -1 mi = f i mod d(ci) = ci - ki mod d mod 26 E Key = k0, k1, … , kd-1 Number of keys for a given period d = (26)d 5 6 Vigenère Square Vigenère Square plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z 3 a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z b c d e
    [Show full text]
  • Polska Myśl Techniczna W Ii Wojnie Światowej
    CENTRALNA BIBLIOTEKA WOJSKOWA IM. MARSZAŁKA JÓZEFA PIŁSUDSKIEGO POLSKA MYŚL TECHNICZNA W II WOJNIE ŚWIATOWEJ W 70. ROCZNICĘ ZAKOŃCZENIA DZIAŁAŃ WOJENNYCH W EUROPIE MATERIAŁY POKONFERENCYJNE poD REDAkcJą NAUkoWą DR. JANA TARCZYńSkiEGO WARSZAWA 2015 Konferencja naukowa Polska myśl techniczna w II wojnie światowej. W 70. rocznicę zakończenia działań wojennych w Europie Komitet naukowy: inż. Krzysztof Barbarski – Prezes Instytutu Polskiego i Muzeum im. gen. Sikorskiego w Londynie dr inż. Leszek Bogdan – Dyrektor Wojskowego Instytutu Techniki Inżynieryjnej im. profesora Józefa Kosackiego mgr inż. Piotr Dudek – Prezes Stowarzyszenia Techników Polskich w Wielkiej Brytanii gen. dyw. prof. dr hab. inż. Zygmunt Mierczyk – Rektor-Komendant Wojskowej Akademii Technicznej im. Jarosława Dąbrowskiego płk mgr inż. Marek Malawski – Szef Inspektoratu Implementacji Innowacyjnych Technologii Obronnych Ministerstwa Obrony Narodowej mgr inż. Ewa Mańkiewicz-Cudny – Prezes Federacji Stowarzyszeń Naukowo-Technicznych – Naczelnej Organizacji Technicznej prof. dr hab. Bolesław Orłowski – Honorowy Członek – założyciel Polskiego Towarzystwa Historii Techniki – Instytut Historii Nauki Polskiej Akademii Nauk kmdr prof. dr hab. Tomasz Szubrycht – Rektor-Komendant Akademii Marynarki Wojennej im. Bohaterów Westerplatte dr Jan Tarczyński – Dyrektor Centralnej Biblioteki Wojskowej im. Marszałka Józefa Piłsudskiego prof. dr hab. Leszek Zasztowt – Dyrektor Instytutu Historii Nauki Polskiej Akademii Nauk dr Czesław Andrzej Żak – Dyrektor Centralnego Archiwum Wojskowego im.
    [Show full text]
  • This Story Begins Sometime in the Early 1930S, When the Poles And
    XYZ Prof. Włodzimierz Zawadzki Institute of Physics, Polish Academy of Sciences [email protected] Mathematicians are important, and not just in wartime. his story begins sometime in the early 1930s, developing programmable computers. Knox informed when the Poles and the French first took an Turing about the progress made by the Poles, and Tur- T interest in breaking the code generated by the ing built a sophisticated machine of his own that was Enigma encryption machines. The Enigma was a Ger- capable of cracking the increasingly complex Wehr- man-made electro-mechanical device that looked a bit macht codes. In a nod to the Polish pioneers, Turing like a typewriter with little lights, and prior to WWII too called his device “the bomb.” Despite the urgings they were available commercially. The decision to of British intelligence, Bertrand was reluctant to get crack the Enigma code proved far-sighted when the the Polish team out of Nazi-occupied France and into machines underwent a complex and classified rede- Bletchley Park. The team ended up in southern France sign for military purposes in the run-up to the war. and, at one point, in North Africa. Despite their con- Codebreaking challenges had earlier been handled tinuing insights, the Polish team’s direct contribution by linguists, but the Enigma’s rotor-encrypted codes to the breaking of the Enigma code diminished. required codebreakers with a mathematical back- When the United States joined the war, one of the ground. The Polish Cipher Bureau, an intelligence out- most difficult aspects of Enigma decryption focused fit located near Warsaw, set up a task force consisting on the communications of the German U-boat fleet, of Marian Rejewski, Henryk Zygalski and Jerzy Róży- which harassed American supply convoys crossing cki.
    [Show full text]
  • STEM DISCOVERY: LONDON 8 Or 11 Days | England
    ® Learn more at Tour s for Girl Scouts eftours.com/girlscouts or call 800-457-9023 STEM DISCOVERY: LONDON 8 or 11 days | England Let STEM be your guide during your exploration of London. Uncover secret messages at Bletchley Park, the birthplace of modern information technology. Practice your sleuthing skills during a CSI-inspired forensics workshop. And plant your feet on two different hemispheres at the Royal Observatory in Greenwich, with the English capital as your backdrop. Make a special visit to Pax Lodge in Hampstead where you will participate in unique Girl Scout programming. EVERYTHING YOU GET: Full-time Tour Director Sightseeing: 2 sightseeing tours led by expert, licensed local guides (3 with extension) Entrances: London Eye, Science Museum/Natural History Museum, Tower of London, theater show, National Museum of Computing, Thames River Cruise, Royal Observatory; with extension: Louvre; Notre-Dame Cathedral Experiential learning: Forensics workshop, Stonehenge activities, Bletchley Park interactive workshop WAGGGS Centre visit: Pax Lodge All of the details are covered: Round-trip flights on major carriers; Comfortable motorcoach; Eurostar high-speed train with extension; 7 overnight stays in hotels with private bathrooms (9 with extension); European breakfast and dinner daily DAY 1: FLY OVERNIGHT TO ENGLAND DAY 2: LONDON – Meet your Tour Director at the airport in London, a city that has become one of the world’s great melting pots while maintaining a distinct character that’s all its own. – Take a walking tour of the city and ride the London Eye, a large Ferris wheel along the River Thames that offers panoramic views of the city.
    [Show full text]
  • Historical Ciphers • A
    ECE 646 - Lecture 6 Required Reading • W. Stallings, Cryptography and Network Security, Chapter 2, Classical Encryption Techniques Historical Ciphers • A. Menezes et al., Handbook of Applied Cryptography, Chapter 7.3 Classical ciphers and historical development Why (not) to study historical ciphers? Secret Writing AGAINST FOR Steganography Cryptography (hidden messages) (encrypted messages) Not similar to Basic components became modern ciphers a part of modern ciphers Under special circumstances modern ciphers can be Substitution Transposition Long abandoned Ciphers reduced to historical ciphers Transformations (change the order Influence on world events of letters) Codes Substitution The only ciphers you Ciphers can break! (replace words) (replace letters) Selected world events affected by cryptology Mary, Queen of Scots 1586 - trial of Mary Queen of Scots - substitution cipher • Scottish Queen, a cousin of Elisabeth I of England • Forced to flee Scotland by uprising against 1917 - Zimmermann telegram, America enters World War I her and her husband • Treated as a candidate to the throne of England by many British Catholics unhappy about 1939-1945 Battle of England, Battle of Atlantic, D-day - a reign of Elisabeth I, a Protestant ENIGMA machine cipher • Imprisoned by Elisabeth for 19 years • Involved in several plots to assassinate Elisabeth 1944 – world’s first computer, Colossus - • Put on trial for treason by a court of about German Lorenz machine cipher 40 noblemen, including Catholics, after being implicated in the Babington Plot by her own 1950s – operation Venona – breaking ciphers of soviet spies letters sent from prison to her co-conspirators stealing secrets of the U.S. atomic bomb in the encrypted form – one-time pad 1 Mary, Queen of Scots – cont.
    [Show full text]
  • Pioneers in U.S. Cryptology Ii
    PIONEERS IN U.S. CRYPTOLOGY II This brochure was produced by the Center for Cryptologic History Herbert 0. Yardley 2 Herbert 0. Yardley Herbert 0 . Yardley was born in 1889 in Worthington, Indiana. After working as a railroad telegrapher and spending a year taking an English course at the University of Chicago, he became a code clerk for the Department of State. In June 1917, Yardley received a commission in the Signal Officers Reserve Corps; in July Colonel Ralph Van Deman appointed him chief of the new cryptanalytic unit, MI-8, in the Military Intelligence division. MI-8, or the Cipher Bureau, consisted of Yardley and two clerks. At MI-8's peak in November 1918, Yardley had 18 officers, 24 civilians, and 109 typists. The section had expanded to include secret inks, code and cipher compilation, communications, and shorthand. This was the first formally organized cryptanalytic unit in the history of the U.S. government. When World War I ended, the Army was considering disbanding MI-8. Yardley presented a persuasive argument for retaining it for peacetime use. His plan called for the permanent retention of a code and cipher organization funded jointly by the State and War Departments. He demonstrated that in the past eighteen months MI-8 had read almost 11,000 messages in 579 cryptographic systems. This was in addition to everything that had been examined in connection with postal censorship. On 17 May Acting Secretary of State Frank L. Polk approved the plan, and two days later the Army Chief of Staff, General Peyton C.
    [Show full text]
  • Polish Mathematicians Finding Patterns in Enigma Messages
    Fall 2006 Chris Christensen MAT/CSC 483 Machine Ciphers Polyalphabetic ciphers are good ways to destroy the usefulness of frequency analysis. Implementation can be a problem, however. The key to a polyalphabetic cipher specifies the order of the ciphers that will be used during encryption. Ideally there would be as many ciphers as there are letters in the plaintext message and the ordering of the ciphers would be random – an one-time pad. More commonly, some rotation among a small number of ciphers is prescribed. But, rotating among a small number of ciphers leads to a period, which a cryptanalyst can exploit. Rotating among a “large” number of ciphers might work, but that is hard to do by hand – there is a high probability of encryption errors. Maybe, a machine. During World War II, all the Allied and Axis countries used machine ciphers. The United States had SIGABA, Britain had TypeX, Japan had “Purple,” and Germany (and Italy) had Enigma. SIGABA http://en.wikipedia.org/wiki/SIGABA 1 A TypeX machine at Bletchley Park. 2 From the 1920s until the 1970s, cryptology was dominated by machine ciphers. What the machine ciphers typically did was provide a mechanical way to rotate among a large number of ciphers. The rotation was not random, but the large number of ciphers that were available could prevent depth from occurring within messages and (if the machines were used properly) among messages. We will examine Enigma, which was broken by Polish mathematicians in the 1930s and by the British during World War II. The Japanese Purple machine, which was used to transmit diplomatic messages, was broken by William Friedman’s cryptanalysts.
    [Show full text]
  • The First Americans the 1941 US Codebreaking Mission to Bletchley Park
    United States Cryptologic History The First Americans The 1941 US Codebreaking Mission to Bletchley Park Special series | Volume 12 | 2016 Center for Cryptologic History David J. Sherman is Associate Director for Policy and Records at the National Security Agency. A graduate of Duke University, he holds a doctorate in Slavic Studies from Cornell University, where he taught for three years. He also is a graduate of the CAPSTONE General/Flag Officer Course at the National Defense University, the Intelligence Community Senior Leadership Program, and the Alexander S. Pushkin Institute of the Russian Language in Moscow. He has served as Associate Dean for Academic Programs at the National War College and while there taught courses on strategy, inter- national relations, and intelligence. Among his other government assignments include ones as NSA’s representative to the Office of the Secretary of Defense, as Director for Intelligence Programs at the National Security Council, and on the staff of the National Economic Council. This publication presents a historical perspective for informational and educational purposes, is the result of independent research, and does not necessarily reflect a position of NSA/CSS or any other US government entity. This publication is distributed free by the National Security Agency. If you would like additional copies, please email [email protected] or write to: Center for Cryptologic History National Security Agency 9800 Savage Road, Suite 6886 Fort George G. Meade, MD 20755 Cover: (Top) Navy Department building, with Washington Monument in center distance, 1918 or 1919; (bottom) Bletchley Park mansion, headquarters of UK codebreaking, 1939 UNITED STATES CRYPTOLOGIC HISTORY The First Americans The 1941 US Codebreaking Mission to Bletchley Park David Sherman National Security Agency Center for Cryptologic History 2016 Second Printing Contents Foreword ................................................................................
    [Show full text]