Forgotten Heroes of the Enigma Story

Total Page:16

File Type:pdf, Size:1020Kb

Forgotten Heroes of the Enigma Story BOOKS & ARTS COMMENT manipulating a force pervading in every- day matter, who ally to mount an insur- rection against the established order and Forgotten heroes of help destroy a giant, partially built beam machine,” writes Martin. The trajectory of US solid-state physics, he notes, “fol- the Enigma story lowed much the same plot”. Although he concedes that the SSC was more drasti- Joanne Baker enjoys a tale of the Polish cryptographers cally affected by the end of the cold war than by intradisciplinary critique, there is who paved the way for Alan Turing’s wartime feats. no doubt where Martin’s sympathies lie. He devotes most of his book to a detailed reconstruction of the intense lan Turing’s crucial unscrambling the mathematicians’ struggle, half a century earlier, for rec- of German messages in the Second families have shared ognition by solid-state physicists against World War was a tour de force of personal letters. the leadership of the APS, which was Acodebreaking. From 1940 onwards, Turing Turing unearths a itself frustrated and challenged by the and his team engineered hundreds of elec- remarkable tale of rapid growth in their ranks during the tronic machines, dubbed bombes, which intellect, bravery and 1940s. Physicists who worked on metals, decrypted the thousands of missives sent by camaraderie that ceramics and other domains straddling enemy commanders each day to guide their reads like a nail-biting fundamental and applied physics wanted soldiers. This deluge of knowledge short- spy novel. representation at APS meetings, leading ened the war. Bletchley Park, UK — the Polish skills in X, Y & Z: The to the creation of the Division of Solid secret centre where it all happened — rightly Real Story of cryptography and State Physics in 1947. The institutional gained its place in history. But as with all How Enigma Was radio engineer- gerrymandering had significant implica- breakthroughs, many more people laid the Broken ing came together tions for the APS, especially for its flagship foundations. DERMOT TURING during the 1920 journal, Physical Review. (Publishing is a In his book X, Y & Z, Dermot Turing, The History Press Russo-Polish War. fascinating leitmotif in Martin’s account.) the great mathematician’s nephew, tells the (2018) Signallers decoded This organizational innovation was gripping story of a band of Polish math- a telegram from Red achieved only after substantial resistance ematicians who worked out much about Army military commander Joseph Stalin, from some APS stalwarts, who perceived how German Enigma encoding machines which indicated that an attack on Warsaw the purity of their ranks as becoming sul- operated, years before Alan Turing did. was imminent. Jamming the Russians’ radio lied by industrial scientists. The stalwarts The Poles shared their secrets with French communications bought enough time to included Harvard University’s John Van and British intelligence services before and secure and save the city. Maksymilian Ciężki Vleck, even though he had trained many during the Second World War — the letters and Antoni Palluth were among those sig- of the leaders of the next generation, X, Y and Z were shorthand for the French, nallers. After the 1920 conflict, Ciężki including Anderson. Van Vleck’s objec- British and Polish codebreaking teams, became leader of a radio-intelligence unit. tions were littered with political language: respectively. Palluth set up a business making electronic he protested against the “Balkanization” The author’s research is painstaking. After equipment, including radios the size of a of the APS, and he thought the solid-state the war, military documents were scattered credit card for Polish secret agents. division was a “new-deal-bureaucratic” across Europe, and key French records In 1926, the German navy began to send scheme that ought to be resisted. The con- were declassified only in 2016. Many messages that were scrambled in a more servative Van Vleck was unhappy about original Polish papers were destroyed, but random way, making them almost impos- the direction that the United States — and sible to decipher. They were encoded using with it physics — was going. the typewriter-like Enigma machine. The This raises a broader point about keyboard was wired so that typing one letter Martin’s engaging book: the politics in it lit up a different one in a set of bulbs on top. are exclusive to the profession. He keeps Rotors altered the path of the electric circuit his gaze tightly trained on physicists as with every keystroke. The machines were they define physics to each other. The commercially available, but modified for ANNA ZYGALSKA-CANNON Vietnam War (and scientific work in sup- German military use. Without knowing the port of it), anti-Communism, civil rights precise setting of a machine, there was no and other political fault lines — which way to unpick the code. affected physicists no less than other citi- The book tells how Ciężki hired a group of zens — are mentioned in passing, if at all. mathematics students to crack the problem. Yet they must have mattered. Physics is They worked quietly in basements and in a defined not just by what physicists decide bunker deep in the woods. Marian Rejewski, it is, but by what the broader society will an alumnus of Poznań University in Poland, (or won’t) support. That decision is made was one of them. At the helm was Gwido within the halls of the APS, but also in Langer, a Pole who had worked in radio those of Congress. ■ intelligence for the Austrian army. Meanwhile, in France, Gustave Bertrand Michael D. Gordin is Rosengarten headed the equivalent unit. The French had Professor of Modern and Contemporary a more conventional approach to gather- History at Princeton University in ing information: good agents, clandestine New Jersey. meetings and generous pay-offs. Bertrand email: [email protected] Mathematician Marian Rejewski in 1942. managed two formidable spies. Rudolf ©2018 Spri nger Nature Li mited. All ri ghts reserved. ©2018 Spri nger Nature Li mited. All ri ghts reser20ved . SEPTEMBER 2018 | VOL 561 | NATURE | 307 COMMENT BOOKS & ARTS ANNA ZYGALSKA-CANNON Polish cryptographers, including Maksymilian Ciężki (seventh from left) and Gwido Langer (centre back, head just seen), pictured in southern France in 1941. Stallmann — code name Rex — was Polish mathematician, Jerzy Różycki, with The Polish insights saved him a year of work. a German card-sharp who had posed as realizing that this altered the frequency of When war broke out, the Polish radio- a baron to fleece casino-goers; he picked letters, revealing extra information. The intelligence unit was wound up. The up languages and people with ease. Rex team developed tools to work through codebreakers buried their notes and recruited Hans-Thilo Schmidt, or Agent the hundreds of permutations, including machines and fled. Some ended up Asche, whose brother was a colonel in the punched cards and a mechanical device in Algeria, the rest in France working German army. Schmidt supplied cases of with rotors that mimicked Enigma, which, for Bertrand, who had set up a radio- military documents to the French, which for uncertain reasons, the team called a intelligence group in a chateau in southern Rex received and Bertrand and his colleagues bomba. Both concepts were later used and France. In breathtaking passages, the book photographed in hotel bathrooms. developed by Alan Turing. reveals how most of the Polish codebreakers Bertrand built up a network for sharing Bertrand fed this information back to Brit- made it through the war, tapping into the intelligence, including with Poland and ain’s codebreakers, who come across in the French Resistance and dodging Germany’s the United Kingdom. In 1931, he agreed book as humorous but aloof. They called the military-intelligence services and secret to supply Langer with German military French dispatches police when France became occupied. As documents if the Poles would pass back — stamped TRÈS “Ciężki hired valuable assets, the codebreakers were not decrypted German messages. One of those SECRET in red — a group of allowed to fight. Touching photographs in documents, passed on by Schmidt, was a scarlet pimpernels. mathematics the book show them joking with each other manual for Enigma. In late July 1939, students who and spending time with girlfriends amid Langer, Ciężki and Rejewski leapt on it. just over a month worked in the devastation. They discovered that a panel added to the before the German Eventually, Ciężki and Langer were front of the machine altered the settings, army marched into basements and arrested and interned in the Sudetenland although they still could not tell how the Poland, Bertrand in a bunker deep (now part of the Czech Republic). After device was wired. They set about collect- arranged for the in the woods.” the war, they settled in Scotland. Palluth ing coded messages and applied their wits respected British was killed in Germany in 1945, when an to find clues. Sometimes, the senders made cryptologist Dillwyn ‘Dilly’ Knox (who was aeroplane factory in which he was working telling mistakes. The German soldiers already working on Enigma at Bletchley) to at Sachsenhausen concentration camp was might use simple sets of three letters, such meet Langer’s team near Warsaw. The Poles bombed. Bertrand artfully played all sides. as QQQ, to broadcast the settings to the wanted to pass on their knowledge. Initially Avoiding becoming a double agent, he ended receiver. Occasionally, the messages could angry that they had beaten him to it, Knox up a general. In 1972, he wrote a popular be guessed: for instance, they often said later sent the Poles a silk scarf printed with a French book about Enigma, and so the story maschine defekt. horse-racing scene to concede that they had of X, Y and Z and Bletchley began to seep out.
Recommended publications
  • To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology?
    Portland State University PDXScholar Young Historians Conference Young Historians Conference 2016 Apr 28th, 9:00 AM - 10:15 AM To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology? Hayley A. LeBlanc Sunset High School Follow this and additional works at: https://pdxscholar.library.pdx.edu/younghistorians Part of the European History Commons, and the History of Science, Technology, and Medicine Commons Let us know how access to this document benefits ou.y LeBlanc, Hayley A., "To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology?" (2016). Young Historians Conference. 1. https://pdxscholar.library.pdx.edu/younghistorians/2016/oralpres/1 This Event is brought to you for free and open access. It has been accepted for inclusion in Young Historians Conference by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. To what extent did British advancements in cryptanalysis during World War 2 influence the development of computer technology? Hayley LeBlanc 1936 words 1 Table of Contents Section A: Plan of Investigation…………………………………………………………………..3 Section B: Summary of Evidence………………………………………………………………....4 Section C: Evaluation of Sources…………………………………………………………………6 Section D: Analysis………………………………………………………………………………..7 Section E: Conclusion……………………………………………………………………………10 Section F: List of Sources………………………………………………………………………..11 Appendix A: Explanation of the Enigma Machine……………………………………….……...13 Appendix B: Glossary of Cryptology Terms.…………………………………………………....16 2 Section A: Plan of Investigation This investigation will focus on the advancements made in the field of computing by British codebreakers working on German ciphers during World War 2 (1939­1945).
    [Show full text]
  • Breaking the Enigma Cipher
    Marian Rejewski An Application of the Theory of Permutations in Breaking the Enigma Cipher Applicaciones Mathematicae. 16, No. 4, Warsaw 1980. Received on 13.5.1977 Introduction. Cryptology, i.e., the science on ciphers, has applied since the very beginning some mathematical methods, mainly the elements of probability theory and statistics. Mechanical and electromechanical ciphering devices, introduced to practice in the twenties of our century, broadened considerably the field of applications of mathematics in cryptology. This is particularly true for the theory of permutations, known since over a hundred years(1), called formerly the theory of substitutions. Its application by Polish cryptologists enabled, in turn of years 1932–33, to break the German Enigma cipher, which subsequently exerted a considerable influence on the course of the 1939–1945 war operation upon the European and African as well as the Far East war theatres (see [1]–[4]). The present paper is intended to show, necessarily in great brevity and simplification, some aspects of the Enigma cipher breaking, those in particular which used the theory of permutations. This paper, being not a systematic outline of the process of breaking the Enigma cipher, presents however its important part. It should be mentioned that the present paper is the first publication on the mathematical background of the Enigma cipher breaking. There exist, however, several reports related to this topic by the same author: one – written in 1942 – can be found in the General Wladyslaw Sikorski Historical Institute in London, and the other – written in 1967 – is deposited in the Military Historical Institute in Warsaw.
    [Show full text]
  • How I Learned to Stop Worrying and Love the Bombe: Machine Research and Development and Bletchley Park
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CURVE/open How I learned to stop worrying and love the Bombe: Machine Research and Development and Bletchley Park Smith, C Author post-print (accepted) deposited by Coventry University’s Repository Original citation & hyperlink: Smith, C 2014, 'How I learned to stop worrying and love the Bombe: Machine Research and Development and Bletchley Park' History of Science, vol 52, no. 2, pp. 200-222 https://dx.doi.org/10.1177/0073275314529861 DOI 10.1177/0073275314529861 ISSN 0073-2753 ESSN 1753-8564 Publisher: Sage Publications Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it. Mechanising the Information War – Machine Research and Development and Bletchley Park Christopher Smith Abstract The Bombe machine was a key device in the cryptanalysis of the ciphers created by the machine system widely employed by the Axis powers during the Second World War – Enigma.
    [Show full text]
  • Polska Myśl Techniczna W Ii Wojnie Światowej
    CENTRALNA BIBLIOTEKA WOJSKOWA IM. MARSZAŁKA JÓZEFA PIŁSUDSKIEGO POLSKA MYŚL TECHNICZNA W II WOJNIE ŚWIATOWEJ W 70. ROCZNICĘ ZAKOŃCZENIA DZIAŁAŃ WOJENNYCH W EUROPIE MATERIAŁY POKONFERENCYJNE poD REDAkcJą NAUkoWą DR. JANA TARCZYńSkiEGO WARSZAWA 2015 Konferencja naukowa Polska myśl techniczna w II wojnie światowej. W 70. rocznicę zakończenia działań wojennych w Europie Komitet naukowy: inż. Krzysztof Barbarski – Prezes Instytutu Polskiego i Muzeum im. gen. Sikorskiego w Londynie dr inż. Leszek Bogdan – Dyrektor Wojskowego Instytutu Techniki Inżynieryjnej im. profesora Józefa Kosackiego mgr inż. Piotr Dudek – Prezes Stowarzyszenia Techników Polskich w Wielkiej Brytanii gen. dyw. prof. dr hab. inż. Zygmunt Mierczyk – Rektor-Komendant Wojskowej Akademii Technicznej im. Jarosława Dąbrowskiego płk mgr inż. Marek Malawski – Szef Inspektoratu Implementacji Innowacyjnych Technologii Obronnych Ministerstwa Obrony Narodowej mgr inż. Ewa Mańkiewicz-Cudny – Prezes Federacji Stowarzyszeń Naukowo-Technicznych – Naczelnej Organizacji Technicznej prof. dr hab. Bolesław Orłowski – Honorowy Członek – założyciel Polskiego Towarzystwa Historii Techniki – Instytut Historii Nauki Polskiej Akademii Nauk kmdr prof. dr hab. Tomasz Szubrycht – Rektor-Komendant Akademii Marynarki Wojennej im. Bohaterów Westerplatte dr Jan Tarczyński – Dyrektor Centralnej Biblioteki Wojskowej im. Marszałka Józefa Piłsudskiego prof. dr hab. Leszek Zasztowt – Dyrektor Instytutu Historii Nauki Polskiej Akademii Nauk dr Czesław Andrzej Żak – Dyrektor Centralnego Archiwum Wojskowego im.
    [Show full text]
  • This Story Begins Sometime in the Early 1930S, When the Poles And
    XYZ Prof. Włodzimierz Zawadzki Institute of Physics, Polish Academy of Sciences [email protected] Mathematicians are important, and not just in wartime. his story begins sometime in the early 1930s, developing programmable computers. Knox informed when the Poles and the French first took an Turing about the progress made by the Poles, and Tur- T interest in breaking the code generated by the ing built a sophisticated machine of his own that was Enigma encryption machines. The Enigma was a Ger- capable of cracking the increasingly complex Wehr- man-made electro-mechanical device that looked a bit macht codes. In a nod to the Polish pioneers, Turing like a typewriter with little lights, and prior to WWII too called his device “the bomb.” Despite the urgings they were available commercially. The decision to of British intelligence, Bertrand was reluctant to get crack the Enigma code proved far-sighted when the the Polish team out of Nazi-occupied France and into machines underwent a complex and classified rede- Bletchley Park. The team ended up in southern France sign for military purposes in the run-up to the war. and, at one point, in North Africa. Despite their con- Codebreaking challenges had earlier been handled tinuing insights, the Polish team’s direct contribution by linguists, but the Enigma’s rotor-encrypted codes to the breaking of the Enigma code diminished. required codebreakers with a mathematical back- When the United States joined the war, one of the ground. The Polish Cipher Bureau, an intelligence out- most difficult aspects of Enigma decryption focused fit located near Warsaw, set up a task force consisting on the communications of the German U-boat fleet, of Marian Rejewski, Henryk Zygalski and Jerzy Róży- which harassed American supply convoys crossing cki.
    [Show full text]
  • STEM DISCOVERY: LONDON 8 Or 11 Days | England
    ® Learn more at Tour s for Girl Scouts eftours.com/girlscouts or call 800-457-9023 STEM DISCOVERY: LONDON 8 or 11 days | England Let STEM be your guide during your exploration of London. Uncover secret messages at Bletchley Park, the birthplace of modern information technology. Practice your sleuthing skills during a CSI-inspired forensics workshop. And plant your feet on two different hemispheres at the Royal Observatory in Greenwich, with the English capital as your backdrop. Make a special visit to Pax Lodge in Hampstead where you will participate in unique Girl Scout programming. EVERYTHING YOU GET: Full-time Tour Director Sightseeing: 2 sightseeing tours led by expert, licensed local guides (3 with extension) Entrances: London Eye, Science Museum/Natural History Museum, Tower of London, theater show, National Museum of Computing, Thames River Cruise, Royal Observatory; with extension: Louvre; Notre-Dame Cathedral Experiential learning: Forensics workshop, Stonehenge activities, Bletchley Park interactive workshop WAGGGS Centre visit: Pax Lodge All of the details are covered: Round-trip flights on major carriers; Comfortable motorcoach; Eurostar high-speed train with extension; 7 overnight stays in hotels with private bathrooms (9 with extension); European breakfast and dinner daily DAY 1: FLY OVERNIGHT TO ENGLAND DAY 2: LONDON – Meet your Tour Director at the airport in London, a city that has become one of the world’s great melting pots while maintaining a distinct character that’s all its own. – Take a walking tour of the city and ride the London Eye, a large Ferris wheel along the River Thames that offers panoramic views of the city.
    [Show full text]
  • Rotor Machines and Enigma 1
    Contents: Rotor Machines and Enigma 1. The Introduction of Rotor Machines. 2. Arthur Scherbius and the Enigma Machine. 3. The Principles of Enigma. 4. Interwar Poland, and the Biuro Szyfrów. 5. Marian Rejewski, and Breaking Enigma. 6. Alan Turing, and the British Effort. Eduard Hebern’s Electric Code Machine (U.S. Patent 1673072) R. Banach, Computer Science, University of Manchester: Rotor Machines and Enigma 1 of 28 R. Banach, Computer Science, University of Manchester: Rotor Machines and Enigma 2 of 28 1. The Introduction of Rotor Machines. 2. Arthur Scherbius and the Enigma Machine. Doing encryption by hand is obviously error-prone. Arthur Scherbius invented his Enigma machine in 1918. Cryptographers have always invented various mechanical devices to both It was the first of a number of models, which gradually speed up the encryption process, and also help make it more reliable. improved over the next few years. For a monoalphabetic substitution cypher: U.S. Patent 01657411 was granted for Enigma in 1928. — aligning plain/cypher letter pairs on a ruler, at least stops you forgetting; — putting plain/cypher letter pairs on two concentric rings, able to rotate His big breakthrough was due to the mortification felt by with respect to each other, not only stops you forgetting, but also gives the German High Command after WWI, caused by finding you 26 different monoalphabetic substitution cyphers, by altering the out that the Allies had routinely broken German cyphers orientation of the disks. all through WWI. They decided to buy the best devices for encryption that they could. Scherbius was the right Cypher disks were invented by Leon Battista Alberti (1430’s).
    [Show full text]
  • Historical Ciphers • A
    ECE 646 - Lecture 6 Required Reading • W. Stallings, Cryptography and Network Security, Chapter 2, Classical Encryption Techniques Historical Ciphers • A. Menezes et al., Handbook of Applied Cryptography, Chapter 7.3 Classical ciphers and historical development Why (not) to study historical ciphers? Secret Writing AGAINST FOR Steganography Cryptography (hidden messages) (encrypted messages) Not similar to Basic components became modern ciphers a part of modern ciphers Under special circumstances modern ciphers can be Substitution Transposition Long abandoned Ciphers reduced to historical ciphers Transformations (change the order Influence on world events of letters) Codes Substitution The only ciphers you Ciphers can break! (replace words) (replace letters) Selected world events affected by cryptology Mary, Queen of Scots 1586 - trial of Mary Queen of Scots - substitution cipher • Scottish Queen, a cousin of Elisabeth I of England • Forced to flee Scotland by uprising against 1917 - Zimmermann telegram, America enters World War I her and her husband • Treated as a candidate to the throne of England by many British Catholics unhappy about 1939-1945 Battle of England, Battle of Atlantic, D-day - a reign of Elisabeth I, a Protestant ENIGMA machine cipher • Imprisoned by Elisabeth for 19 years • Involved in several plots to assassinate Elisabeth 1944 – world’s first computer, Colossus - • Put on trial for treason by a court of about German Lorenz machine cipher 40 noblemen, including Catholics, after being implicated in the Babington Plot by her own 1950s – operation Venona – breaking ciphers of soviet spies letters sent from prison to her co-conspirators stealing secrets of the U.S. atomic bomb in the encrypted form – one-time pad 1 Mary, Queen of Scots – cont.
    [Show full text]
  • Ces Polonais Qui Ont Décrypté Enigma
    8 HISTOIRE VIVANTE LA LIBERTÉ VENDREDI 2 DÉCEMBRE 2011 Ces Polonais qui ont décrypté Enigma GUERRE MONDIALE • Les Renseignements polonais ont apporté un soutien essentiel aux Alliés pendant le conflit mondial. Leurs réseaux étaient non seulement très efficaces, ils étaient aussi dotés de champions du déchiffrage. PASCAL FLEURY du tout envie de collaborer avec La statue de les Services spéciaux de Vichy, bronze de Ma - auxquels ils sont pourtant subor - rian Rejewski, donnés. Ils leur fournissent alors à Bydgoszcz des informations de moindre in - (Bromberg), térêt, tandis qu’ils renseignent au nord de la abondamment le Gouvernement Pologne, est de la Pologne libre à Londres et encore régulièrement fleurie en ses alliés britanniques de Bletch - souvenir de cet enfant du pays, ley Park. héros de la Seconde Guerre Grâce à sept machines mondiale. Ses faits d’armes re - Enigma reconstituées, un impor - marquables, ce brillant mathé - tant volume de dépêches alle - maticien ne les a toutefois pas mandes peut être déchiffré. Les accomplis le fusil à la main, mais messages proviennent de la Ges - en perçant le système de codage tapo, de cellules clandestines al - des fameuses machines d’en - lemandes agissant en France ou cryptage Enigma, largement uti - en Suisse, d’informateurs russes lisées par l’Allemagne nazie. Une ou encore des réseaux de l’Ab - découverte fondamentale, qui a wehr qui suivent les bateaux al - permis ensuite aux services de liés en Méditerranée et dans l’At - renseignement polonais, fran - lantique Sud. En deux ans, selon çais et britanniques de déchiffrer le spécialiste Jean Medrala, des milliers de messages secrets, l’équipe polonaise participe au et de donner ainsi un net avan - décryptage de près de 13 000 tage aux Alliés dans le conflit.
    [Show full text]
  • Polish Mathematicians Finding Patterns in Enigma Messages
    Fall 2006 Chris Christensen MAT/CSC 483 Machine Ciphers Polyalphabetic ciphers are good ways to destroy the usefulness of frequency analysis. Implementation can be a problem, however. The key to a polyalphabetic cipher specifies the order of the ciphers that will be used during encryption. Ideally there would be as many ciphers as there are letters in the plaintext message and the ordering of the ciphers would be random – an one-time pad. More commonly, some rotation among a small number of ciphers is prescribed. But, rotating among a small number of ciphers leads to a period, which a cryptanalyst can exploit. Rotating among a “large” number of ciphers might work, but that is hard to do by hand – there is a high probability of encryption errors. Maybe, a machine. During World War II, all the Allied and Axis countries used machine ciphers. The United States had SIGABA, Britain had TypeX, Japan had “Purple,” and Germany (and Italy) had Enigma. SIGABA http://en.wikipedia.org/wiki/SIGABA 1 A TypeX machine at Bletchley Park. 2 From the 1920s until the 1970s, cryptology was dominated by machine ciphers. What the machine ciphers typically did was provide a mechanical way to rotate among a large number of ciphers. The rotation was not random, but the large number of ciphers that were available could prevent depth from occurring within messages and (if the machines were used properly) among messages. We will examine Enigma, which was broken by Polish mathematicians in the 1930s and by the British during World War II. The Japanese Purple machine, which was used to transmit diplomatic messages, was broken by William Friedman’s cryptanalysts.
    [Show full text]
  • La Criptología Y La Victoria Aliada En La Segunda Guerra Mundial
    La criptología y la victoria aliada en la Segunda Guerra Mundial Guillermo Morales-Luna nnn n n nn Durante la guerra las fuerzas armadas hitlerianas basaban sus comu- nicaciones secretas en la máquina cifradora Enigma. Este esquema fue quebrantado inicialmente por criptólogos polacos y, luego, en Inglaterra, el proyecto llamado Ultra quebrantó sus variaciones. Alan Turing fue el líder del grupo de criptólogos en Ultra y desarrolló pro- cedimientos para romper los cifrados alemanes. Su contribución al triunfo aliado ciertamente fue invaluable. Introducción lan Turing tuvo un papel muy importante durante la Segunda Guerra Mundial. Dirigió uno de los grupos de criptólogos encargados de rom- per los códigos secretos alemanes (Copeland, 2004; Leavitt, 2006). Los alemanes basaban sus comunicaciones secretas en la máquina Enigma, Ainventada a mediados de la década de 1920. Criptólogos polacos pudieron que- brantar las primeras versiones de Enigma, y sus trabajos sirvieron de base para los desarrollos criptológicos ingleses. Enigma y la criptología polaca Con el Tratado de Versalles se reconoce la restitución de Polonia. El gobierno de la República de Polonia establece un Biuro Szyfrów para interceptar las comu- nicaciones de la URSS y Alemania. Fue la primera vez que un centro criptológico incorporó a matemáticos: Stefan Mazurkiewicz, Wacław Sierpi´nski y Stanisław Le´sniewski, entre otros. En 1926 los polacos descubrieron que se estaba utilizando un procedimiento mecánico para cifrar las comunicaciones alemanas. Hugo A. Koch, holandés, y Arthur Scherbius, alemán, fueron los inventores de Enigma, alrededor de 1923, con el propósito de cifrar comunicaciones industriales y bancarias. La máquina no 40 ciencia • octubre-diciembre 2013 Alan Turing y la computación atrajo la atención de los medios comerciales y la fá- Enigma militar había sido cambiada respecto a las ver- brica establecida por Scherbius fue liquidada.
    [Show full text]
  • Román Ceano © Román Ceano
    La máquina enigma Román Ceano © Román Ceano. Todos los derechos reservados. El libro fue compilado de http://www.kriptopolis.org/enigma La fotografía sacada de http://enigma.wikispaces.com/file/view/enigma.jpg/30598271 Preludio En el verano de 1938, una pequeña localidad del condado de Buckingham vio perturbada su tranquilidad por la llegada de unos estrafalarios visitantes. Se trataba de hombres de aspecto próspero pero descuidado, acompañados por chicas que los lugareños juzgaron sospechosamente guapas y alegres. Estaban dirigidos al parecer por un tal Capitán Ridley, y decían que el motivo de su presencia era la caza. Ninguna de las camareras que les servían la cena en los hotelitos de la zona les oyó comentar anécdota cinegética alguna, lo cual era congruente con el hecho de que faltaban meses para la temporada. Lo que sí les oyeron comentar eran los opíparos almuerzos con que se obsequiaban. Estos debían tener lugar en la propiedad llamada Bletchley Park, puesto que allí se dirigían todos en sus coches cada mañana y de allí volvían cada tarde. Todo el mundo en Bletchley conocía la finca, sin duda la mejor de la comarca. La había creado sesenta años antes un exitoso corredor de bolsa de Londres llamado Herbert Leon, deseoso de disfrutar de la vida rural de las clases altas victorianas. Presidía la finca una mansión cuya fachada lucía una grotesca mezcla de estilos, que imitaba los palacios de las grandes familias rurales que habían sido reformados varias veces durante centurias. En la parte trasera había un gran patio, separado del edificio principal, donde estaban las cuadras, una enorme despensa donde guardar fruta fresca para el invierno y varias edificaciones auxiliares que recreaban de manera muy fidedigna el centro de operaciones de una propiedad rural.
    [Show full text]