Nest Boxes Do Not Cause a Shift in Bat Community Composition in an Urbanised Landscape Stephen R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bat Calls of New South Wales
Bat calls of New South Wales Region based guide to the echolocation calls of microchiropteran bats Michael Pennay1 , Brad Law2 & Linda Reinhold3 1 New South Wales Department of Environment and Conservation 2 State Forests of New South Wales 3 Queensland Department of Natural Resources and Mines Bat calls of New South Wales Bat calls of New South Wales Published by the NSW Department of Environment and Conservation May 2004 Copyright © NSW Department of Environment and Conservation ISBN 0 7313 6786 3 This guide is the result of a co-operative project between NSW National Parks and Wildlife Service, now the NSW Department of Environment and Conservation (DEC) and State Forests of NSW (SFNSW). DEC provided project funding, management, staff, reference calls, preparation and printing. SFNSW provided part funding and granted support of staff time and expertise, reference calls and editing. Research was conducted under NPWS scientific licence number A2753 and SFNSW special purpose permit for research number 05466. Material presented in this publication may be copied for personal use or republished for non-commercial purposes provided that NSW Department of Environment and Conservation is fully acknowledged as the copyright owner. Apart from these purposes or for private study, research, criticism or review, as permitted under the Australian Copyright Act, no part of this publication may be reproduced by any process without written permission from NSW Department of Environment and Conservation. Inquiries should be addressed to the NSW Department of Environment and Conservation. This publication should be cited as follows: Pennay, M., Law, B., Reinhold, L. (2004). Bat calls of New South Wales: Region based guide to the echolocation calls of Microchiropteran bats. -
Bat Conservation 2021
Bat Conservation Global evidence for the effects of interventions 2021 Edition Anna Berthinussen, Olivia C. Richardson & John D. Altringham Conservation Evidence Series Synopses 2 © 2021 William J. Sutherland This document should be cited as: Berthinussen, A., Richardson O.C. and Altringham J.D. (2021) Bat Conservation: Global Evidence for the Effects of Interventions. Conservation Evidence Series Synopses. University of Cambridge, Cambridge, UK. Cover image: Leucistic lesser horseshoe bat Rhinolophus hipposideros hibernating in a former water mill, Wales, UK. Credit: Thomas Kitching Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/ 3 Contents Advisory Board.................................................................................... 11 About the authors ............................................................................... 12 Acknowledgements ............................................................................. 13 1. About this book ........................................................... 14 1.1 The Conservation Evidence project ................................................................................. 14 1.2 The purpose of Conservation Evidence synopses ............................................................ 14 1.3 Who this synopsis is for ................................................................................................... 15 1.4 Background ..................................................................................................................... -
Maribyrnong River Valley Design Guidelines
MARIBYRNONG RIVER VALLEY DESIGN GUIDELINES APRIL 2010 CONTENTS Minister’s foreword 01 Executive summary 02 Acknowledgements 09 1 Introduction 11 1.1 Why these guidelines are needed 13 1.2 Policy context 13 1.3 Overview of the river 14 1.4 Study area 18 2 What we want to achieve 21 2.1 Vision 22 2.2 Preferred river character 23 3 Priorities for action 29 3.1 Enlarge the open space corridor 30 3.2 Improve site and precinct planning 38 3.3 Undertake important capital works 41 3.4 Improve overall governance 44 3.5 Refine planning controls 45 3.6 Enhance community engagement 51 4 Design guidelines 53 4.1 Additional open space 54 4.2 Open space management – landscape 59 4.3 Open space management – access 63 4.4 Landform 66 4.5 Urban development interface 68 4.6 Site layout and building visibility 70 4.7 Building design 76 4.8 Infrastructure design 79 5 Definitions and abbreviations 81 5.1 Definitions 81 5.2 Abbreviations 82 6 Bibliography 83 7 Appendices 84 Appendix A Relevant maps of the Maribyrnong River 84 Appendix B Consultation, views and values 91 Appendix C Broad objectives table 96 Appendix D Possible planning permit conditions 102 Appendix E Planning Schemes zoning map 104 Appendix F Maribyrnong River Valley settlement chronology 105 Appendix G Maribyrnong River – responsibilities of government agencies 108 MINISTER’S FOREWORD Consistent and coordinated planning is essential for protecting the natural and built character of our treasured waterways. The Maribyrnong River is one of Melbourne’s most used and loved assets, with thousands of Melburnians relaxing along the river every day. -
Insights Into Australian Bat Lyssavirus in Insectivorous Bats of Western Australia
Tropical Medicine and Infectious Disease Article Insights into Australian Bat Lyssavirus in Insectivorous Bats of Western Australia Diana Prada 1,*, Victoria Boyd 2, Michelle Baker 2, Bethany Jackson 1,† and Mark O’Dea 1,† 1 School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; [email protected] (B.J.); [email protected] (M.O.) 2 Australian Animal Health Laboratory, CSIRO, Geelong, VIC 3220, Australia; [email protected] (V.B.); [email protected] (M.B.) * Correspondence: [email protected]; Tel.: +61-893607418 † These authors contributed equally. Received: 21 February 2019; Accepted: 7 March 2019; Published: 11 March 2019 Abstract: Australian bat lyssavirus (ABLV) is a known causative agent of neurological disease in bats, humans and horses. It has been isolated from four species of pteropid bats and a single microbat species (Saccolaimus flaviventris). To date, ABLV surveillance has primarily been passive, with active surveillance concentrating on eastern and northern Australian bat populations. As a result, there is scant regional ABLV information for large areas of the country. To better inform the local public health risks associated with human-bat interactions, this study describes the lyssavirus prevalence in microbat communities in the South West Botanical Province of Western Australia. We used targeted real-time PCR assays to detect viral RNA shedding in 839 oral swabs representing 12 species of microbats, which were sampled over two consecutive summers spanning 2016–2018. Additionally, we tested 649 serum samples via Luminex® assay for reactivity to lyssavirus antigens. Active lyssavirus infection was not detected in any of the samples. -
Chiroptera Vespertilionadae
Rec. West. Aust. Mus. 1985,12 (1): 85-146 Systematic Revision of Australian Scoteanax and Scotorepens (Chiroptera: Vespertilionidae), with Remarks on Relationships to other Nycticeiini DJ. Kitchener* and N. Caputit Abstract Classical and numerical taxonomic approaches based on morphology and utilising electrophoretic information have been applied to clarify the status of Australian species hitherto placed in the genus Nycticeius. Eight named forms have been reduced to five species; these are placed in existing genera: Scateanax (rueppellii) and Scatarepens (arian, balstani, sanbarni and greyii). Phylogenetic analysis of species representative of other Nycticeiini genera, and of geographic groupings of these Australian species, provides additional support for the above generic conclusions. Indicators of gross morphology (skull, radius and lower tooth row lengths) in Scatarepens spp. vary in relation to their sex, and to latitude, longitude and several climatic variables, particularly average minimum temperatures inJuly. Introduction The named forms of vespertilionids considered in this study are: Scotoph£lus grey££ Gray, 1843; Nyct£ce£us rueppell££ Peters, 1866; Scote£nus balston£ Thomas, 1906; Scoteinus £nfluatus Thomas, 1924; Scoteinus or£on Troughton, 1937; Scote£nus sanborn£ Troughton, 1937; Scote£nus balston£ caprenus Troughton, 1937; and Scote£nus or£on aqu£lo Troughton, 1937. These forms have long been the cause of great taxonomic confusion, both at the generic and specific levels. Dobson (1875) referred rueppell££ and grey££ to Scotoph£lus by placing them in the subgenus Scote£nus. Thomas (1906) placed rueppell££ and grey££ in the genus Scote£nus as did Miller (1907) who raised Scote£nus to generic rank (based principally on a study of the Australian species balston£ and grey££, but without reference to the type species, Nyct£ce£us emar g£natus Dobson, 1871). -
General Introduction
General introduction General introduction Deserts Arid and semi-arid habitats cover almost one third of the world’s land area and represent one of the most demanding ecosystems for living organisms. The formation of arid landforms and diversification of arid flora and fauna occurred about 2.6-5 million of years ago during late Pliocene and Pleistocene. However, throughout the geological evolution, desert areas experienced a variety of changes in extent and intensity of aridity, especially during the Quaternary (about 2 million of years ago), reflecting high biotic diversity that once was represented in these areas (Johnson 2006). Present deserts are distributed across all continents with 88% occurring in the Old World (Africa, Asia and Europe) and 12% in the New World (North America, South America and Australia) (Degen 1997). In the southern hemisphere major desert regions comprise about 500 million km2 and are more diverse than the deserts of the northern hemisphere. These for example, include hyperarid areas such as the Namib (South Africa) and the Atacama (Chile), the semi-arid sandy savannahs of the Kalahari, the continental dunefields of Australia and the high elevation dry Puna grasslands (Argentina) (Trewin 2006a). Australia’s arid (3.5 million km2) and semi-arid (1.79 million km2) regions comprise about 5.3 million km2 or 69% of the continent, and together they form the largest desert region in the southern hemisphere (Plate 1a) (Taylor 2002). Deserts have been characterised in a variety of ways based on different climatic factors such as total annual rainfall, solar radiation, rates of evaporation and maximum Tas (Degen 1997). -
BULLETIN7 NOVEMBER 2004 Environmental Indicators for Metropolitan Melbourne What’S Inside • Air Emissions
BULLETIN7 NOVEMBER 2004 Environmental Indicators For Metropolitan Melbourne What’s Inside • Air Emissions • Water • Beach and Bay • Greenhouse • Open Space • Waste AUSTRALIAN INSTITUTE OF URBAN STUDIES & CITY OF MELBOURNE METROPOLITAN MELBOURNE PROFILE source: Department of Infrastructure 1998. Metropolitan Melbourne covers 8,833 square kilometres. There are 31 Local Governments (municipalities) within the metropolitan Melbourne region. Region Local Government Area Area (square kilometres) Estimated Residential Population density Population, June 2003 (population per km2) Central Melbourne 36.1 58 031 1 607.5 Port Phillip 20.7 82 331 3 977.3 Yarra 19.5 69 536 3 565.9 Total 76.3 209 898 2 751 Inner Boroondara 60.2 157 888 2 622.7 Darebin 53.5 127 321 2 379.8 Glen Eira 38.7 122 770 3 172.4 Maribyrnong 31.2 61 863 1 982.8 Moonee Valley 44.3 109 567 2 473.3 Moreland 50.9 135 762 2 667.2 Stonnington 25.6 90 197 3 523.3 Total 304.4 805 368 2 645.8 Middle Banyule 62.6 118 149 1 887.4 Bayside 37 89 330 2 414.3 Brimbank 123.4 172 995 1 401.9 Greater Dandenong 129.7 127 380 982.1 Hobsons Bay 64.4 83 585 1 297.9 Kingston 91.1 135 997 1 492.8 Knox 113.9 150 157 1 318.3 Manningham 113.3 114 198 1 007.9 Monash 61.4 161 841 2 635.8 Maroondah 81.5 100 801 1 236.8 Whitehorse 64.3 145 455 2 262.1 Total 942.6 1 399 888 1 485.1 Outer Cardinia 1,281.6 51 290 40 Casey 409.9 201 913492.6 Frankston 129.6 117 079 903.4 Hume 503.8 144 314286.5 Melton 527.6 65 507124.2 Mornington Peninsula 723.6 137 467 190 Nillumbik 430.4 60 585 140.8 Whittlesea 489.4 123 397252.1 -
Index of Handbook of the Mammals of the World. Vol. 9. Bats
Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A. -
Fitz-Stirling 2007-2017 Ten-Year Evaluation Review
Fitz-Stirling 2007-2017 Ten-year Evaluation Review Feb / 2018 P a g e | 1 Acknowledgements: This report has benefited greatly from the discussion and guidance on content, presentation and editing by Annette Stewart, Clair Dougherty and Simon Smale. Their expert assistance is greatly appreciated. Volunteers have played a major and vital role in the monitoring and survey program over the past 5 years and I thank all of those involved. Special thanks go to Dr Sandra Gilfillan for her continuing dedication to the wallaby monitoring and research program. Volunteers Aaron Gove, who provided the bird data analysis and Richard Thomas, who provided the bat data analysis, have made a large contribution to this report and I thank them. I sincerely thank Bill and Jane Thompson who have regularly carried out all the pool monitoring for several years. Thanks also to Barry Heydenrych, Greening Australia, who provided restoration data. Funding to assist the monitoring program and UAV surveys during 2015 was gratefully received from South Coast NRM as part of the Australian Government funded ‘Restoring Gondwana’ program. Funding vital for wallaby monitoring and research was provided by the Diversicon Foundation. Citation: Sanders, A. (2018). Fitz-Stirling 2007-2017 ten-year evaluation review. Unpublished report for Bush Heritage Australia. P a g e | 2 Contents Overview of Fitz-Stirling Project ........................................................................................................ 6 This report evaluates our conservation impact ................................................................................. -
Falsistrellus Mordax, Pungent Pipistrelle
The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T17351A22127490 Falsistrellus mordax, Pungent Pipistrelle Assessment by: Görföl, T., Kingston, T., Suyanto, A. & Hutson, A.M. View on www.iucnredlist.org Citation: Görföl, T., Kingston, T., Suyanto, A. & Hutson, A.M. 2016. Falsistrellus mordax. The IUCN Red List of Threatened Species 2016: e.T17351A22127490. http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T17351A22127490.en Copyright: © 2016 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: Arizona State University; BirdLife International; Botanic Gardens Conservation International; Conservation International; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Mammalia Chiroptera Vespertilionidae Taxon Name: Falsistrellus mordax (Peters, 1866) Synonym(s): • Pipistrellus mordax (Peters, 1866) Common Name(s): • English: Pungent Pipistrelle Taxonomic Notes: The Chinese record is likely based on a specimen in the American Museum of Natural History (44565), which is actually F. -
The New Sydney Fish Market: Biodiversity Development Assessment Report Concept and Stage 1 Works and Stage 2 Main Works
The new Sydney Fish Market: Biodiversity Development Assessment Report Concept and Stage 1 Works and Stage 2 Main Works Infrastructure NSW © ECO LOGICAL AUSTRALIA PTY LTD 1 Concept and Stage 1 Works and Stage 2 Main Works | Infrastructure NSW DOCUMENT TRACKING Project Name The new Sydney Fish Market: Biodiversity Development Assessment Report Project Number 17WOL-7553 Date 6 May 2020 Project Manager Ian Dixon Prepared by Mitchell Scott and Belinda Failes Reviewed by Matthew Dowle and Meredith Henderson Approved by David Bonjer Status Final Version Number v9 Last saved on 6 May 2020 This report should be cited as ‘Eco Logical Australia 2020 The new Sydney Fish Market: Biodiversity Development Assessment Report. Prepared for Infrastructure NSW.’ UrbanGrowth NSW Development Corporation (UrbanGrowth NSW) was abolished on 1 July 2019 with all functions transferred to Infrastructure NSW. Any reference to UrbanGrowth NSW throughout this report is interchangeable with Infrastructure NSW (INSW). ACKNOWLEDGEMENTS This document has been prepared by Eco Logical Australia Pty Ltd. Disclaimer This document may only be used for the purpose for which it was commissioned and in accordance with the contract between Eco Logical Australia Pty Ltd and Infrastructure NSW. The scope of services was defined in consultation with Infrastructure NSW, by time and budgetary constraints imposed by the client, and the availability of reports and other data on the subject area. Changes to available information, legislation and schedules are made on an ongoing basis and readers should obtain up to date information. Eco Logical Australia Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. -
Appendix a Fauna Survey Effort and Results
APPENDIX A FAUNA SURVEY EFFORT AND RESULTS October 2016 Prepared by Anderson Environment and Planning The Fauna Survey Effort (FSE) for the Biobanking Assessment Report has been guided by the following: The predict threatened species from within the Biobanking Credit Calculator; The Threatened Species Survey and Assessment Guidelines for developments and activities (working draft), NSW Department of Environment and Conservation (2004); The NSW Threatened Species Profile Database; and Previous fauna survey results from the site. The following Ecosystem Credit species have been recorded on the site during past or current survey work: Eastern Bentwing-bat (Miniopterus schreibersii oceanensis); Eastern False Pipistrelle (Falsistrellus tasmaniensis); Eastern Freetail-bat (Mormopterus norfolkensis); Greater Broad-nosed Bat (Scoteanax rueppellii); Grey-headed Flying-fox (Pteropus poliocephalus); Little Bentwing-bat (Miniopterus australis); Little Lorikeet (Glossopsitta pusilla); Long-nosed Potoroo (Potorous tridactylus); Powerful Owl (Ninox strenua); Squirrel Glider (Petaurus norfolcensis); Varied Sittella (Daphoenositta chrysoptera); Yellow-bellied Glider (Petaurus australis); Yellow-bellied Sheathtail-bat (Saccolaimus flaviventris). The following Species Credit species have been recorded on the site or surrounds during past survey work: Koala (Phascolarctos cinereus); Wallum Froglet (Crinia tinnula). Prepared by Anderson Environment and Planning Contents 1.0 Introduction ..............................................................................................................................................